CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A+" GRADE BY NAAC TIRUCHIRAPPALLI – 620 018

PG AND RESEARCH DEPARTMENT OF PHYSICS

B.Sc., PHYSICS SYLLABUS

2024-2025 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) TIRUCHIRAPPALLI-620 018

PG AND RESEARCH DEPARTMENT OF PHYSICS

VISION

To establish a substratum for excellence and creation of knowledge by igniting the essence of learning physics and exploring its area of research with novel ideas.

MISSION

Our mission is two – fold.

- To provide an outstanding and distinctive education to our undergraduate and postgraduate students.
- To expand our research enterprises via centers and institutes to achieve national and international prominence in strategic research areas.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR B.Sc PHYSICS PROGRAMME

PO NO.	On completion of B.Sc Physics Programme, The students will be able to
	Domain Knowledge:
PO 1	Analyse, design and develop solutions by applying firm fundamental concepts of basic sciences and expertise in discipline.
	Problem solving:
PO 2	Ability to think rationally, analyse and solve problems adequately with practical knowledge to assess the environmental issues.
	Creative thinking and Team Work:
PO 3	Develop prudent decision-making skills and mobility to work in teams to solve multifaceted problems.
	Employability:
PO 4	Self-study acclimatize them to observe effective interactive practices for practical learning enabling them to be a successful science graduate.
	Life Long Learning:
PO 5	Assure consistent improvement in the performance and arouse interest to pursue higher studies in premium institutions.

PROGRAMME SPECIFIC OUTCOMES FOR B.Sc PHYSICS PROGRAMME B.Sc PHYSICS CURRICULUM [2024-2025 and Onwards]

DCO NO	Programme Specific Outcomes	POs
PSO NO.	Students of B.Sc Physics will be able to	Addressed
PSO1	Intensify the student academic capability, unique qualities and transferable skills which will give them opportunity to evolve as responsible citizens.	PO1, PO2, PO4
PSO2	Explain the fundamentals laws involved in physics.	PO1, PO5
PSO3	Understand the theory and consequence of the various physical occurrence.	PO1, PO2, PO3, PO5
PSO4	Carryout experiments to interpret the laws and concepts of Physics.	PO1, PO2, PO5
PSO5	Relate the theories learnt and the skills procured to solve enduring problems.	PO1, PO2, PO3, PO5

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG & RESEARCH DEPARTMENT OF PHYSICS B.SC PHYSICS

LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS - LOCF) (For the Candidates admitted from the Academic year 2024-2025 and onwards)

ter			Course Title Course		s	Exa				
mest	t	Course		Course	t. s./	edit	Ś	Marks	5	al
Pa				Code	Ins Hr	Cr	Ηu	Int	Ext	Tot
	Ι	Language Course-I (LC)	பொதுத்தமிழ் - I	23ULT1	6	3	3	25	75	100
			Hindi ka Samanya Gyan aur Nibandh	23ULH1						
			Poetry, Grammar and History of Sanskrit Literature	23ULS1						
Ι			Foundation Course: Paper I- French I	23ULF1						
-	Π	English Language Course- I(ELC)	General English –I	23UE1	6	3	3	25	75	100
		Core Course – I(CC)	Properties of Matter and Acoustics	23UPH1CC1	5	5	3	25	75	100
	III	Core Practical - I (CP)	Properties of Matter and Acoustics (P)	23UPH1CC1P	3	3	3	40	60	100
		First Allied Course- I (AC)	Calculus and Fourier Series	22UPH1AC1	4	3	3	25	75	100
		First Allied Course- II (AC)	Algebra, Analytical Geometry of 3D & Trigonometry	22UPH1AC2	4	3	3	25	75	100
	IV	Ability Enhancement Compulsory Course-I (AECC)	Value Education	23UGVE	2	2	-	100	-	100
		Т	otal		30	22				700
	Ι	Language Course-II(LC)	பொதுத்தமிழ் - II	23ULT2	6	3	3	25	75	100
			Hindi Literature & Grammar –II	22ULH2						
Π			Prose, Grammar and History of Sanskrit Literature	23ULS2						
			Basic French – II	22ULF2						
	Π	English Language Course - II (ELC)	General English – II	23UE2	6	3	3	25	75	100
		Core Course – II (CC)	Mechanics and Relativity	22UPH2CC2	5	5	3	25	75	100
		Core Practical - II (CP)	Mechanics and Digital Electronics (P)	23UPH2CC2P	3		3			
	Π	Core Course-III(CC)	Introduction to Digital Electronics	23UPH2CC3	2	2	3	25	75	100
		First Allied Course – III (AC)	ODE, PDE, Laplace Transforms and Vector Analysis	22UPH2AC3	4	3	3	25	75	100
		Ability Enhancement Compulsory Course-II (AECC)	Environmental Studies	22UGEVS	2	2	-	100	-	100
	IV	Ability Enhancement Compulsory Course-III (AECC)	Innovation and Entrepreneurship	22UGIE	2	1	-	100	-	100
	Ext	ra Credit Course	SWAYAM		As pe	er UGC F	Recon	nmendati	on	
		To	otal		30	22				800

er					rs.		Exa	am		
nest	÷	Course	Course Title	Course	t. H eek	odits		, Marks		al
Sen	Par			Code	Ins / W	Cre	Hr	Int	Ext	Tot
		Language Course-III	பொதுத்தமிழ் – III	23ULT3	6	3	3	25	75	100
		(LC)	Hindi Literature & Grammar –III	22ULH3						
			Drama, Grammar and History	23ULS3						
	Ι		of Sanskrit Literature							
			Intermediate French-I	22ULF3						
	Π	English Language Course- III(ELC)	Learning Grammar Through Literature – I	23UE3	6	3	3	25	75	100
		Core Course– IV (CC)	Thermal Physics and Statistical Mechanics	23UPH3CC4	5	5	3	25	75	100
Ш		Core Practical – III (CP)	Thermal Physics (P)	23UPH3CC3P	3	3	3	40	60	100
	Ш	Second Allied Course-I (AC)	Chemistry – I	22UPH3AC4	4	3	3	25	75	100
		Second Allied Course- II (AP)	Chemistry-I (P)	22UPH3AC5P	4	3	3	40	60	100
		Ability Enhancement	Health and Wellness	24UGHW	2*	1	-	100	-	100
	IV	Compulsory Course-IV (AECC)								
		Generic Elective Course- I	Physics in Everyday Life	22UPH3GEC1						100
		(GEC)	Introduction to NCC@	24UNC3GEC1	2	2	3	25	75	
			Basic Tamil – I	22ULC3BT1	-					
	-		22ULC3ST1				1.0			
	Extra Credit Course SWAYAM			As per	UGCI	Recon	imendati	on	1	
	Total			30	23				800	
	II	Language Course - IV (LC)	பொதுத்தமிழ் – IV	23ULT4	6	3	3	25	75	100
			Hindi Literature &	22ULH4						
			Functional Hindi							
			Alankara, Didactic and	23ULS4						
			Modern Literatures and							
IV			Iranslation	22111 E4						
	п	English Language Course	Learning Grammar	220LF4 23UF4						
	п	IV (ELC)	Through Literature– II	25024	6	3	3	25	75	100
		Core Course – V(CC)	Electricity, Magnetism	23UPH4CC5	6	5	3	25	75	100
	Ш		and Electromagnetism							
		Core Practical - IV(CP)	Electricity and Magnetism (P)	24UPH4CC4P	4	3	3	40	60	100
	_	Second Allied Course- III (AC)	Chemistry – II	22UPH4AC6	4	3	3	25	75	100
	IV		Photography and Videography	22UPH4GEC2						
		Generic Elective Course-II	Specialization in Army @	24UNC4GEC2	2	2	3	25	75	100
		(GEC)	Basic Tamil – II	22ULC4BT2						
			Special Tamil – II	22ULC4ST2						
		Skill Enhancement Course – I (SEC)	Web Designing (P)	22UPH4SEC1P	2	2	3	40	60	100
		Extra Credit Course	SWAYAM		As per	UGC R	lecom	mendatio	on	
	Total									700

30 Days INTERNSHIP during Semester Holidays

					š		Exam			al	
nester t	Course	Course Title	Course Code	ek.Hr	dits		Ma	arks	Tot		
Seme	Part	Course	Course Hue	course coue	Inst / we	Cre	Hrs	Int	Ext		
		Core Course – VI (CC)	Optics	23UPH5CC6	6	5	3	25	75	100	
		Core Practical – V (CP)	General and Electronics (P)	22UPH5CC5P	3	3	3	40	60	100	
	111	Core Course – VII (CC)	Atomic and Nuclear Physics	23UPH5CC7	6	5	3	25	75	100	
V		Core Course – VIII (CC)	Analog Electronics	23UPH5CC8	6	5	3	25	75	100	
		Internship	Internship	24UPH5INT	-	2	-	25	75	100	
			A. Materials Science	23UPH5DSE1A	5	3	3	25	75	100	
		Discipline Specific Elective – I	B. Laser Physics	23UPH5DSE1B							
		(DSE)	C. Astrophysics and Cosmology	23UPH5DSE1C							
		Ability Enhancement Compulsory Course-V(AECC)	UGC Jeevan Kaushal - Professional Skills	22UGPS	2	2	-	100	-	100	
	IV	Skill Enhancement Course – II (SEC)	Physics concepts through Animation (P)	22UPH5SEC2P	2	2	3	40	60	100	
			Total			27				800	
		Core Course – IX (CC)	Fundamentals of	23UPH6CC9	6	5	3	25	75	100	
			Microprocessor			_				100	
	Ш	Core Course – X (CC)	Classical and Quantum Physics	24UPH6CC10	6	5	3	25	75	100	
		Core Course – XI (CC)	Cyber Security	22UGCS	5	4	3	25	75	100	
		Core Practical –VI (CP)	Electronics and Microprocessor (P)	22UPH6CC6P	3	3	3	40	60	100	
VI		Discipline Specific Elective – II (DSE)	A. Communication Physics	23UPH6DSE2A	5	3	3	25	75	100	
			B. Computational Physics	23UPH6DSE2B							
			C. Medical Physics	23UPH6DSE2C							
		Project	Project Work	24UPH6PW	4	3	-	-	100	100	
	V	Ability Enhancement Compulsory Course-VI (AECC)	Gender Studies	22UGGS	1	1	-	100	-	100	
		Extension activity		22UGEA	-	1	-	-	-	-	
				Total	30	25				700	
				Grand Total	180	140				4500	
•	@ 1 not	NCC is one of the choices in GEC.	Only the NCC cadets are eli	gible to chooses th t studied Tamil in	nis cour the sch	se. Ho	weve vel s	er, NCC	C Cour to take	se is Basic	

not a Compulsory Course for the NCC Cadets. If the Cadet has not studied Tamil in the school level, she has to take Basic Tamil Course.

