## **CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)**

Nationally Accredited with "A" Grade By NAAC

**ISO 9001:2015 Certified** 

#### **TIRUCHIRAPPALLI**

## PG DEPARTMENT OF CHEMISTRY



M.Sc., CHEMISTRY
SYLLABUS
2022-2023 and Onwards

# CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG DEPARTMENT OF CHEMISTRY

#### **VISION**

To progress into a centre of superiority in Chemistry that will blend state-of-the-art practices in professional teaching in a communally enriching way, with the holistic progress of the students as its prime emphasis.

## **MISSION**

- To produce graduates committed to integrity, professionalism and lifelong learning by widening their knowledge horizons in range and depth.
- To awaken the young minds and discover talents to achieve personal academic potential by creating an environment that promotes frequent interactions, independent thought, innovations, modern technologies and increased opportunities.
- To enhance the quality through basic and applied research frameworks, and encourage the students to take part in entrance and competitive examinations for higher studies and career.
- To enhance services to the community and build partnerships with the industry.

## PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

| PEOs | Statements                                                                        |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
| PEO1 | LEARNING ENVIRONMENT                                                              |  |  |  |  |  |  |
|      | To facilitate value-based holistic and comprehensive learning by integrating      |  |  |  |  |  |  |
|      | innovative learning practices to match the highest quality standards and train    |  |  |  |  |  |  |
|      | the students to be effective leaders in their chosen fields.                      |  |  |  |  |  |  |
| PEO2 | ACADEMIC EXCELLENCE                                                               |  |  |  |  |  |  |
|      | To provide a conducive environment to unleash their hidden talents and to         |  |  |  |  |  |  |
|      | nurture the spirit of critical thinking and encourage them to achieve their goal. |  |  |  |  |  |  |
| PEO3 | EMPLOYABILITY                                                                     |  |  |  |  |  |  |
|      | To equip students with the required skills in order to adapt to the changing      |  |  |  |  |  |  |
|      | global scenario and gain access to versatile career opportunities in              |  |  |  |  |  |  |
|      | multidisciplinary domains.                                                        |  |  |  |  |  |  |
| PEO4 | PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY                                     |  |  |  |  |  |  |
|      | To develop a sense of social responsibility by formulating ethics and equity to   |  |  |  |  |  |  |
|      | transform students into committed professionals with a strong attitude towards    |  |  |  |  |  |  |
|      | the development of the nation.                                                    |  |  |  |  |  |  |
| PEO5 | GREEN SUSTAINABILITY                                                              |  |  |  |  |  |  |
|      | To understand the impact of professional solutions in societal and                |  |  |  |  |  |  |
|      | environmental contexts and demonstrate the knowledge for an overall               |  |  |  |  |  |  |
|      | sustainable development.                                                          |  |  |  |  |  |  |

## PROGRAMME OUTCOMES FOR M.Sc., Mathematics,

## M.Sc., Physics, M.Sc., Chemistry PROGRAMMES

| PO NO. | On completion of M.Sc., Programme, the students will be able to                     |
|--------|-------------------------------------------------------------------------------------|
| PO1    | PROBLEM ANALYSIS                                                                    |
|        | Provide opportunities to develop innovative design skills, including the ability to |
|        | formulate problems, to think creatively, to synthesize information, and to          |
|        | communicate effectively.                                                            |
| PO2    | SCIENTIFIC SKILLS                                                                   |
|        | Create and apply advanced techniques and tools to solve the societal                |
|        | environmental issues.                                                               |
| PO3    | ENVIRONMENT AND SUSTAINABILITY                                                      |
|        | Ascertain eco-friendly approach for sustainable development and inculcate           |
|        | scientific temper in the society.                                                   |
| PO4    | ETHICS                                                                              |
|        | Imbibe ethical and social values aiming towards holistic development of learners.   |
| PO5    | LIFELONG LEARNING                                                                   |
|        | Instill critical thinking, communicative knowledge which potentially leads to       |
|        | higher rate of employment and also for higher educational studies.                  |

## PROGRAMME SPECIFIC OUTCOMES FOR M.Sc. CHEMISTRY

| PSO NO. | The students of M.Sc., Chemistry will be able to                                                                                                                | POs<br>Addressed |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|         |                                                                                                                                                                 | PO1              |
| PSO1    | Acquire knowledge in basic concepts, fundamental principles, and applications of chemical and scientific theories and their relevancies in the day-to-day life. | PO2              |
|         |                                                                                                                                                                 | PO1              |
| DCO2    | Design experiments, analyze, synthesize and interpret data to provide                                                                                           | PO2              |
| PSO2    | solutions to different industrial problems by working in the pure, inter and multi-disciplinary areas of chemical sciences.                                     | PO3              |
|         |                                                                                                                                                                 | PO3              |
| PSO3    | Attain maneuver in diverse contexts with Global Perspective                                                                                                     | PO4              |
|         |                                                                                                                                                                 | PO1              |
| PSO4    | Gain a thorough Knowledge in the subject to be able to work in projects                                                                                         | PO2              |
|         | at different research as well as academic institutions.                                                                                                         | PO5              |
|         |                                                                                                                                                                 | PO1              |
|         | Afford Global level research opportunities to pursue Ph.D programme                                                                                             | PO2              |
| PSO5    | targeted approach of CSIR – NET examination                                                                                                                     | PO3              |
|         |                                                                                                                                                                 | PO4              |
|         |                                                                                                                                                                 | PO5              |