* Health and Wellness shall be outside instruction hours

PG & RESEARCH DEPARTMENT OF PHYSICS B.Sc. PHYSICS

LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS - LOCF) (For the Candidates admitted from the Academic year 2024-2025 and onwards)

Curriculum Structure

No. of Hours/ Total Credits Part Course Credits Courses Course Tamil/ Other Language 12 Ι 4 12 6 Π 4 12 English 6 12 Core (Theory) 9 9*5=45 5/6 Core (Practical) 6*3=18 6 3/4 CC/CP-III 1*2=2 98 1 2 Ш Cyber Security 1 5 1*4=4 Project Work 1 4 3 2 Internship 1 _ First Allied 3 3*3=9 3⁄4 Second Allied 3 3⁄4 3*3=9 DSE 2 5 2*3=6 GEC 2 2 2*2=4 SEC 2 2 2*2=4 IV AECC-I -Universal Human 1 2 2 17 Values AECC-II-Environmental 1 2 2 Studies AECC-III-Innovation and 1 2 1 Entrepreneurship AECC-IV- Health and 1 1 _ Wellness **AECC-V** Professional 1 2 2 Skills 1 **AECC-VI Gender Studies** 1 1 0 **Extension Activities** V 1 01 -45 140 140

Courses & Credits for B.Sc PHYSICS

THEORY						
Attendance	3					
Library	3					
Seminar/Quiz/ Assignment	4					
CIA - I	7.5					
CIA - II	7.5					
Total	25					

PRACTICAL	I
Observation	5
Record	10
Continuous Performance in	10
Practical	
Model Practical	15
Total	40

Semester I	Internal Marks: 25		Exte	rnal Marks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
23UPH1CC1	PROPERTIES OF MATTER AND ACOUSTICS	CC-I	5	5

Course Objectives

- To build the elastic behavior in terms of three moduli of elasticity and working of torsion pendulum.
- To apply the concept of bending of beams and analyze the expression, quantify, and understand nature of materials.
- To study the concept of surface tension and viscosity of fluids and learn about an analogous solution to many engineering problems
- To analyze simple harmonic motions mathematically and understand the concept of resonance and set up experiment to evaluate frequency of vibration.
- To understand the concepts of acoustics and the significance of building construction. Able to apply ultrasonic knowledge in real life.

Pre-requisites

- Knowledge about the concepts of elasticity and bending moment
- Fundamental knowledge of capillarity, viscosity of various liquids
- Develop the idea of formula, frequency of vibration and factors affecting the architectural acoustics **Course Outcome and Cognitive Level Mapping**

CO	CO Statement	Cognitive
Number	On the successful completion of the Course, the Student will be	Level
	able to	
CO 1	Understand the basic ideas of Physical properties of different states of matter and sound	K1, K2
CO 2	Analyze the characteristics of elasticity, viscosity, surface tension and the requisites of good acoustics	K3
CO 3	Evaluate the ideas of elasticity and excess pressure of surface tension in fluids and analyze the capillarity nature in liquids	K4
CO 4	Apply the concepts of moduli of elasticity, surface tension, viscosity, waves and acoustics	K3, K5
CO 5	Develop the idea of bending of beams, empirical relations between surface tension and temperature, stokes formula, frequency of vibration of strings and factors affecting the architectural acoustics	K4

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	2	1	3	2	3	2	1
CO 2	3	3	2	3	1	3	2	3	2	2
CO 3	3	3	2	1	1	3	3	2	2	1
CO 4	3	3	3	2	2	3	3	2	3	1
CO 5	3	3	3	2	1	3	3	2	2	1

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" – indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	ELASTICITY Hooke's law-stress-strain diagram- Elastic constants- Poisson 's ratio -relation between elastic constants and Poisson 's ratio -Work done in stretching and twisting a wire-twisting couple on a cylinder-rigidity modulus by static torsion-torsional pendulum (with and without masses)	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	BENDING OF BEAMS Cantilever -Expression for bending moment- expression for depression at the loaded end of the cantilever -oscillations of a cantilever-expression for time period-experiment to find Young 's modulus- non-uniform bending-experiment to determine young's modulus by Koenig 's method-uniform bending-expression for elevation-experiment to determine Young's modulus using microscope	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
ш	FLUID DYNAMICS: Surface Tension: definition-molecular forces-Excess pressure over curved surface-application to spherical and cylindrical drops and bubbles- determination of surface tension - Jaeger's method-variation of surface tension with temperature Viscosity: Definition- Streamline and turbulent flow- Rate of flow of liquid in a capillary tube -Poiseuille's formula-corrections-terminal velocity and stoke's formula-variation of viscosity with temperature	22	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	WAVES AND OSCILLATIONS Simple Harmonic Motion (SHM)–differential equation of SHM-graphical representation of SHM-Composition of two S.H.M in a straight line and at right angles-Lissajous's figures- Free, Damped, Forced vibrations - Resonance and sharpness of resonance Laws of transverse vibration in strings - Determination of AC frequency using sonometer - Determination of frequency using Melde's string apparatus	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	ACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound-Decibel-Loudness of sound- Reverberation- Sabine's reverberation formula- acoustic intensity-factors affecting the acoustics of buildings Ultrasonic waves: -Production of ultrasonic waves–Piezoelectric crystal method– Magnetostriction effect–application of ultrasonic waves	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

VI	SELF STUDY FOR ENRICHMENT: (Not to be included for External Examination) Rigidity modulus of different materials - I- shaped griders and its uses - surface tension of soap bubble - sonic waves and its types – application of acoustics.	_	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
----	---	---	-------------------------------------	--------------------------------

Text Books

- 1. Murugeshan, R., (2012). *Properties of Matter and Acoustics*. (3rd edition) S.Chand& Co, New Delhi.
- 2. Mathur, D.S., (2010). *Elements of Properties of Matter*. (1st edition) S. Chand & Company, New Delhi.
- 3. Khanna, D.R., & Bedi, R.S., (1969). *Textbook of Sound*. (7th edition) Atmaram and sons, New Delhi.
- 4. Subrahmanyam, N., & BrijLal., (2015). *Textbook of Sound*. (2nd edition) Vikas Publishing House, Chennai.

Reference Books

- 1. Smith, C.J., (1960). General Properties of Matter and Acoustics. Orient Longman Publishers, Hyderabad.
- 2. Gulati, H.R., (1977). *Fundamentals of General Properties of Matter*. (5th edition) R. Chand& Co, New Delhi.
- 3. French, AP., (1973). *Vibration and waves*. (2nd edition), MIT Introductory Physics, Arnold-Heinmann, India.

Web References

- 1. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
- 2. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html</u>
- 3. <u>https://www.youtube.com/watch?v=gT8Nth9NWPM</u>
- 4. <u>https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s</u>
- 5. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
- 6. https://learningtechnologyofficial.com/category/fluid-mechanics-lab/
- 7. http://www.sound-physics.com/
- 8. http://nptel.ac.in/courses/112104026/

Pedagogy

Chalk and Talk, Assignment, Group discussion and quiz

Course Designer

Dr.S.Gowri

Semester I	Internal Marks: 25	External Marks: 75					
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS			
23UPH1CC1P	PROPERTIES OF MATTER AND ACOUSTICS (P)	CP-I	3	3			

Course Objectives

- To help students to enhance their experimental skills.
- To gain hands-on experience with a variety of techniques.
- To learn the basic principles and procedures of laboratory work.

Pre-requisites

• Basic knowledge on usage of scientific apparatus.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Student will be able to	Level
CO 1	Select the equipment and get the necessary accessories.	K1
CO 2	Demonstrate the use of equipment for various measures.	K2
CO 3	Construct the experiment by arranging and assembling the equipment.	K3
CO 4	Solve the physical quantity using the relevant formula after gathering accurate data through observations. Keep a detailed record of all laboratory activities.	К3
CO 5	Apply experimental approaches to correlate with physics theory to develop practical understanding.	K3

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	1	1	1	2	1	3	2	1	2	1
CO 2	2	3	2	2	2	3	3	1	2	1
CO 3	1	1	2	3	1	3	2	1	3	1
CO 4	2	3	3	3	2	1	3	1	3	2
CO 5	3	2	3	3	3	1	3	2	3	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation

LIST OF EXPERIMENTS (Any 8)

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of Young's modulus by uniform bending load depression graph.
- 4. Determination of Young's modulus by non-uniform bending scale & telescope
- 5. Determination of Young's modulus by cantilever load depression graph.
- 6. Determination of rigidity modulus by static torsion.
- 7. Determination of surface tension & interfacial surface tension by drop weight method.
- 8. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 9. Determination of viscosity by Poiseullie's flow method.
- 10. Determination of g using compound pendulum.
- 11. Sonometer determination of frequency of tuning fork.

Text Book

 Ouseph, C.C., Rao, U.J., Vijayendran, V., (2016). *Practical Physics and Electronics*. S.Viswanathan, Printers & Publishers Pvt Ltd., Chennai.

Reference Book

 Prof.Namboodirippad, M.N., Prof. Daniel, P.A., (1982). B.Sc., Practical Physics. G.B.C. Publications, Cochin.

Web References

- 1. https://vlab.amrita.edu/?sub=1&brch=280&sim=550&cnt=1
- 2. https://vlab.amrita.edu/index.php?sub=1&brch=280&sim=1518&cnt=4
- 3. https://vlab.amrita.edu/?sub=1&brch=280&sim=602&cnt=2
- 4. https://vlab.amrita.edu/?sub=1&brch=280&sim=210&cnt=2

Pedagogy

Demonstration, practical sessions, and viva voce

Course Designer

Dr.N.Manopradha

FIRST ALLIED COURSE-I (AC)

CALCULUS AND FOURIER SERIES

(For B.Sc Physics & Chemistry)

(2022-2023 and Onwards)

Semester I	Internal Marks: 25	External Marks:75					
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS			
22UPH1AC1/	CALCULUS AND			2			
22UCH1AC1	FOURIER SERIES	ALLIED	4	3			

Course Objective

- Explore the students with mathematical methods formatted for their major concepts and train them in basic Integrations.
- Analyze mathematical statements and expressions.
- Evaluate the fundamental concepts of Differentiation and Integration.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
C01	Explain the concepts of Calculus and Fourier series	K1,K2
CO2	Classify the problem models in the respective area.	К3
CO3	Solve various types of problems in the corresponding stream.	К3
CO4	Identify the properties of solutions in the core area.	К3
CO5	Discover the applications of Calculus and Fourier series.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	3	2	2	2	2
CO2	3	2	2	2	2	3	2	2	2	2
CO3	3	2	2	2	2	3	2	2	2	2
CO4	3	2	2	2	2	3	2	2	2	2
CO5	3	2	2	2	2	3	2	2	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

Syllab	us			
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Successive Differentiation: The n^{th} derivative – Standard results – Method of splitting the fractional expressions into partial fractions - Trigonometrical transformation – Formation of equations involving derivatives – Leibnitz formula for the n^{th} derivative of a product(proof not needed) – A complete formal proof by induction (proof not needed) - Curvature- Circle, radius and center of curvature - Cartesian formula for the radius of curvature–Simple problems in all these.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
Π	Evaluation of integrals: Integration of Rational algebraic functions– Rule (a) – Rule (b) Integration of the form $\int \frac{lx+m}{ax^2+bx+c} dx$ – Rule (c)- Integration of Irrational functions : Integration of the form $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ – Integration of the form $\int \frac{dx}{(x+p)\sqrt{ax^2+bx+c}}$ - Integration of the form $\int \frac{dx}{a+b\cos x}$.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Reduction Formula:Properties of definite integrals –Reduction formula (when n is a positive integer) for1] $\int e^{ax} x^n dx$ 2] $\int x^n \cos ax dx$ $\frac{\pi}{2}$ 4] $\int_{0}^{\pi} \sin^n x \cos^m dx$ (without proof) and illustrations.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Double and Triple Integrals: Definition of the double integral-Evaluation of Double integral (Problems Only)- Change of order and evaluation of the double integral (Problems only).	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Fourier Series: Definition of Fourier Series – Finding the Fourier Coefficients for a given periodic function with period 2π - Even and Odd functions –Half range Fourier series.	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
VI	Self-Study for Enrichment: (Not to be included for External examination) Radius of curvature when the curve is in Polar co-ordinates - (i) $\int \frac{dx}{ax^2 + bx + c}$ (ii) $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$ - (1) $\int \cos^n x dx$ (2) $\int_{0}^{\frac{\pi}{2}} \cos^n dx$ -Triple Integrals in simple cases(Problems Only)- Development in cosine series - Development in sine series.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Book

- 1. Narayanan, S & Manichavasagam Pillai, T.K. (2015). *Calculus Volume I*. S. Viswanathan Pvt Limited.
- 2. Narayanan, S & Manichavasagam Pillai, T.K. (2015). Calculus Volume II. S. Viswanathan Pvt Limited.
- 3. Narayanan, S & Manichavasagam Pillai, T.K. (2015). Calculus Volume III. S. Viswanathan Pvt

Limited.	
UNIT–I	Chapter 3:Sections 1.1 to 1.6,2.1,2.2[1]
	Chapter 10:Sections 2.1 to 2.3 [1]
UNIT-II	Chapter 1:Sections 7.1,7.3,7.4,8(CASE II, CASE V), 9 [2]
UNIT-III	Chapter 1:Sections 11,13.1 to 13.5 [2]
UNIT-IV	Chapter 5:Sections 2.1,2.2,4 [2]
UNIT-V	Chapter 6:Sections 1to 4[3]

Reference Books

- Sankarappan, S. Arulmozhi, G. (2006). Vector Calculus, Fourier series and Fourier Transforms. Vijay Nicole Imprints Private Limited.
- 2. Vittal, P.R.(2014). Allied Mathematics. Margham Publications.
- 3. Singaravelu, A.(2003). Differential Calculus and Trigonometry. R Publication.

Web Links

- 1. <u>https://www.youtube.com/watch?v=tBtF3Lr-VLk&t=64s</u>
- 2. <u>https://www.youtube.com/watch?v=Z4oSGuAZrZM</u>
- 3. <u>https://www.youtube.com/watch?v=w6llnAQX_f8</u>
- 4. <u>https://www.youtube.com/watch?v=LMcj8o0ERNE</u>
- 5. <u>https://www.youtube.com/watch?v=_GAwQGCyWy0</u>
- 6. <u>https://www.youtube.com/watch?v=9X3gqehcFII</u>

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designers

- 1. Dr. P. Saranya
- 2. Ms.L.Mahalakshmi
- 3. Ms.P.Geethanjali

FIRST ALLIED COURSE-II (AC) ALGEBRA, ANALYTICAL GEOMETRY OF 3D & TRIGONOMETRY

(For B.Sc Physics & Chemistry)

(2022-2023 and Onwards)

Semester I	Internal Marks: 25	Internal Marks: 25External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22UPH1AC2/ 22UCH1AC2	ALGEBRA, ANALYTICAL GEOMETRY OF 3D & TRIGONOMETRY	ALLIED	4	3	

Course Objective

- Analyze the mathematical methods formatted for their major concepts.
- Evaluate the problems in Algebra and Trigonometry.
- Explain the basics of Three-Dimensional geometry.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain various notions in Algebra, Analytical Geometry of 3D & Trigonometry.	K1,K2
CO2	Identify the problem models.	K3
CO3	Apply the concepts of Algebra, Analytical Geometry of 3D & Trigonometry.	К3
CO4	Solve the given problems in the respective stream.	K3
CO5	Analyze the applications of the core area.	K4

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
C01	2	2	2	3	2	3	2	2	2	2
CO2	2	2	2	3	2	3	2	2	2	2
CO3	2	2	2	3	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	3	2	3	2	2	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Series Expansion: Application of Binomial Theorem to summation of series – Approximate values – Summation of series by Exponential series - Summation of series by Logarithmic series (Formulae only).	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.
Π	Matrices:Matrix-Special types of Matrices –Scalarmultiplication of a matrix-Equality of matrices-Additionof matrices-Subtraction of matrices- Symmetric matrix-Skew symmetric matrix-Hermitian and Skew Hermitianmatrix –Multiplication of matrix – Inverse matrix-Innerproduct-Solution of simultaneous equations-Rank of amatrix-Elementary transformation of a matrix-A systemof m homogeneous linear equations in n unknowns-Linear dependence and independence of vectors-Systemof non-homogeneous linear equations - Eigen values andEigenvectors.(Applications only)	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.
ш	Three Dimensional Geometry: The Sphere – Definition- The equation of a sphere when the center and radius are given-The equation of a sphere to find its center and radius- The length of the Tangent Plane from a point to the sphere – The Plane Section of a sphere – Equation of a circle on a sphere – Intersection of two spheres in a circle.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.
IV	Expansion of Trigonometric functions: Expansions of <i>cos n</i> θ and <i>sin n</i> θ - Expansion of tan($A + B + C +$) (omitting examples on formation of equations) –Powers of sines and cosines of θ in terms of functions of multiples of θ – Expansions of cos ⁿ θ when n is a positive integer – Expansions of sin ⁿ θ when n is a positive integer – Expansions of <i>sin</i> θ and <i>cos</i> θ in a	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.

	series of ascending powers of θ - The expansions of			
	$sin \theta$ and $cos \theta$ to find the limits of certain expressions.			
	Hyperbolic functions:		CO1,	K1
	Hyperbolic functions – Relation between		CO2,	кı, к2
V	hyperbolic functions - Relations between hyperbolic	12	СОЗ,	K2, K2
	functions and circular functions - Inverse hyperbolic		CO4,	KJ, VA
	functions.		CO5	Ν4.
	Self-Study for Enrichment :			
VI	(Not to be included for External examination) Series which can be summed up by the Logarithmic series - Simple applications of Matrices- The equation of the tangent plane to the sphere at a point. (Only problems) - Expansion of $\tan\theta$ in terms of powers of θ - Separation of real and imaginary parts of $\tanh(x+iy)$.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.