## Cauvery College for Women (Autonomous), Trichy-18 M.Sc. Chemistry

(For the Candidates admitted from the Academic year 2022-2023 and onwards)

|          | Course                | Title                                           | Subject code |                    |        | Exam | Ma  | rks | Total |
|----------|-----------------------|-------------------------------------------------|--------------|--------------------|--------|------|-----|-----|-------|
| Semester |                       |                                                 |              | Inst. Hrs/<br>Week | Credit | Hrs  | Int | Ext |       |
|          | Core Course-I         | Organic<br>Chemistry-I                          | 22PCH1CC1    | 6                  | 6      | 3    | 25  | 75  | 100   |
|          | Core Course-II        | Inorganic<br>Chemistry-I                        | 22PCH1CC2    | 6                  | 5      | 3    | 25  | 75  | 100   |
|          | Core Course-III       | Physical<br>Chemistry-I                         | 22PCH1CC3    | 6                  | 5      | 3    | 25  | 75  | 100   |
| I        | Core Practical-I      | Organic<br>Chemistry<br>Practical-I             | 22PCH1CC1P   | 6                  | 3      | 6    | 40  | 60  | 100   |
|          | Elective<br>Course -I | Instrumentation Techniques Practical/           | 22PCH1EC1AP/ | 6                  | 3      | 6    | 40  | 60  | 100   |
|          |                       | Nanoscience and<br>Nanotechnology<br>Practical/ | 22PCH1EC1BP/ |                    |        |      |     |     |       |
|          |                       | Biochemistry<br>Practical                       | 22PCH1EC1CP  |                    |        |      |     |     |       |
|          | To                    | otal                                            |              | 30                 | 22     |      |     |     | 500   |

| Semester I     | Internal Mark          | s: 25    | Ext           | ernal Marks: 75 |
|----------------|------------------------|----------|---------------|-----------------|
| COURSE<br>CODE | COURSE<br>TITLE        | CATEGORY | Hrs /<br>Week | CREDITS         |
| 22PCH1CC1      | ORGANIC<br>CHEMISTRY-I | CORE     | 6             | 6               |

- To learn the basic concepts of aromaticity and stereochemistry of various organic molecules
- To give ideas of nucleophilic and electrophilic substitution reactions and makes to learn about the oxidizing and reducing reagents for organic synthesis

## **Prerequisites**

Aromaticity, oxidation, reduction and symmetry

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                       | Cognitive<br>Level |
|--------------|---------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Classify different types of concerted reactions in organic chemistry and orbital correlation approaches | K2                 |
| CO2          | Identify the stereo centres in a molecule and assign the configuration as R or S                        | К3                 |
| CO3          | Distinguish between aromatic, anti-aromatic and non-aromatic compounds by their structure.              | K4                 |
| CO4          | Discuss the relative stability of conformational isomers of cyclohexanes, decalins and norboranes       | K6                 |
| CO5          | Predict the reagents used for different type of organic reactions in synthesis                          | K6                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

UNIT I (18 Hours)

**Electronic Effects and Aromaticity:** Electronic Effects - inductive, resonance and hyper conjugative effects and their influence. Aromatic character: Huckel's theory of aromaticity - three, four, five, six, seven, and eight membered rings — other systems with aromatic sextet - concept of homo aromaticity and anti-aromaticity - Craig's rule and its applications. Consequences of aromaticity - non alteration in bond length- Huckel's MO calculation. Electron occupancy in MO's and aromaticity - NMR concept of aromaticity and anti-aromaticity.

UNIT II (18 Hours)

Stereochemistry and Conformational Analysis: Stereoisomerism – optical activity and chirality – types of molecules exhibiting optical activity – R, S and E, Z configuration, absolute configuration – chirality in molecules with non-carbon stereo centers (N, S and P) – molecules with more than one chiral center. Stereochemistry of molecules with axial chirality. Biphenyls, allenes, spiranes and analogues - Atropisomerism - Helicity and chirality - Resolution – methods of Resolution. Conformations of mono and disubstituted six membered ring systems- conformations of decalin. Quantitative correlation between conformation and reactivity.

UNIT III (18 Hours)

Aliphatic Substitution Reactions: Aliphatic electrophilic substitution: selected reactions - migration of double bonds - halogenation of aldehydes and ketones - Stork-Enamine reaction-decarboxylation of aliphatic acids - Haloform reaction. Aliphatic nucleophilic substitution - mechanisms -  $SN_1$ ,  $SN_2$ ,  $SN_i$  - ion-pair mechanisms - neighboring group participation, nonclassical Carbocations - substitutions at allylic and vinylic carbons. Reactivity - effect of substituents, nucleophilic, leaving group and stereo chemical factors -correlation of structure with reactivity - solvent effects- Von-Braun Reaction. Claisen and Deickmann condensation.

UNIT IV (18 Hours)

**Pericyclic Reactions:** Concerted reactions – orbital symmetry and concerted symmetry – Woodward and Hoffmann rules – selection rules for electrolytic reactions – frontier molecular orbital approach correlation diagram – examples – Chelotropic and ene reactions. Sigmatropic rearrangements – 1,3, 1,5 and 1,7-hydrogen shifts – examples –Cope and Claisen rearrangements – 1,3-dipolar cycloaddition reactions.

UNIT V (18 Hours)

**Reagents in Organic Synthesis:** Oxidation: Jacobsen epoxidation, Shi epoxidation, Jones reagent, PCC, PDC, DMP, Selenium oxide, Swern oxidation, Sommelet reaction, Elbs reaction, Prevost reaction and Woodward modification. Reduction: palladium / platinum / rhodium / nickel based heterogeneous catalysts for hydrogenation, Noyori asymmetric hydrogenation. Red-Al, NaBH<sub>4</sub> and NaCNBH<sub>3</sub>, tri alkyl silanes and tri alkyl stannane.

#### **UNIT VI - Self Study for Enrichment**

(Not to be included for External Examination)

Rules of resonance – tautomerism - steric effects- Enantiomers and diastereomers- SE<sub>1</sub> and SE<sub>2</sub> and SEi mechanisms- selection rules for cycloaddition reactions Thermal and photochemical reaction of pericyclic reaction- MCPBA reagent and Wilkinson's catalyst.