Text Books

- Manichavasagam Pillai, T.K. Natarajan, T.& Ganapathy, K.S. (2015). *Algebra, Volume I. S.* Viswanathan Pvt Limited.
- 2. Manichavasagam Pillai, T.K. (2015). Algebra, Volume II. S.Viswanathan Pvt Limited.
- 3. Manichavasagam Pillai, T.K. & Natarajan, T. (2016). *A Text book of Analytical Geometry Part-II 3D*. New Gamma Publishers.
- 4. Manichavasagam Pillai, T.K. & Narayanan, S. (2013). *Trigonometry*. S. Viswanathan Pvt Limited.
- UNIT–I Chapter 3:Sections 10,14[1]

Chapter 4:Sections 3,7,9 [1]

- UNIT-II Chapter 2:Sections 1 to 16 [2]
- UNIT-III Chapter 4:Sections 1-5,6,6.1,7,8 [3]
- UNIT-IV Chapter 3:Sections 1 to 4, 4.1,5,5.1[4]
- UNIT-V Chapter 4:Sections 1,2,2.1 to 2.3[4]

Reference Books

- 1. Arumugam,s.Issac,A. (2017). Analytical Geometry 3D and Vector calculus. New Gamma Publishing house.
- Pandey, H.D. Khan, M.Q. & Gupta, B.N.(2011). A Text Book of Analytical Geometry and Vector Analysis. Wisdom Press.
- 3. Singaravelu, A. (2003). Differential Calculus and Trigonometry. R Publication.

Web Links

- 1. <u>https://www.youtube.com/watch?v=JayFh5EJHcU</u>
- 2. <u>https://www.youtube.com/watch?v=h5urBuE4Xhg</u>
- 3. <u>https://www.youtube.com/watch?v=59z6eBynJuw</u>
- 4. <u>https://www.youtube.com/watch?v=9DyPyJb2N9g</u>
- 5. <u>https://www.youtube.com/watch?v=HOk2XLeFPDk</u>
- 6. <u>https://www.youtube.com/watch?v=G1C1Z5aTZSQ</u>

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designers

- 1. Dr. P. Saranya
- 2. Dr.L.Mahalakshmi
- 3. Ms.P.Geethanjali

Course	Course Name	se Name Category L T P			Р	S	Cr edits	Inst	Marks		
Code							curus	Hrs	CIA	External	Total
23UGVE	VALUE EDUCATION	Ability Enhancement Compulsory Course-I (AECC	30	-	-	-	2	2	100	-	100
Year	-	Ι									
Semester		Ι									
Prerequisites Basic Understanding of Values											
Learning	Objectives										
1	To enrich the kn	owledge about ethi	ics ar	nd val	ues.						
2	To instil Moral a	and Social Values a	nd L	oyalt	y anc	l to	apprec	ciate th	e right	s of others.	
3	To explain the role of ethics in the operation of human conduct										
4	To promote an understanding and framework for students to achieve value based positive and purposeful lives for themselves and their communities.										
5	To build excelle	nt citizens and lead	lers f	or the	cou	ntry	7				

Course Outcomes and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO NUMBER	CO STATEMENT	COGNITIVE LEVEL
CO1	To understand the importance of values and ethical issues at micro, mezzo and macro level of the society and the workplace.	K1, K2
CO2	To apply values and ethics in the daily life.	К3
CO3	To exhibit Ethical Leadership in the workplace and in the society.	K4
CO4	To think logically and reasonably and to handle moral issues with greater clarity	К5
CO5	To Engage in ethical debate and formulate ethical justification.	K6

UNIT	CONTENT	HOURS
Ι	Value education: Meaning, Definition, purpose and significance in the present world.Human Values For Life: Truth, commitment, honesty and integrity,	
	humility, forgiveness, love, empathy, ability to sacrifice, care, unity, inclusiveness, Self esteem, self-confidence, punctuality – Time, task and resource management.	6
Π	Ethics: The Essence of Ethics, Determinants and Consequences of Ethics in Human Interaction. Dimensions of Ethics. Ethics in private and public relationships. Role of family, society and educational institutions in inculcating moral and ethical values	6
III	Theory & Approaches in Ethics: Kohlberg's theory, Gilligan's theory, Damon's View of Moral Identity, & Deontology. The Utilitarian Approach, The Rights Approach, The Fairness or Justice Approach, The Common-Good Approach, The Virtue Approach & Ethical Problem Solving Approach.	6
IV	Moral Thinkers & Philosophical Schools of Thought and their contribution: Socrates, Plato, Aristotle, Epicurus, Stoicism. Thomas Aquinas , Contractarianism, Thomas Hobbes, John Locke, Jean-Jacques Rousseau, John Rawls, John Stuart Mill, Emanuel Kant and Hegel, Mother Teresa, Chanakya, Kautilya, Sarojini Naidu, Thiruvalluvar, Rabindranath Tagore, Mahatma Gandhi, Dr. Ambedkar, Bharathiyar and Bharathidasan.	6
V	Values and Ethics in Public administration: ethical concerns and dilemmas in government and private institutions; laws, rules, regulations and conscience as sources of ethical guidance; accountability and ethical governance; ethical issues in international relations and funding; corporate governance. Information sharing and transparency in government, Codes of Ethics, Codes of Conduct, Citizen's Charters, Quality of service delivery, Utilization of public funds, challenges of corruption.	6
VI	Self Study for Enrichment	
	Learners need to list ways of practicing human Values. Group Discussion needs to be conducted on strategies to promote human values at various levels – family, community, society, nation and global.	-

Text Books:

- 1. ETHICS, INTEGRITY & APTITUDE (Prabhat Prakashan). (2021). (n.p.): Prabhat Prakashan.
- 2. Political Parties and Administrative Reforms in India: At the Centre, in the States and in the Local Bodies. (2019). (n.p.): Notion Press.
- 3. Sharma, P. D. (2015). Ethics, Integrity and Aptitude: Foundational Values for Civil Service in India. India: Rawat Publications.
- 4. Vozzola, E. C. (2014). Moral Development: Theory and Applications. United Kingdom: Taylor & Francis.
- 5. Thinkers and Theories in Ethics. (2011). Ukraine: Britannica Educational Pub..

Reference Books:

- 1. Bandiste, D.D.: Humanist Values: A Source Book, B.R. Publishing Corporation, Delhi, 1999
- 2. Ethics in Governance. (2021). (n.p.): K.K. Publications.
- 3. Maheshwari, S. (2002). Administrative Reforms in India. Germany: Macmillan India.
- 4. Bandiste, D.D.: Humanist Values: A Source Book, B.R. Publishing Corporation, Delhi, 1999.
- 5. Saxena, N. C. (2019). What Ails the IAS and Why It Fails to Deliver: An Insider's View. India: SAGE Publications.
- 6. Xavier Alphonse S.J (2008) We Shall Overcome A Textbook on life coping skills ICRDCE Publication, Chennai

Web References

- 1. https://publicintegrity.org
- 2. https://www.ethicssage.com
- 3. https://darpg.gov.in
- 4. https://www.ethics.org
- 5. https://ethicsunwrapped.utexas.edu/glossary/integrity

Pedagogy

Chalk& Talk, Seminar, PPT Presentation, Group Discussion, Blended Method, and Case Study.

ABILITY ENHANCEMENT COMPULSORY COURSE (AECC) I : VALUE EDUCATION (23UGVE)

Assessment Rubrics for 100 Marks

- 1. Designing Posters / video making / preparation of Album 20 marks
- 2. Case study presentation / Narration of stories / Writing stories 20 Marks
- 3. Writing essay based on the individual life experience following human values –personal, family and society level (minimum 10 pages) **20 Marks**

4. VIVA VOCE - 40 Marks

S. No	RUBRICS FOR VIVA VOCE	MARKS
1.	Theoretical Knowledge	20
2.	Values Practiced	10
3.	Attitude & Commitment	10
Total		40

Course Designer Dr.G.Mettilda Buvaneswari

Semester II	Internal Marks: 25		External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22UPH2CC2	MECHANICS AND RELATIVITY	СС-ІІ	5	5	

Course Objectives

- To find the time of flight and impact velocity of a projectile that lands at a different height from that of launch.
- To explain motion along curved path.
- To illustrate the motion of rigid bodies and outline laws of gravitation.
- To make use of the ideas of frames of reference.

Pre-requisites

- A solid understanding of scalars and vectors.
- Fundamental concepts of physics.
- Basic understanding of Newtonian mechanics.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Student will be able to	Level
CO 1	Define the effects of a change in the position of any physical object or event.	K1
CO 2	Demonstrate laws and principles in physics.	K2
CO 3	Apply the mathematical tools in understanding physics.	K3
CO 4	Make use of simple concepts of mechanics in daily life.	K3
CO 5	Analyse the principles behind the mechanics of objects travelling at relativistic	K4
	speeds.	

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	3	3	3	3	3	3	2	2	3
CO 2	2	3	3	3	3	3	3	2	2	3
CO 3	2	3	3	3	3	3	3	2	3	3
CO 4	2	3	3	2	3	3	2	2	2	3
CO 5	2	3	3	2	3	3	2	2	2	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" - Moderate (Medium) Correlation

"-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	PROJECTILE, IMPACT AND FRICTION: Projectile – Path of a projectile is a parabola – Range of horizontal and inclined plane – Impulse of a force – Impulsive force – Impact between two smooth bodies – Laws of impact – Direct and oblique impacts – Impact of a smooth sphere on a smooth horizontal plane – Loss in kinetic energy due to direct and oblique impacts – Friction – Laws of friction – Angle of friction.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
п	MOTION ON A PLANE CURVE: Centripetal and centrifugal forces – Hodograph – Expression for normal acceleration by the hodograph method – Motion of cyclist along a curved path – Motion of a railway carriage round a curved track – Upsetting of a carriage on a curved level track – Motion of a carriage on a banked-up curve – Effect of the Earth's rotation on the value of the acceleration due to gravity – Variation of g with altitude.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	DYNAMICS OF RIGID BODIES AND GRAVITATION: Moment of Inertia - Kinetic energy and angular momentum of rotating body - Theorems of perpendicular and parallel axes – Acceleration of a body rolling down an inclined plane without slipping – Oscillations of a small sphere on a large concave smooth surface – Compound pendulum – Centre of suspension and centre of oscillation – Centre of percussion – Minimum period of a compound pendulum – Kater's pendulum. Newton's laws of gravitation – Kepler's laws of planetary motion – Deduction of Newton's law of gravitation – Determination of G – Boy's method.	25	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	FRAMES OF REFERENCE: Frames of reference: Inertial and Non-Inertial – Galilean Transformation: Transformation of position, length, velocity and acceleration – Galilean invariance: Newton's law of motion, law of conservation of momentum and energy – Transformation equation for one frame of reference rotating with its axis with respect to an inertial frame – Coriolis force – Foucault's pendulum.	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

v	SPECIAL THEORY OF RELATIVITY: Michelson-Morley experiment - concept of ether - Einstein's special theory of relativity - Lorentz transformation - time dilation - length contraction – proper length and proper time - simultaneity - relativistic mass, momentum, force and acceleration - equivalence of mass and energy ($E = mc^2$).	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
VI	SELF STUDY FOR ENRICHMENT: (Not to be included for External Examination) Angular acceleration – Relation between the torque and angular acceleration of a rigid body – Conservation of energy – Conical pendulum - Moment of Inertia of a flywheel – Torsion pendulum.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Books

 Narayanamurthi, M., and Nagarathinam, N., (2008). *Dynamics*. (8thedition) The National Publishing Company, Chennai.

2. Mathur, D.S., and Hemne, P.S., (2015). *Mechanics*. (Revised edition) S. Chand & Company Ltd., New Delhi.

Reference Books

- Narayanamurthi, M., and Nagarathinam, N., (2002). *Statics, Hydrostatics and Hydrodynamics*. (3rd edition) The National Publishing Company, Chennai.
- Murugesan, R., (2016). *Mechanics and Mathematical Physics*. (3rd edition) S. Chand & Company Ltd., New Delhi.
- 3. Brijilal Subramaniam, (1990). *Mechanics and Relativity*. (1st edition), Margham Publications.
- Murugesan, R., and Kiruthiga Sivaprasath, (2016). *Modern Physics*. (18th edition) S. Chand & Company Ltd., New Delhi.

Web References

- 1. https://courses.lumenlearning.com/suny-osuniversityphysics/chapter/4-3-projectile-motion/
- 2. http://www.jbsw.shikshamandal.org/wp-content/uploads/2016/07/2-Gravitation.pdf
- 3. https://vlab.amrita.edu/?sub=1&brch=280&sim=518&cnt=1
- 4. <u>https://www.youtube.com/watch?v=wD7C4V9smG4</u>
- 5. <u>https://www.youtube.com/watch?v=TgH9KXEQ0YU</u>

Pedagogy

Chalk and Talk, Assignment, Group discussion and Quiz

Course Designer

Dr.N.Manopradha

Semester II	Internal Marks: 40	Marks: 40 External Marks: 60				
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS		
23UPH2CC2P	MECHANICS AND DIGITAL	CP-II	3	3		
	ELECTRONICS (P)					

Course Objectives

- To give students a foundational understanding of how to measure various physical quantities.
- To use scientific equipment to estimate various physical properties.
- To investigate the basic idea behind digital technology.
- To construct basic logic gates using distinct components.

Pre-requisites

• Basic knowledge on usage of scientific apparatus.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Students will	Level
	be able to	
CO1	Select the equipment and get the necessary accessories.	K1
CO2	Explain the experiment's fundamental concepts.	K2
CO3	Make use of fundamental principles and experiment circumstances.	K3
CO4	Experiment with the laboratory norms.	K3
CO5	Examine the applications.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	1	1	1	2	1	3	2	1	2	1
CO2	2	3	2	2	2	3	3	1	2	1
CO3	1	1	2	3	1	3	2	1	3	1
CO4	2	3	3	3	2	1	3	1	3	2
CO5	3	2	3	3	3	1	3	2	3	2

"1" - Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation

LIST OF EXPERIMENTS (Any 8)

- 1. Young's modulus Non-Uniform bending (Pin and Microscope).
- 2. Young's modulus Non Uniform bending (Optic lever).
- 3. Sonometer Determination of unknown frequency.
- 4. Verification of Logic gates.
- 5. Construction of Half and Full adder.
- 6. NAND as UBB.
- 7. NOR as UBB.
- 8. Spectrometer $-\mu$ of solid prism.
- 9. Concave lens Focal length determination.
- 10. Determination of Poisson's ratio of ductile specimen using strain gauges.
- 11. Verification of Euler- Bernoulli Hypothesis.
- 12. Verification of Flexural Stress Formula.

Text Book

1. Ouseph, C.C., Rao, U.J., Vijayendran, V., (2016). Practical Physics and

Electronics. S.Viswanathan, Printers & Publishers Pvt Ltd., Chennai.

Reference Book

1. Prof.Namboodirippad, M.N., Prof.Daniel, P.A., (1982). *B.Sc., Practical Physics*. G.B.C. Publications, Cochin.

Web References

- 1. <u>https://vlab.amrita.edu/?sub=1&brch=280&sim=210&cnt=2</u>
- 2. <u>https://vlab.amrita.edu/?sub=1&brch=280&sim=1509&cnt=1</u>
- 3. https://de-iitr.vlabs.ac.in/exp/truth-table-gates/simulation.html
- 4. https://amrita.olabs.edu.in/?sub=1&brch=6&sim=244&cnt=4

Pedagogy

Demonstration, practical sessions and viva voce.

Course Designer

Dr.N.Manopradha

Semester II	Internal Marks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
23UPH2CC3	INTRODUCTION TO DIGITAL ELECTRONICS	CC-III	2	2

Course Objectives

- To learn about different numbers systems and their conversion from one to another.
- To understand the workings of logic gates and equations.
- To acquire Knowledge about Boolean laws to draw Karnaugh maps.
- To know the uses of encoders, decoders, multiplexers and demultiplexers.
- To understand the workings of flip-flops and to analyze sequential circuits.

Pre-requisites

- Basic knowledge of the binary number system.
- Fundamental ideas on logic gates.
- Basic knowledge of the conversion of a number system.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the Course, the Students will be	Level
	ableto	
CO 1	Understand the basic knowledge of Number system, Logic	K1
	gates, Combinational circuit, Boolean expression and Flip	
	flops	
CO 2	Interpret the concept of number conversion, logic circuits and thereby	K2
	developequivalent circuits.	
CO 3	Develop the concept of number conversion and combinational logic	K3
	circuits.	
CO 4	Examine different number system, arithmetic and logic functions with	K4
	appropriate selection of inputs and check the possible outputs for	
	arithmetic and logic circuits.	
CO 5	Simplify the arithmetic operation of the number system. Apply the	K5
	Booleanexpressions in the K Map and design the flip flop.	

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	2	2	3	3	2	2	2
CO 2	2	2	2	2	2	3	3	2	3	3
CO 3	2	3	3	2	2	3	3	3	3	3
CO 4	2	2	3	3	3	3	3	3	3	3
CO 5	3	3	3	3	3	3	3	3	3	3

"1" - Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" - indicates there is no Correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	NUMBER SYSTEM AND CODE: Binary number system – Binary to decimal conversion – Decimal to binary conversion – Octal numbers –Conversion of octal numbers – Hexadecimal numbers –Conversion of hexadecimal numbers.	6	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
П	ARITHMETIC CIRCUITS: Binary addition – Binary subtraction –Binary multiplication – Binary Division – Half and Full adder – Half and Full subtractor.	6	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4 K5
III	DIGITALLOGICANDLOGICCIRCUITS:Basic gates – NOT, OR, AND – EX-OR gates– Universal logic gates – NOR, NAND –Boolean laws – Simplification of BooleanExpression and Demorgan's theorems.	6	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	APPLICATION OF THEOREM – K-MAP:BOOLEANSum-of-Products- Product of sum – Truth table to Karnaugh map – Pairs, Quads, and Octets – Karnaugh map simplifications – Don't care condition.	6	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
v	FLIP – FLOPS: R-S flip-flops – Clocked R-S flip-flop – Edge-triggered RS flip flop –J-K flip – D flip-flop – T flip flop – Applications of flip- flops.	6	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	SELF STUDY FOR ENRICHMENT: (Not to be included for External Examination) Application of number system Physical Quantity – Counting – Electrical projectcircuit.	_	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- Donald P Leach, Albert Paul Malvino, Goutam Saha, (2011). *Digital Principles and Applications*.(7th edition) Tata McGraw – Hill Publishing Company Limited, New Delhi.
- Jain,R.P, (2009). *Modern Digital Electronics*. (4th edition) Tata McGraw Hill Education PrivateLimited, Noida.
- Vijayendran, V, (2003). *Digital fundamentals*. (1st edition) S. Viswanathan Printers andPublishers Pvt. Ltd, Chennai.
- Virendra Kumar, (2007). *Digital electronics Theory and Experiments*. (2nd edition) New AgeInternational Publishers, Chennai.

Reference Books

- 1. James W. Bignel, (2007). Digital Electronics. (5th edition) Cengage learnings, Uttar Pradesh.
- MandalS.K, (2017). Digital Electronics Principles & Applications. (1st edition) McGraw HillEducation, Karnataka.
- 3. Thomas L. Floyd, (2015). *Digital Fundamentals*. (11th edition) Pearson Education, Bengaluru.
- Kothari, D.P., J.S. Dhillon, (2016). *Digital Circuits and Design*. (1st edition) Pearson Education, Bengaluru.