#### **Text Books**

- 1. Mukherji, S. M Singh.S. P. (2015). Reaction Mechanism in Organic Chemistry (Revised Edition): Trinity; New Delhi.
- 2. Kalsi. P.S. (1993). Stereochemistry. Wiley eastern limited; New Delhi.
- 3. Jagdamba singh. (2016). Organic synthesis: Pragati Prakashan.
- 4. Bansal.R.K. (1975). Organic Reaction Mechanisms. Tata McGraw Hill.

#### **Reference Books**

- 1. Marchand Smith. M.B March's Advance Organic Chemistry Reactions, Mechanisms and Structure, 7<sup>th</sup> Edition. (2013), Wiley, New York.
- 2. Finar. I. R, Organic Chemistry Vol. II 7<sup>th</sup> edition. (2009), Pearson, New Delhi.
- 3. Nasipuri. D, Stereochemistry of organic compounds Principles, 2<sup>nd</sup>Edition. (2002), New Age International and applications.
- 4. Lowry. T. H. E and Richardson. K. S, Mechanism and Theory in Organic chemistry, 3<sup>rd</sup>edition. (1997), Benjamin Cummings Publishing, USA.
- 5. Carey. F. A and Sundberg. R.J, Advanced Organic chemistry Part A and B, 5<sup>th</sup> edition.( 2007), Springer, Germany.

#### **Web References**

- 1. <a href="https://hithaldia.in/faculty/sas\_faculty/Dr\_Gora\_Das/Class%20Notes%20(CH-101%20&CH-201)%20Module-4%20(Structure%20&%20reactivity%20of%20Organic%20Molecules).pdf">https://hithaldia.in/faculty/sas\_faculty/Dr\_Gora\_Das/Class%20Notes%20(CH-101%20&CH-201)%20Module-4%20(Structure%20&%20reactivity%20of%20Organic%20Molecules).pdf</a>
- 2. http://courses.washington.edu/medch562/pdf/MEDCH400\_Stereochem.pdf
- 3. <a href="https://byjus.com/chemistry/substitution-reaction/">https://byjus.com/chemistry/substitution-reaction/</a>
- 4. <a href="http://www.ancpatna.ac.in/departments/Chemistry/lectures/PG/Sem-II/Pericyclic%20Reactions%20By%20Dr%20Tripti%20Gangwar.pdf">http://www.ancpatna.ac.in/departments/Chemistry/lectures/PG/Sem-II/Pericyclic%20Reactions%20By%20Dr%20Tripti%20Gangwar.pdf</a>
- 5. <a href="https://www.tcichemicals.com/assets/brochure-pdfs/Reagent Guide 8th Synthetic Organic Chemistry Materials Chemistry E.pdf">https://www.tcichemicals.com/assets/brochure-pdfs/Reagent Guide 8th Synthetic Organic Chemistry Materials Chemistry E.pdf</a>

#### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

#### **Course Designers**

- 1. Dr. P. Pungayee Alias Amirtham
- 2. Ms. S. Jeevitha

| Semester I         | <b>Internal Marks: 25</b> |          | Exte       | ernal Marks: 75 |
|--------------------|---------------------------|----------|------------|-----------------|
| <b>COURSE CODE</b> | COURSE TITLE              | CATEGORY | Hrs / Week | CREDITS         |
| 22PCH1CC2          | INORGANIC<br>CHEMISTRY-I  | CORE     | 6          | 5               |

- To articulate the learning of coordination chemistry in Inorganic Chemistry
- This subject will also create a foundation to learn inorganic photochemistry.

## **Prerequisites**

Metals, ligands, complexes and stereoisomers

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to | Cognitive<br>Level |
|--------------|-----------------------------------------------------------------------------------|--------------------|
| CO1          | Acquire knowledge on basic concepts of inorganic complexes                        | K3                 |
| CO2          | Understand the concepts of photoreactions in inorganic chemistry                  | K2                 |
| CO3          | Create the nature of inorganic chemical reactions                                 | K4                 |
| CO4          | Apply the chemistry of inorganic complexes                                        | K3                 |
| CO5          | Critical thinking on organometallics                                              | K4                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO3 | 3    | 3    | 2    | 3    | 2    | 3   | 2   | 2   | 1   | 2   |
| CO4 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO5 | 2    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

UNIT I (18 Hours)

Clusters And Polynuclear Compounds: Introduction- clusters of the p-block elements, clusters of p-block Elements in a ligand shell: Boron hydrides, Clusters in a ligand shell of the heavier elements of Group 13 and 14, Bare clusters of p-block Elements. Clusters of d-block elements, Low-valent metal clusters, Metal carbonyl clusters, Low-valent metal clusters stabilized by other  $\pi$  ligands, Clusters of late transition metals stabilized by phosphines.

UNIT II (16 Hours)

**Principles Of Coordination Chemistry:** Studies of coordination compounds in solution – detection of complex formation in solution –stability constants–step wise and overall formation constants -methods of determination (potentiometric, pH metric and photometric) – factors affecting stability– statistical and chelate effects– forced configurations.

UNIT III (20 Hours)

**Reaction Mechanism In Coordination Complexes:** Kinetics and mechanism of reactions in solution—labile and inert complexes—ligand displacement in octahedral and square planar complexes — acid hydrolysis, base hydrolysis and anation reactions. Trans effect — theory and applications — electron transfer reactions — electron exchange reactions — complementary and non-complementary types —inner sphere and outer sphere processes—application of electron transfer reactions in inorganic complexes — isomerisation and racemisation reactions of complexes. Molecular rearrangements of four- and six-coordinate complexes — interconversion of stereoisomers —reactions of coordinated ligands.

UNIT IV (18 Hours)

**Organometallic Compounds** -Classification of organometallic compounds – structure of methyl lithium, Zeise's salt and Ferrocene- Metal carbonyls - EAN rule – Mono and poly nuclear carbonyls - preparation, reactions and structure (Ni(CO)<sub>4</sub>, Fe(CO)<sub>5</sub>, Cr(CO)<sub>6</sub>, Mn<sub>2</sub>(CO)<sub>10</sub>, Co<sub>2</sub>(CO)<sub>8</sub>, and Fe<sub>2</sub>(CO)<sub>9</sub>) - Bonding in metal Carbonyls - Metal-ethylenic complexes - methods of formation – bonding - chemical properties.