Web References

- 1. https://circuitglobe.com/rs-flip-flop.html
- 2. http://hyperPhysics.phy-astr.gsu.edu/hbase/Electronic/jkflipflop.html
- 3. https://circuitglobe.com/half-adder-and-full-adder-circuit.html
- 4. https://programmerbay.com/construct-4-to-1-multiplexer-using-logic-gates/
- 5. https://www.electronicshub.org/demultiplexerdemux/
- 6. https://www.elprocus.com/designing-of-2-to-4-line-decoder/
- 7. https://www.electricaltechnology.org/2018/05/bcd-to-7-segment-display-decoder.html

Pedagogy

Chalk and Talk, Assignment, Group discussion and quiz

Course Designer

Dr. S. Priya

ALLIED COURSE - III

(For Physics)

ODE, PDE, LAPLACE TRANSFORMS AND VECTOR ANALYSIS

(2022-2023 Onwards)

Semester II	Internal Marks: 25	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22UPH2AC3	ODE, PDE, LAPLACE	ALLIED	4	3
	TRANSFORMS AND VECTOR			
	ANALYSIS			

Course Objective

- Explain the basics of Ordinary Differential Equations.
- Emphasize in the field of Partial Differential Equations.
- Explore the mathematical methods formatted for major concepts.

CourseOutcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Knowledge
Number		Level
CO1	Explain various notions in ODE, PDE, Laplace transforms &	K1, K2
	Vector Analysis.	
CO2	Classify the problem models in the respective area.	К3
CO3	Identify the properties of solutions in the core area.	К3
CO4	Solve various types of problems in the corresponding stream.	К3
CO5	Analyze the applications of the core area.	K4

Mapping of COwithPO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	3	2	3	3
CO2	3	2	2	2	2	2	3	2	3	3
CO3	3	2	2	2	2	2	3	2	3	3
CO4	3	2	2	2	2	2	3	2	3	3
CO5	3	2	2	2	2	2	3	2	3	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" - Moderate (Medium) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Ordinary Differential Equations: Equations of the first order but of higher degree – Type A: Equations solvable for $\frac{dy}{d}$ - Type B: Equations solvable for y - dx Equations solvable for x -Clairaut's Form (simple cases only). Linear equations with constant coefficients: Definitions – The operator D- Complementary function of a linear equation with constant co-efficients - Particular integral: General method of finding P.I- Special methods for finding P.I.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
П	Partial differential equations:Classification of integrals–Derivation of Partial differentialequations: By elimination of constants - By elimination ofarbitrary function-Lagrange's method of solving the linearequation-Specialmethods-StandardI,II,III,IV(Geometrical Meaning is not needed)-(only problemsin all the above) – (No proof needed for any formula).	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
ш	Laplace Transforms: Laplace Transforms – Definition -Sufficient conditions for the existence of Laplace transform-Basic results-Laplace transform of periodic functions-Some general theorems-Evaluation of integrals using Laplace transform.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Inverse Laplace Transform: The Inverse Transform – Modification of results obtained in finding Laplace transforms to get the inverse transforms of functions- Laplace Transforms to solve ordinary differential equations with constant co-efficients.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	 Vector Differentiation: Limit of a vector function-continuity of vector functions- Derivative of a vector function-Some Standard Results- Geometrical significance of vector differentiation-Physical application of derivatives of vectors - partial derivative of a vector function. Gradient, Curl and Divergence: Scalar and Vector point functions – Gradient of a scalar point function-Directional derivative of a scalar point function- Equations of tangent plane and normal line to a level surface. Divergence and curl of a vector point function: Definition- Curl of a vector point function- irrotational vector. 	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
VI	Self -Study for Enrichment: (Not included for End Semester Examination) Equations that do not contain <i>x</i> and <i>y</i> for explicitly- Equations reducible to the standard form - Piecewise continuity - Laplace Transforms to solve ordinary differential equations with variable co-efficients - Physical interpretation of divergence of a vector - Physical interpretation of curl of a vector-Vector identity.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
Text Book

- 1. Narayanan. S, Manicavachagam Pillai. T. K. (2016). *Differential Equations and its applications*. S. Viswanathan Pvt Limited.
- 2. Vittal. P. R, Malini. V. (2016). Vector Analysis. Margham Publications.

Chapters and Sections

UNIT-I Chapter 4: Sections 1-3 [1] Chapter 5: Sections 1-4 [1] UNIT-II Chapter 12: Sections 1-5.4 [1] UNIT-III Chapter 9: Sections 1-5 [1] UNIT- IV Chapter 9: Sections 6-8 [1] UNIT- V Chapter 1: Pages (1-24,26-35) [2]

Reference Books

- 1. Narayanan. S, Manicavachagam Pillai. T. K. (2003). *Calculus, Vol. III*. S.Viswanathan Pvt Limited.
- 2. Arumugam Isaac. (2014). *Differential Equations and Applications*. New Gamma Publishing House.
- 3. Sankarappan. S, Arulmozhi. G. (2006). *Vector Calculus, Fourier Series and Fourier Transforms*. Vijay Nicole Imprints Private Limited.

Web References

- 1. <u>https://www.youtube.com/watch?v=OM01KTc0_9w</u>
- 2. https://youtu.be/zlfsh1SyH58
- 3. https://www.youtube.com/watch?v=dCVBZbebl8Y
- 4. https://www.youtube.com/watch?v=Y8GXpS31CGI
- 5. <u>https://www.youtube.com/watch?v=IVJjm5FE4x8</u>
- 6. https://www.youtube.com/watch?v=FXTt6Sa79mI
- 7. https://www.academia.edu/35399426/CHAPTER_1_VECTOR_DIFFERENTIATION

Pedagogy

Power point presentation, Group Discussion, Seminar, Assignment.

Course Designer

1. Dr.L.Mahalakshmi

Semester II	InternalMarks:100									
COURSECODE	COURSETITLE	CATEGORY	HRS/ WEEK	CREDI TS						
22UGEVS	ENVIRONMENTAL STUDIES	ABILITY ENHANCEMENTCOMP ULSORYCOURSE	2	2						

To train the students to get awareness about total environment and its related problems and to make them to participate in the improvement and protection of the environment.

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Outline the nature and scope of environmental studies	K2
CO2	Illustrate the various types of natural resources and its importance.	K2
CO3	Classification of various types of ecosystem with its structure and function.	K2
CO4	Develop an understanding of various types of pollution and biodiversity.	К3
CO5	List out the various types of social issues related with environment.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2	3	3	2	2	3	2	3
CO2	3	3	2	3	3	3	2	3	3	3
CO3	2	3	3	2	3	3	3	3	3	2
CO4	2	3	3	3	2	3	2	3	3	3
CO5	3	3	2	3	3	3	3	2	3	3

"1"–Slight (Low) Correlation "3"–Substantial (High) Correlation "2" – Moderate (Medium) Correlation "-"indicates there is no correlation

UNIT	CONTENT	HOURS	COS	COGNITIVE LEVEL
I	Introduction to environmental studies Definition, scope and importance. Need for public awareness	06	CO1, CO2, CO3, CO4	K1, K2, K3, K4
Π	 Natural Resources: Renewable and non-renewable resources: a. Forest resources: use and over- exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people. b. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, damsbe benefits and problems. c. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources. d. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity. e. Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies. f. Land resources: Landas resources, land degradation, maninduced Landslides, soil erosion and desertification. 	06	CO1, CO2, CO3, CO4	K1, K2, K3, K4
III	Ecosystems Concept, Structure and function of an ecosystem. Producers, consumers and decomposers Energy flow in the ecosystem and Ecological succession. Food chains, food webs and ecological pyramids Introduction ,types, characteristic features, structure and function of the following ecosystem:-Forest ecosystem, Grassland ecosystem and Desert ecosystem, Aquatic ecosystems,(ponds, streams, lakes, rivers, oceans, nestuaries)	06	CO1, CO2, CO3, CO4	K1, K2, K3, K4

IV	Bio diversity and Environmental Pollution		CO1,	K1,
	Introduction, types and value of biodiversity.		CO2,	K2,
	India as a mega diversity nation. Hot-spots of	06	CO3,	КЗ,
	biodiversity. Threats to biodiversity: habitat loss,		CO4	K4
	poaching of wildlife, man-wildlife conflicts.			
	Endangered and endemic species of India.			
	Conservation of biodiversity:In-situand			
	Ex-situ conservation of biodiversity. Definition,			
	Causes, effects and control measures of: Air			
	Pollution, Water Pollution, Soil Pollution, Noise			
	pollution, Nuclear hazards, Solid waste			
	Management: Causes, effects and control			
	measures of urban and industrial wastes. E-			
	Waste Management: Sources and Types of E-			
	waste. Effect of E-waste on environment and			
	human body. Disposal of E-waste, Advantages			
	of Recycling E-waste. Role of an individual in			
	prevention of pollution.			
	Disastermanagement:floods,earthquake,			
	cyclone and landslides.			
V	Social Issues and the Environment	06	CO1,	K1,
	Water conservation, rain water harvesting, water		CO2,	K2,
	shed management. Climate change, global		CO3,	КЗ,
	warming, acid rain, ozone layer depletion, Waste		CO4,	K4,
	land reclamation.		CO5	K5
	Environment Protection Act			
	Wildlife Protection Act. Forest Conservation Act.			
	Population explosion–Family Welfare			
	Programmes Human Rights-Value			
	Education.HIV/ AIDS- Women and Child			
	Welfare. Role of Information Technology in			
	Environment and human health.			

References

- 1. Agarwal, K.C.2001 Environmental Biology, Nidi Public Ltd Bikaner.
- 2. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt Ltd, Ahamedabad 380013,India, E-mail: mapin@icenet.net(R)
- 3. BrunnerR.C.1989, Hazardous Waste Incineration, McGraw HillInc480p
- 4. ClarkR.S.MarinePollution,ClandersonPressOxford(TB)
- 5. Cunningham, W.P.Cooper, T.H.Gorhani E& Hepworth, M.T.2001.
- 6. DeA.K. Environmental Chemistry, Wiley Eastern Ltd
- 7. Down to Earth, Centre for Science and Environment(R)
- Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment & Security. StockholmEnv. Institute Oxford University, Press 473p.
- 9. Hawkins, R.E. Encyclopedia of India Natural History, Bombay Natural History Society, Bombay.
- 10. Heywood, V.H & Watson, R.T. 1995. Global Biodiversity Assessment. Cambridge UniversityPress1140 p.
- 11. Jadhav, H&Bhosale, V.M. 1995. Environmental Protection and Laws Himalaya Pub.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar

CourseDesigner

Dr.B.Thamilmaraiselvi

Semester III	Internal Marks: 25		Exte	rnal Marks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
23UPH3CC4	THERMAL PHYSICS AND STATISTICAL MECHANICS	CC - IV	5	5

- To gain knowledge in heat transfer, entropy, production of low temperature and liquefaction of gases, thermal radiation and statistical thermodynamics.
- To Solve the function of Internal combustion engine and Carnot's engine
- To analyze the behavior of gases under very high pressure.
- To apply probability in statistical thermodynamics.