UNIT V (18 Hours)

**Inorganic Photochemistry:** Fundamental concepts- Electronic transitions in metal complexes, metal-centered and charge-transfer transitions – various photo physical and photochemical processes of coordination compounds. Unimolecular charge transfer photochemistry of cobalt (III) complexes—mechanism of CTTM, photo reduction—ligand field photo chemistry of chromium(III)complexes – Adamson's rules, photoactive excited states, V-C model – photo physics and photochemistry of ruthenium—polypyridine complexes, emission and redox properties.

#### **UNIT VI - Self Study for Enrichment**

(Not to be included for External Examination)

High-valent metal Clusters and halide Clusters- Importance and applications of coordination compounds- Template effect and its applications for the synthesis of macro cyclic ligands- Fullerene Ligands and Metal complexes- Reinecke's salt chemical actinometer.

#### **Text Books**

- 1. Greenwood., Greenwood. (1996). Chemistry of the Elements. United Kingdom: Elsevier Science & Technology Books.
- 2. Kaesz, H., Adams, R., Shriver, D., Kaesz, H., Adams, R., Shriver, D. (1990). The Chemistry of Metal Cluster Complexes.
- 3. Sharma, L. R., Puri, B. R., Sharma, L. R., Puri, B. R. (1976). Principles of Inorganic Chemistry: For B. Sc. and B. Sc. (Hons.) Classes of Indian Universities. India: S. Nagin.
- 4. Day, M. C., Selbin, J., Day, M. C., Selbin, J. (1976). Theoretical Inorganic Chemistry.
- 5. Cotton, F. A., Wilkinson, G., Cotton, F. A., Wilkinson, Advanced Inorganic Chemistry, 6<sup>th</sup> Edition. (2007). India: Wiley India Pvt. Limited.
- Keiter, E. A., Keiter, R. L., Medhi, O. K., Huheey, J. E., Keiter, E. A., Keiter, R. L., Medhi,
   O. K., Huheey, J. E. (2006). Inorganic Chemistry: Principles of Structure and
   Reactivity. India: Pearson Education.
- 7. Arthur W. Adamson, Paul D. (1975). Fleischauer, Concepts of Inorganic Photochemistry. United Kingdom: Wiley.
- 8. Kettle, S. F. A., Kettle, S. F. A. (2019). Physical Inorganic Chemistry: A Coordination Chemistry Approach. Germany: Springer Berlin Heidelberg.

#### **Reference Books**

- 1. J. D. Lee, Concise Inorganic Chemistry, 5th Edition. (2008). India: Wiley India Pvt. Limited.
- 2. Gurdeep Raj, Advanced Inorganic Chemistry Vol-1(2020). Krishna Prakashan.
- 3. Ferraudi, G. J., Ferraudi, G. J. (1988). Elements of Inorganic Photochemistry. United Kingdom: Wiley.
- 4. Pearson, R. G., Basolo, F., Pearson, R. G., Basolo, F. (1967). Mechanisms of Inorganic Reactions: A Study of Metal Complexes in Solution. United kingdom: Wiley.
- 5. Sharma, R. K., Sharma, R. K. (2007). Inorganic Reaction mechanisms. India: Discovery Publishing House.

#### **Web References**

- 1. https://www2.chemistry.msu.edu/courses/cem151/chap24lect\_2019.pdf
- 2.http://www.vpscience.org/materials/Unit%203%20B%20Coordination%20chemistry.pdf
- 3. https://www.usb.ac.ir/FileStaff/2896\_2019-4-18-0-9-32.pdf
- 4. https://www.uou.ac.in/sites/default/files/slm/BSCCH-101.pdf
- 5. https://www.chem.uci.edu/~lawm/11-16.pdf
- 6. https://www.usb.ac.ir/FileStaff/5269\_2018-9-18-10-21-39.pdf

#### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

#### **Course Designer**

Dr. K. Shenbagam

| Semester I     | Internal Mark        | Ext      | ternal Marks: 75 |         |
|----------------|----------------------|----------|------------------|---------|
| COURSE<br>CODE | COURSE<br>TITLE      | CATEGORY | Hrs /<br>Week    | CREDITS |
| 22PCH1CC3      | Physical Chemistry-I | CORE     | 6                | 5       |

- To understand the principles of quantum chemistry and group theory
- To learn about theories of reaction rates, kinetics of reactions in solution phase and catalysis
- To study in detail the basic concepts of statistical thermodynamics

#### **Prerequisites**

Diatomic, rigid rotator and symmetry operations

## **Course Outcome and Cognitive Level Mapping**

On the successful completion of the course, students will be able to

| CO     | CO Statement                                                              | Cognitive |
|--------|---------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course students will be able to       | Level     |
| CO1    | Understand and apply the concept of quantization of energy and its        | K2 & K3   |
|        | modes for particles in box, rigid rotor, harmonic oscillators             |           |
| CO2    | Classify the molecule into point groups and relate symmetry of the        | K2 & K3   |
|        | molecules to their properties                                             |           |
| CO3    | Analyze and apply the principles of kinetics to a reaction in gas phase,  | K3 & K4   |
|        | solution phase, chain reactions and fast reactions in real world problems |           |
| CO4    | Combined surface chemistry to understand theory of enzyme catalysis       | K2 & K4   |
|        | and analyses the factors influencing the kinetics of catalysis            |           |
| CO5    | Apply statistics to understand the thermodynamic properties of            | K2 & K3   |
|        | macroscopic systems                                                       |           |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 1   | 1   | 3   |
| CO2 | 2    | 2    | 1    | 2    | 2    | 3   | 3   | 1   | 2   | 2   |
| CO3 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |
| CO4 | 3    | 2    | 2    | 2    | 2    | 2   | 2   | 2   | 2   | 2   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

UNIT I (18 Hours)

**Quantum Theory:** Concept of operators-sums and products of operators-commutator-linear and non-linear operators-Hermitian and Hamiltonian Operators- -postulates of quantum mechanics-. Applications Schrodinger wave equation to free particle-particle in a one-dimensional box, simple linear harmonic oscillator and its limitations, Rigid rotator- model for a rotating diatomic molecule-solutions. Solving of Schrodinger equation for the H-atom (or H-like species)-energy levels. Introduction to the methods of self – consistent field. Virial theorem - Huckel theory of conjugated systems, bond order and charge density calculations, Application to ethylene, 1, 3-butadiene, and benzene.

UNIT II (18 Hours)

**Group Theory:** Definition of a mathematical group and its properties – multiplication table - cyclic groups-subgroups - classes – symmetry elements - symmetry operation – classes of symmetry operations-classification of molecular point groups. Matrix representations of symmetry operations-representation of groups-reducible and irreducible representations. Great Orthogonality theorem and its consequences-character tables – construction of character tables for C<sub>2v</sub> and C<sub>3v</sub> point groups –

UNIT III (18 Hours)

Kinetics of Complex and Fast Reactions: Theories of reaction rates- absolute reaction rate theory-thermodynamic formulation of ARR theory-Lindeman's theory of uni molecular reactions. Chain reactions-characteristics, kinetics of decomposition of acetaldehyde (Rice-Herzfeld scheme), photochemical reaction of H<sub>2</sub>-Br<sub>2</sub>. Thermal reaction-non-stationary chain reaction, H<sub>2</sub>-O<sub>2</sub> reaction and explosion limits. Effect of temperature, relative permittivity, ionic strength, and solvent (Grunwald- Weinstein equation) on reaction rates. Reactions in solutions - effect of pressure, dielectric constant, and ionic strength on reactions in solutions.

UNIT IV (18 Hours)

**Surface Chemistry and Catalysis:** Adsorption-physisorption and chemisorption, Gibb's adsorption isotherm - Langmuir theory, kinetic and statistical derivation, multi-layer adsorption BET theory, use of Langmuir and BET isotherms for surface area determination. Application of Langmuir adsorption isotherm in surface catalyzed reactions. Catalysis by enzymes - Kinetics of enzymecatalyzed reaction - Michaelis - Menten equation and its interpretation. Effect of substrate

concentration, pH and temperature on enzyme-catalyzed reactions - inhibition of enzyme-catalyzed reactions - Competitive, Non-competitive and uncompetitive inhibition.

UNIT V (18 Hours)

**Statistical Thermodynamics:** Calculation of thermodynamic probability of a system- micro and macro states-different methods of counting macro states - distinguishable and indistinguishable particles, classical statistics-derivation of Maxwell-Boltzmann distribution law. Physical significances of translational, rotational, vibrational, electronic partition functions - application to mono atomic and diatomic molecules. Quantum statistics-Bose- Einstein and Fermi-Dirac distribution equations comparison of B.E and F.D statistics.

#### **UNIT VI - Self Study for Enrichment**

(Not to be included for External Examination)

Eigen values and Eigen functions- physical interpretation of wave function-orthogonality and normalization theorems-Space group and Schoen flies symbol for point group-Kinetics of fast reactions-flow method and relaxation methods-Comparison of physisorption and chemisorption and types of adsorption isotherms-Difference between thermodynamic and statistical probability.

#### **Text Books**

- 1. Akins, P.W. (2008). Physical Chemistry. Oxford, UK. Oxford University Press, 8th Edition.
- 2. Puri, Sharma, Pathania, (2019). Principle of Physical Chemistry. Jalandhar, India. Vishal publication &Co. 47th Edition.
- 3. Grutu, J. N. & Grutu, A. (2015). Advanced Physical Chemistry. Pune, India. Pragathi publisher, 18th Edition.

#### **Reference Books**

- 1. Prasad, R.K. (2006). Quantum Chemistry. New Delhi, India. New Age International (P) Ltd., Revised 3rd Edition.
- 2. Albert Cotton, F. (2008). Chemical Applications of Group theory. New Delhi, India. Willy India Pvt Ltd publisher, 3rd Edition.
- 3. Laidler, K.J. (2003). Chemical Kinetics. New Delhi, India. Tata Mecra Hill, Revised 3rd Edition.
- 4. Gupta, M.C. (2011). Statistical Thermodynamics. New Delhi, India. New Age International (P)Ltd., 3rd Edition.

#### Web References

- 1. https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA
- 2. https://www.chem.tamu.edu/rgroup/hughbanks/courses/673/lecturenotes/lecturenotes.html

- 3. http://www.kpgcollege.org/admin/upload/1586604901.pdf
- 4. <a href="https://youtu.be/ALwziZSRiqM">https://youtu.be/ALwziZSRiqM</a>
- 5. <a href="https://youtu.be/ACY-Wbudg0o">https://youtu.be/ACY-Wbudg0o</a>
- 6. https://youtu.be/yO8v0nszUz8

## Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

## **Course Designers**

Dr. V. Sangu

| Semester I  | Internal Marks                      | : 40           | External Marks: 60 |         |  |
|-------------|-------------------------------------|----------------|--------------------|---------|--|
| COURSE CODE | COURSE TITLE                        | CATEGORY       | Hrs / Week         | CREDITS |  |
| 22PCH1CC1P  | ORGANIC<br>CHEMISTRY<br>PRACTICAL-I | Core Practical | 6                  | 3       |  |

• To perform the qualitative analysis of a given organic mixture and to carry out the preparation of Organic compounds.

## **Prerequisites**

Nitration, acylation and oxidation.