Pre-requisites

- Strong Foundation of Thermodynamics and its Applications
- Learn the basic principles of elasticity and the elastic nature of materials.
- Understand realistic cycles for internal combustion engines, steam engines, and low-temperature refrigeration systems.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO 1	Learn the basic concepts of thermodynamics, radiation, and statistical mechanics, as well as their significance.	K1
CO 2	Understand the experimental procedures for producing low temperatures, measuring high temperatures, and determining the specific heats of solids, liquids, and gases.	K2
CO 3	Apply the theories related to low temperature, radiation and specific heat of solid, liquid and gas.	К3
CO 4	Examine the energy distribution in the black body spectrum, the system of bosons and fermions, and the temperature change of solids and gases' specific heats.	K4
CO 5	Solve the specific heat capacity of solid, liquid and gas theoretically.	K5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	2	2	2	3	2	2	3	2
CO 2	2	3	3	2	3	3	2	3	3	2
CO 3	2	3	3	2	3	3	2	3	3	2
CO 4	3	3	3	3	3	3	3	3	3	2
CO 5	2	2	3	3	3	2	3	3	3	3

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation;

"3" - Substantial (High) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	THERMODYNAMICS	15	CO1,	K1,
	Thermodynamic system - Zeroth law of		CO2,	K2,
	thermodynamics - internal energy- First law of		CO3,	КЗ,
	thermodynamics - reversible and irreversible process -		CO4,	K4,
	Carnot's cycle - Otto and diesel engine - second law of		CO5	K5
	thermodynamics - Entropy - Change in entropy during			
	reversible and irreversible process - T- dS equation-			
	Third law of thermodynamics–Clausius's Claypeyron's			
	latent heat equations.			
II	LOW TEMPERATURE PHYSICS	15	CO1,	K1,
	Joule Thompson effect - Production of low temperature		CO2,	K2,
	- Theory of Porous plug experiment - Liquefaction of		CO3,	K3,
	gases - Linde's air liquefier - Liquefaction of Helium		CO4,	K4,
	and Hydrogen - Adiabatic demagnetization - Practical		CO5	K5
	application of low temperature - Refrigeration machine			
	- Air conditioning machines.			
III	RADIATION	15	CO1,	K1,
	Coefficient of thermal conductivity - Lee's method for		CO2,	K2,
	bad conductors - Convection and its applications -		CO3,	K3,
	Stefan's Boltzmann law - Experimental determination		CO4,	K4,
	of Stefan's constant - Blackbody radiation - Rayleigh		CO5	K5
	Jean's law - Wien's Displacement Law - Planck's law -			
	Solar constant - temperature of the Sun -Angstrom's			
	Pyrheliometer			
IV	SPECIFIC HEAT	15	CO1,	K1,
	Specific heat of solids - Dulong and Petit's law -		CO2,	K2,
	Einstein's theory of specific heat - Debye's theory -		CO3,	K3,
	Specific heat of gases - Mayer's Relation-		CO4,	K4,
	Determination of C _P by Ragnault's method - Newton's		CO5	K5
	law of cooling			
V	STATISTICAL THERMODYNAMICS	15	CO1,	K1,
	Phase space – Statistical equilibrium - Microstates and		CO2,	K2,
	Macrostates – Maxwell-Boltzmann distribution - Ideal		CO3,	K3,
	gas - Fermi-Dirac distribution - Electron gas - Bose-		CO4,	K4,
	Einstein distribution		CO5	K5
VI	SELF-STUDY FOR ENRICHMENT	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
	Internal combustion engine (ICE) - Electrolux		CO3,	КЗ,
	refrigerator- Bolometer- Variation of specific heat of		CO4,	K4,
	diatomic gases with temperature- Probability theorems		CO5	K5
	in statistical thermodynamics.			

Text Books

- 1. Brijlal Subrahmanyam N, Hemne P S, (2021), *Heat and Thermodynamics and Statistical Physics*, (Revised edition), S.Chand & Co., Pvt. Ltd., New Delhi.
- 2. Sathya Prakash and Agarwal J P, (2019), *Statistical Mechanics*, (7th edition), Kedarnath Ramnath & Co., Meerut.

Reference Books

- 1. Mathur D S, (2008), Heat and Thermodynamics, (5th edition) S. Chand and Co., New Delhi.
- 2. Halliday D, Resnick R and Walker J, (2018), *Fundamentals of Physics*, (11th Edition), John Wiley & Sons, U.S.

Web References

- 1. <u>https://onlinecourses.nptel.ac.in/noc20_ce27/preview</u>
- 2. <u>https://onlinecourses.swayam2.ac.in/nou21_me01/preview</u>
- 3. https://web.stanford.edu/~peastman/statmech/thermodynamics.html

Pedagogy

Chalk and Talk, Seminar, Assignment, Power point Presentation, Group discussion and Quiz

Course Designer

Dr.R.Gayathri

Semester III	Internal Marks: 40	External Marks: 60					
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS			
23UPH3CC3P	THERMAL PHYSICS (P)	CP-III	3	3			

- To make the students to develop their experimental skills.
- To acquire hands-on experience.
- To enhance the laboratory skills.

Pre-requisites

• Basic knowledge on usage of scientific apparatus.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Student will be able to	Level
CO 1	Apply the physics principle involved in the various instruments; also relate the principles to new application.	K1
CO 2	Understand the theoretical concepts of transmission of heat with the experimental knowledge	K2
CO 3	Use the theoretical ideas through thermodynamic relations	К3
CO 4	Expand the creative skills that are essential for practical thermodynamics systems	K3
CO 5	Analyze experimental approaches to correlate with physics theory to develop practical understanding.	K4

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	1	1	1	2	1	3	2	1	2	1
CO 2	2	3	2	2	2	3	3	1	2	1
CO 3	1	1	2	3	1	3	2	1	3	1
CO 4	2	3	3	3	2	1	3	1	3	2
CO 5	3	2	3	3	3	1	3	2	3	2

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation

"-" indicates there is no Correlation

LIST OF EXPERIMENTS (Any 8)

- 1. Specific heat capacity of a liquid Newton's law of cooling
- 2. Emissive power of a surface Spherical calorimeter
- 3. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee's disc method
- 4. Joule's Calorimeter Specific heat capacity
- 5. Thermal conductivity of rubber
- 6. Black Body Radiation: Determination of Stefan's Constant
- 7. Specific heat by method of mixtures
- 8. Verification of Stefan-Boltzmann law
- 9. Latent heat of steam/ice
- 10. Verification of Boyle's law
- 11. Mechanical equivalent of heat
- 12. Thermal conductivity of a good conductor Searle's method
- 13. Heat Transfer by Radiation
- 14. Heat transfer by Conduction
- 15.Determination of Planck's constant

Text Book

1. Ouseph, C.C., Rao, U.J., Vijayendran, V., (2016). *Practical Physics* and *Electronics*. S.Viswanathan, Printers & Publishers Pvt Ltd., Chennai.

Reference Book

1. Prof.Namboodirippad, M.N., Prof. Daniel, P.A., (1982). B.Sc., Practical Physics. G.B.C.

Publications, Cochin.

Web References

- 1. https://vlab.amrita.edu/index.php?sub=1&brch=194
- 2. https://vlab.amrita.edu/index.php?sub=1&brch=194&sim=802&cnt=1
- 3. https://vlab.amrita.edu/index.php?sub=1&brch=194&sim=354&cnt=1
- 4. https://vlab.amrita.edu/index.php?sub=1&brch=194&sim=353&cnt=1

Pedagogy

Demonstration, practical sessions, and viva voce

Course Designer

Dr.S.Gowri

Semester III	Internal Marks:	25	External Marks: 75		
COURSE	COURSE TITLE	CATEGORY	Hrs. / Week	CREDITS	
CODE					
22UPH3AC4	CHEMISTRY - I	ALLIED	4	3	

- To understand the bonding nature in chemical compounds, nuclear reactions and reaction mechanisms in chemistry.
- To know the materials used in industrial chemistry and the separation of chemical compounds.
- To acquire the knowledge of basic principles of thermodynamics, phase equilibria and analytical techniques.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Define the terms involved in nuclear, analytical and industrial	K1
	chemistry, organic reaction, thermodynamics and phase equilibria.	
CO2	Understand the magnetic properties, compounds used in industries,	K2
	organic, thermal reactions and principle of analytical techniques.	
CO3	Illustrates the bonding nature, mechanisms, phase diagram,	K3
	instrumentation of analytical techniques.	
CO4	Describe the molecular orbital diagrams, fuel gases, fertilizers,	K4
	hybridization and applications of analytical techniques.	
CO5	Predict bond order, mechanism, phase rule, separation of	K5
	compounds and its uses in industries.	

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	3	3	2	3	2	3
CO2	3	3	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	2
CO4	3	3	3	3	3	3	3	2	3	2
CO5	3	3	2	3	3	3	2	3	2	2

"1" – Slight (Low) Correlation

"3" - Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" Indicates there is No Correlation.