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to | Cognitive<br>Level |
|--------------|-----------------------------------------------------------------------------------|--------------------|
| CO1          | Apply the principles of separation in organic mixtures.                           | К3                 |
| CO2          | Prepare the organic compounds by single stage method.                             | К3                 |
| CO3          | Identify various functional group in of organic compounds.                        | K1                 |
| CO4          | Develop skills in separating techniques                                           | K2                 |
| CO5          | Analyze the nature of organic mixture containing two components.                  | K4                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 2    | 2    | 2    | 2   | 1   | 3   | 2   | 1   |
| CO2 | 2    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO3 | 2    | 3    | 3    | 2    | 3    | 1   | 1   | 1   | 2   | 1   |
| CO4 | 3    | 2    | 2    | 3    | 2    | 2   | 3   | 2   | 3   | 2   |
| CO5 | 2    | 3    | 3    | 3    | 2    | 1   | 2   | 2   | 2   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

#### **Syllabus**

## I QUALITATIVE ANALYSIS OF AN ORGANIC MIXTURE CONTAINING TWO COMPONENTS

Mixtures containing two components are to be separated (pilot separation) and purified (bulk separation).

#### II PREPARATION OF ORGANIC COMPOUNDS (SINGLE STAGE)

- 1. Methyl-*m*-nitrobenzoate from methylbenzoate(nitration)
- 2. Glucose pentaacetate from glucose(acetylation)
- 3. Resacetophenone from resorcinol(acetylation)
- 4. Benzophenone oxime from benzophenone (addition)
- 5. o-Chlorobenzoic acid from anthranilic acid (Sandmayer reaction)
- 6. *p*-Benzoquinone from hydroquinone (oxidation)
- 7. Phenylazo-2-naphthol from aniline(diazotization)

#### **Text Books**

- 1. Mohan. J. (2003), Organic Analytical Chemistry: Theory and Practice, Narosa
- 2. Ahluwalia. V.K Bhagat. P and Agarwal. R. (2005), Laboratory Techniques in Organic Chemistry, I. K. International

#### Reference Books

- 1. Gnanaprakasam, N. S. and Ramamurthy. G (1987), Organic Chemistry Lab Manual, S.V. Printers
- 2. Vogel, A., ITatchell, A. R., Furniss B. S., Hannaford. A. J., and Smith P. W. G. (1989), Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall

#### Web References

- 1. https://authors.library.caltech.edu/25034/10/BPOCchapter9.pdf
- 2. http://do.chem.uni.wroc.pl/system/files/Preparatory%20classes.pdf.

#### **Pedagogy**

Demonstration and practical sessions

#### **Course Designers**

- 1. Dr. P. Pungayee Alias Amirtham
- 2. Dr. R. Subha

| Semester I  | Internal Marks: 40                         |          | External Mar | ks: 60  |
|-------------|--------------------------------------------|----------|--------------|---------|
| COURSE CODE | COURSE TITLE                               | CATEGORY | Hrs / Week   | CREDITS |
| 22PCH1EC1AP | INSTRUMENTATION<br>TECHNIQUES<br>PRACTICAL | CORE     | 6            | 3       |

- ➤ Gain proficiency in the use of analytical pipettes, volumetric measurements, and analytical instruments.
- ➤ learn how to correctly use a UV/Vis spectrophotometer.
- > Gain familiarity with a new technique.
- ➤ Perform quantitative analytical methods including titrations, pH measurements, spectrophotometry, and chromatography. chromatography

## **Prerequsites**

Chromatography, qualitative analysis and spectroscopy.

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                                                        | Cognitive<br>Level |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | To be trained in lab safety, preparation of solutions numerically.                                                                       | K1                 |
| CO2          | To develop students' ability and skill to acquire expertise in calibration techniques.                                                   | K2                 |
| CO3          | Become familiar with fundamental concepts of instruments.                                                                                | K1                 |
| CO4          | Develop the core skills to parse existing chromatographic protocols and identify the key factors influencing a chromatography experiment | K2                 |
| CO5          | Learn application of Instrumentation Techniques                                                                                          | K2                 |

| COs | PSO1 | PSO <sub>2</sub> | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------------------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 2    | 3                | 3    | 3    | 3    | 2   | 3   | 2   | 3   | 3   |
| CO2 | 2    | 2                | 2    | 1    | 2    | 2   | 2   | 3   | 2   | 2   |
| CO3 | 3    | 2                | 2    | 2    | 2    | 1   | 2   | 2   | 2   | 2   |
| CO4 | 3    | 2                | 3    | 2    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO5 | 2    | 3                | 2    | 3    | 3    | 2   | 2   | 2   | 2   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

#### **Syllabus**

- 1. Use and calibration of volumetric equipment (volumetric flasks, pipette's and burette's).
- 2. Separation of monosaccharide present in a given mixture by paper chromatography.
- 3. Determination of chlorine in water using colorimetry.
- 4. Analysis of soil
  - i) Determination of pH of soil.
  - ii) Determination of total soluble salts by conductometry
- 5. Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH- meter.
- 6. Separation of a mixture of metals by TLC.
- 7. Determine the concentration of citric acid in soft drink using titration.
- 8. Determination of equilibrium constant by colorimetry.
- 9. Verification of Beer- Lambert's law by colorimetry.
- 10. Determination of ascorbic acid in lime juice by titration.
- 11. Spectrophotometric determination of iron in vitamin tablets.
- 12. Estimation of aspirin from tablet using titration method.
- 13. Determination of strength of commercial vinegar by conductometry.
- 14. Analysis of potassium permanganate by UV/Visible spectrophotometer.
- 15. Estimation of sugar by titrimetric method.

#### Text Book

- 1. Fifield, F.W. (2011). Principles and Practice of Analytical Chemistry. United States: Springer
- 2. Lundanes, E., Reubsaet, L., Greibrokk, T., Lundanes, E., Reubsaet, L., Greibrokk, T. (2013)
- 3. Chromatography: Basic Principles, Sample Preparations and Related Methods. Germany: Wiley.
- 4. Franson, S., Mary, H. (2007). Standard Methods for the Examination of Water and Wastewater. United States: American Public Health Association.

#### Reference Books

- 1. Harris, D. C. (2012). Exploring Chemical Analysis: International Edition. United Kingdom: Macmillan Learning.
- 2. Dilts, R. V. (2010). Analytical Chemistry: Methods of Separation. United Kingdom: Van

Nostrand.

- 3. Harris, D. C., Lucy, C. A. (2019). Quantitative Chemical Analysis. United States: W. H. Freeman.
- 4. Mikeš, O., Mike S, O., Chalmers, R. A. (2007). Laboratory Handbook of Chromatographic Methods United Kingdom: Van Nostrand.

#### Web Reference

- 1. https://www.epa.gov/sites/default/files/2015-12/documents/9214.pdf
- 2. <a href="https://chem.libretexts.org/Ancillary Materials/Laboratory Experiments/Wet Lab Experiments/General Chemistry Labs/Online Chemistry Lab Manual/Chem 10 Experiments/11%3">https://chem.libretexts.org/Ancillary Materials/Laboratory Experiments/Wet Lab Experiments/I1%3</a>
  <a href="https://chem.libretexts.org/Ancillary Materials/Laboratory Experiments/Wet Lab Experiments/General Chemistry Labs/Online Chemistry Lab Manual/Chem 10 Experiments/11%3</a>
  <a href="https://chem.libretexts.org/Ancillary Materials/Laboratory Experiments/Wet Lab Experiments/General Chemistry Labs/Online">https://chem.libretexts.org/Ancillary Materials/Laboratory Experiments/Wet Lab Experiments/General Chemistry Labs/Online Chemistry Lab Manual/Chem 10 Experiments/11%3</a>
  <a href="https://chem.libretexts.org/Ancillary Materials/Laboratory Experiments/11%3">https://chem.libretexts.org/Ancillary Materials/Laboratory Experiments/Laboratory Experiments/11%3</a>
  <a href="https://chem.libretexts.org/Ancillary Materials/Laboratory Experiments/Laboratory Experiments/Labora
- 3. <a href="https://www.lacitycollege.edu/Departments/Chemistry/documents/Chemistry-101-Experiments-Documents/E12B\_titration2016">https://www.lacitycollege.edu/Departments/Chemistry/documents/Chemistry-101-Experiments-Documents/E12B\_titration2016</a>
- 4. <a href="https://www.uobabylon.edu.iq/eprints/publication\_10\_11891\_250.pdf">https://www.uobabylon.edu.iq/eprints/publication\_10\_11891\_250.pdf</a>

#### **Pedagogy**

Table Work

#### **Course Designers**

Dr. G. Sivasankari.

| Semester I  | Internal Marks: 40                            | E        | xternal Mark | s: 60   |
|-------------|-----------------------------------------------|----------|--------------|---------|
| COURSECODE  | COURSE TITLE                                  | CATEGORY | Hrs / Week   | CREDITS |
| 22PCH1EC1BP | NANOSCIENCE AND<br>NANOTECHNOLGY<br>PRACTICAL | CORE     | 6            | 3       |

- ➤ Covers the whole spectrum of nanomaterials ranging from overview, synthesis, properties, and characterization of nano phase materials to application including some new developments in various aspects.
- > Provides an introduction to the theory and practice on Nanomaterials and various techniques used for the fabrication and characterization of nanostructures.

## **Prerequisites**

Precipitation, reduction and absorption methods.

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                              | Cognitive<br>Level |
|--------------|----------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | To foundational knowledge of the Nanoscience and related fields                                                | K1                 |
| CO2          | Apply principles of basic science concepts in understanding, analysis and prediction of matter at Nano scale.  | K1                 |
| CO3          | Acquire an understanding the Nanoscience and Applications                                                      | K2                 |
| CO4          | Understand in broad outline of Nanoscience and Nanotechnology.                                                 | K2                 |
| CO5          | Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment | K2                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 2    | 2    | 2    | 2   | 1   | 3   | 2   | 2   |
| CO2 | 2    | 3    | 2    | 3    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO3 | 2    | 3    | 3    | 2    | 3    | 1   | 1   | 2   | 2   | 1   |
| CO4 | 3    | 2    | 2    | 3    | 2    | 2   | 3   | 2   | 2   | 2   |
| CO5 | 2    | 3    | 3    | 3    | 2    | 1   | 2   | 2   | 2   | 2   |

<sup>&</sup>quot;1" - Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

#### **Syllabus**

- 1. Synthesis of CuO nanoparticles by sonochemical method
- 2. Synthesis of ZnO nanoparticles by sonochemical method
- 3. Synthesis of Carbon nano particles by Microwave Irradiation Method.
- 4. Characterization of nanoparticles by UV- Visible Spectrophotometer.
- 5. Synthesis of Silver nanoparticles by chemical reduction method and their UV-Vis absorption studies.
- 6. Synthesis of Iron Oxide Nanoparticles by Polyol method and their UV-Vis absorption studies.
- 7. Synthesis of ZnO Nanoparticles by Co-Precipitation Method.
- 8. Preparation of thiolated silver nanoparticles.
- 9. Synthesis of Nanoparticles from plant materials by Sonochemical Method.

#### **Text Book**

- 1. Edelstein, A.S., Cammaratra, R.C. (2017). Nanomaterials: Synthesis, Properties and Applications, Second Edition. United Kingdom: Taylor & Francis.
- 2. Wiederrecht, G. (2010). Handbook of Nanofabrication. Italy: Elsevier Science.
- 3. Altavilla, C., Ciliberto E.( 2017). Inorganic Nanoparticles: Synthesis, Applications, and Perspectives. United Kingdom: CRC Press.

#### **Reference Books**

- 1. Fritzsche, W., Köhler, M., Fritzsche, W., Köhler, M. (2008). Nanotechnology: An Introduction to Nanostructuring Techniques. Germany: Wiley.
- 2. Muller, A., A. K., Cheetham., Rao C. N. R. (2006). The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Germany: Wiley.

#### Web Reference

- 1. <a href="https://www.researchgate.net/publication/229419482">https://www.researchgate.net/publication/229419482</a> Sonochemical synthesis size controlling and gas sensing properties of NiO nanoparticles
- 2. https://www.sciencedirect.com/science/article/pii/S1569441018301445
- 3. <a href="https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj01360a">https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj01360a</a>
- 4. <a href="https://www.researchgate.net/publication/231240704\_UreaMelt\_Assisted Synthesis of NiNi">https://www.researchgate.net/publication/231240704\_UreaMelt\_Assisted Synthesis of NiNi</a> O Nanoparticles Exhibiting Structural Disorder and Exchange Bias

#### **Pedagogy**

Table Work

#### **Course Designers**

- 1. Dr. G. Sivasankari
- 2. Dr. R. Subha

| Semester I  | Internal Marks: 40        | Exte     | ernal Marks: 60 |         |
|-------------|---------------------------|----------|-----------------|---------|
| COURSE CODE | COURSETITLE               | CATEGORY | Hrs / Week      | CREDITS |
| 22PCH1EC1CP | BIOCHEMISTRY<br>PRACTICAL | ELECTIVE | 6               | 3       |

- > To expertise the student to identify and isolate various biomolecules.
- > To acquire training to estimate the quantity of biomolecules present by applying biochemical techniques

## **Prerequisites**

Chromatographic techniques, biomolecules and plant pigments.

## **Course Outcome and Cognitive Level Mapping**

| O Number | CO Statement On the successful completion of the course, students will be able to                                    | Cognitive<br>Level |
|----------|----------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1      | Gain expertise in the isolation of various biomolecules                                                              | K1                 |
| CO2      | Acquire hands-on training in basic separation techniques in biochemistry                                             | K1                 |
| CO3      | Develop their skills in handling various chromatographic techniques and apply them in different biological molecules | K2                 |
| CO4      | Apply various techniques for identification of biomolecules                                                          | K3                 |
| CO5      | Quantitatively evaluate the amount of biomolecules present                                                           | K5                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 2    | 3    | 2    | 3    | 2    | 2   | 3   | 2   | 2   | 3   |
| CO2 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO4 | 3    | 3    | 3    | 3    | 3    | 2   | 3   | 2   | 2   | 3   |
| CO5 | 2    | 3    | 3    | 3    | 2    | 2   | 3   | 2   | 2   | 3   |

<sup>&</sup>quot;1" - Slight (Low) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;3" - Substantial (High) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

#### **Syllabus**

#### (i) EXTRACTION OF BIOMOLECULES

- \* Starch from potato.
- \* Casein from milk.
- \* Oil from oil seeds.
- \* Cellulose from plant material.

#### (ii) BIOCHEMICAL TECHNIQUES

- \* Identification of amino acid by circular and ascending paper chromatography.
- \* Separation of amino acids and carbohydrates in a mixture by paper chromatography.
- \* Separation of lipids by thin layer chromatography.
- \* Separation of a mixture of proteins and salt by column chromatography.
- \* Separation of plant pigments using Chromatography techniques TLC, Paper Chromatography.

#### (iii) OUALITATIVE ANALYSIS OF BIOMOLECULES

- \* Carbohydrate Glucose, Fructose, Sucrose, Lactose and Starch.
- \* Proteins Precipitation reactions of proteins, Colour reactions of proteins, Colour reactions of amino acids like tryptophan, tyrosine, cysteine, methionine, arginine, proline and histidine.
- \* Lipids—solubility, acrolein test, Salkowski test, Lieberman-Burchard test.
- \* Qualitative tests for nucleic acid.

#### (iv) COLORIMETRIC ESTIMATION

- \* Glucose by DNS method.
- \* Protein by Biuret / Bradford and Lowry's method.
- \* Uric acid.
- \* Urea by DAM method.
- \* Creatinine by Jaffe's method.
- \* Phosphorous by Fiske and Subbarow's method.

#### **Text Books**

- 1. Rajan, S. & Selvi Christy. R. (2018). Experimental Procedures in Life Sciences. CBS Publishers & Distributors.
- 2. Wilson, K. & Walker, J. (2000). Principles and Techniques of Practical Biochemistry. Fifth edition. Cambridge University Press.
- 3. Upadhyay & Upadhyay Nath (2016). Biophysical Chemistry: Principles and Techniques. Himalaya Publishing House.

## Reference Books

- 1. Hofmann, A. & Clokie, S. (2018). Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology. 8<sup>th</sup> edition. Cambridge University Press.
- 2. Wood, W. B. (1981). Biochemistry- A problem Approach. Addison Wesley.

#### **Web References**

- 1. <a href="http://nec.edu.np/Publications/Chemistry\_LAB\_Manual/Experiment%204.pdf">http://nec.edu.np/Publications/Chemistry\_LAB\_Manual/Experiment%204.pdf</a>
- 2. <a href="https://www.mlsu.ac.in/econtents/1616\_Biochemical%20Tests%20of%20Carbohydrate,%20protein,%20lipids%20and%20salivary%20amylase.pdf">https://www.mlsu.ac.in/econtents/1616\_Biochemical%20Tests%20of%20Carbohydrate,%20protein,%20lipids%20and%20salivary%20amylase.pdf</a>
- 3. <a href="https://webstor.srmist.edu.in/web\_assets/srm\_mainsite/files/files/2%20ESTIMATION%20OF">https://webstor.srmist.edu.in/web\_assets/srm\_mainsite/files/files/2%20ESTIMATION%20OF</a> %20PROTEIN%20BY%20LOWRY.pdf
- 4. <a href="https://orbitbiotech.com/estimation-of-reducing-sugars-by-dnsa-method/">https://orbitbiotech.com/estimation-of-reducing-sugars-by-dnsa-method/</a>
- 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575183/
- 6. http://atlas-medical.com/upload/productFiles/208011/Creatinine%20Package%20Insert.pdf

#### **Pedagogy**

Demonstration and practical sessions

#### **Course Designer**

- 1. Dr. P. Pungayee Alias Amirtham
- 2. Dr. S. Saranya