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Chemical Bonding and Nuclear Chemistry:	12	CO1,	K1, K2, K3,
	Chemical Bonding: Molecular orbital theory -		CO2,	K4, K5
	bonding, antibonding and non-bonding orbitals.		CO3,	
	Molecular orbital diagrams (H ₂ , O ₂ , N ₂ , CO and		CO4,	
	CN) - bond order and magnetic properties.		CO5	
	Nuclear Chemistry: Fundamental particles -			
	isotopes - isobars - isotones and isomers -			
	differences between chemical reactions and			
	nuclear reactions. Nuclear binding energy -			
	mass defect - calculations - nuclear stability -			
	applications of nuclear fission and nuclear			
	fusion. Group displacement law - radioactive			
	series - applications of radioisotopes.			

II	Industrial Chemistry:	12	CO1,	K1, K2, K3,
	Fuels: Natural gas - water gas - semi water gas -		CO2,	K4, K5
	carbureted water gas - producer gas - CNG - LPG		CO3,	
	and oil gas. Silicones: Synthesis - properties -		CO4,	
	uses of silicones. Fertilizers: Urea - ammonium		CO5	
	sulphate - potassium nitrate - NPK			
	fertilizer - superphosphate.			
III	Fundamental Concept in Organic Chemistry:	12	CO1,	K1, K2, K3,
	Hybridization: Orbital overlap - hybridization		CO2,	K4, K5
	and geometry of CH ₄ , C_2H_4 , C_2H_2 and C_6H_6 .		CO3,	
	Electronic effects: Inductive effect - relative		CO4,	
	strength of aliphatic monocarboxylic acid and		CO5	
	aliphatic amines. Hyperconjugation - heat of			
	hydrogenation - bond length - dipole moment and			
	steric effect.			
	Reaction mechanisms: Types of reactions -			
	aromaticity (Huckel's rule) - aromatic			
	electrophilic substitution; nitration -			
	halogenation - Friedel Craft's alkylation-			
	Heterocyclic compounds: Preparation -			
	properties of furan - thiophene - pyrrole and			
	pyridine.			
IV	Thermodynamics and Phase Equilibria:	12	CO1,	K1, K2, K3,
	Thermodynamics: Types of systems processes -		CO2,	K4,
	state and path functions - statements of first law		CO3,	K5
	and second law of thermodynamics - Carnot's		CO4,	
	cycle - efficiency of heat engine. Entropy -		CO5	
	significance - relationship between Gibbs free			
	energy and entropy.			
	Phase Equilibria: Phase rule - terms - reduced			
	phase rule and its application to a simple eutectic			
	system water system - Two-component			
	system - (Pb - Ag).			

V	Analytical Chemistry:	12	CO1,	K1, K2, K3,
	Introduction to qualitative and quantitative		CO2,	K4, K5
	analysis - principles of volumetric analysis.		CO3,	
	separation - purification techniques - extraction,		CO4,	
	distillation - crystallization. Chromatography:		CO5	
	principle and application of column, paper and			
	thin layer chromatography.			
VI	Self-Study for Enrichment:	-	CO1,	K1, K2, K3.
	(Not to be included for External Examination)		CO2,	K4
	Triple superphosphate - Electromeric and		CO3,	
	mesomeric effects - Friedel craft's acylation -		CO4	
	Free energy change and its importance - entropy			
	and Gibbs free energy.			

Text Books

- Puri, B. R., Sharma, L. R., & Kalia, K. K. (2018). Principles of Inorganic Chemistry. 33rd edition. Shoban Lal Nagin Chand & Co., New Delhi.
- Bahl, B. S., & Bahl, A. (2010). Advanced Organic Chemistry. (12th edition), New Delhi, Sultan Chand & Co.
- Puri, B. R., Sharma, L. R., & Pathania, M. S. (2022). Principles of Physical Chemistry. 48th edition. Shoban Lal Nagin Chand & Co, New Delhi.
- 4. Sharma, B. K. (2013). Industrial Chemistry. Goel Publishing House.
- Gopalan, R., Subramanian, P. S., & Rengarajan, K. (2003). Elements of Analytical Chemistry. 2nd edition, Sultan Chand & Sons.

Reference Books

- 1. Madan, R. D. (2000). Modern Inorganic Chemistry. S. Chand and Company. New Delhi.
- Chatwal, G. R., & Anand, S. K. (2005). Instrumental methods of chemical analysis. Himalaya publishing house.
- Morrison, R. T., Boyd, R. N., & Bhattacharjee, S. K. (2011). Organic Chemistry. (7th edition), Pearson India, (2011).

Web References

- 1. <u>https://www.youtube.com/watch?v=QMb-pmf7PKA</u>.
- https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbo ok_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_P roperties_of_Matter/States_of_Matter/Phase_Transitions/Phase_Diagrams.
- 3. https://byjus.com/biology/fertilizers/.
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206469/.
- 5. https://www.vedantu.com/chemistry/hybridization.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

> Dr. S. Devi

Semester III	Internal Marks: 40	External M	arks: 60	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs. / Week	CREDITS
22UPH3AC5P	CHEMISTRY- I (P)	ALLIED	4	3

- > To gain knowledge about the basics of preparation of solutions.
- To impart skills on the quantitative estimation of compounds through volumetric analyses.
- > To develop skills for qualitative analysis of organic compounds.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statements	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Remember the basic principles involved in quantitative and	K1
	qualitative analyses.	
CO2	Outline the preparation of solutions and basic organic reactions	K2
	involved in organic functional group analyses.	
CO3	Apply tests for the identification of functional groups and titration	K3
	for quantitative analysis.	
CO4	Analyze compounds by qualitative and quantitative methods.	K4
CO5	Predict a suitable way to analysis compounds through qualitative	K5
	and quantitative methods.	

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	3	2	3	2
CO2	3	3	2	2	2	3	3	2	3	1
CO3	3	3	2	2	2	3	3	2	2	1
CO4	3	3	3	2	2	3	3	2	2	2
C05	3	3	2	2	2	3	3	2	2	2

"1"- Slight (Low) Correlation

"2"-Moderate (Medium) Correlation

"3"- Substantial (High) Correlation

"-" Indicates there is No Correlation.

SYLLABUS

I. Volumetric Analysis:

- 1. Estimation of HCl using NaOH as a link and standard oxalic acid solution.
- 2. Estimation of NaOH using HCl as a link and standard sodium carbonate.
- 3. Estimation of oxalic acid using NaOH as a link and standard oxalic acid solution.
- 4. Estimation of ferrous sulphate using KMnO₄ as a link and standard Mohr's salt.
- 5. Estimation of KMnO₄ using sodium thiosulphate as a link and standard $K_2Cr_2O_7$ solution.
- 6. Estimation of Mg (II) using EDTA solution as a link and standard MgSO₄ solution.
- 7. Estimation of ferrous ion using $K_2Cr_2O_7$ as a link and standard ferrous ammonium sulphate.

II. Organic Analysis:

- 1. Detection of elements.
- 2. To distinguish aliphatic and aromatic; saturated and unsaturated compounds.
- 3. Detection of functional group monosaccharides, aldehyde, ketone, acid, diamide, aromatic amine.

Text Books

- 1. Venkateswaran, V., Veeraswamy, R., & Kuandaivelu. (1997). Basic Principles of Practical Chemistry. 2nd edition. New Delhi, Sultan Chand & Sons.
- 2. Bassett, J. (1985). Text Book of Quantitative Inorganic Analysis. 4th edition. ELBS Longman.

Reference Book

Vogel, A. I. (2000) Textbook of quantitative inorganic analysis. The English language book society.

Web References

- 1. <u>https://www.youtube.com/watch?v=uOzniLNNxAE</u>.
- 2. https://www.brainkart.com/article/Estimation-of-sodium-hydroxide_38685/.
- 3. <u>https://www2.chem211abs.com/labfiles/UofC_GOB01A_Lab.pdf</u>.
- 4. <u>https://byjus.com/chemistry/volumetric-analysis/</u>.

Pedagogy

Demonstration and Practical Sessions.

Course Designer

Dr. S. Devi

Semester- III	Internal Marks: 25	External Marks: 75				
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS		
22UPH3GEC1	PHYSICS IN EVERYDAY	GEC-I	2	2		
	LIFE					

- To experience the objects from our daily environment.
- To impart basic knowledge about everyday electrical devices in home with their working principle.
- To focus on their principles of operation and relations to one another.

Pre-Requisites

- Get depth knowledge of physics in day-to-day life.
- Understand the fundamentals of home and office devices.
- Knowledge about the concepts of digital access devices.

Course Outcome and Cognitive Level Mapping

СО	CO Statement						
Number	On the successful completion of the Course, the Student will be able to,	Level					
CO 1	Recall the basics of electricity	K1					
CO 2	Outline the risk factors and precautionary steps to avoid electric shock.	K2					
CO 3	Understand the basics of electrical appliances.	K4					
CO 4	Knowledge on handling home appliances.	K3					
CO 5	Explain the functioning of several home appliances.	K5					

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	2	3	2	3	3	3	2	3	3
CO 2	3	2	2	2	3	3	2	2	3	3
CO 3	2	3	3	2	3	3	3	2	3	3
CO 4	2	2	3	3	3	2	2	2	3	3
CO 5	2	2	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	BASICS OF ELECTRICITY	6	CO1,	K1,
	Electricity - Basic principles - Practical unit of		CO2,	K2,
	electricity - International system (S.I) of units -		CO3,	K3,
	Electric shock.		CO4,	K4,
			CO5	K5
II	SAFETY PRECAUTION	6	CO1,	K1,
	Precautions to avoid electric shock – Rescue steps in		CO2,	K2,
	electric Shock – methods of resuscitation - Electric		CO3,	КЗ,
	Line Circuit Breaker (ELCB).		CO4,	K4,
			CO5	K5
III	ELECTRICAL APPLIANCES-I	6	CO1,	K1,
	Heating appliances: Design for heating element –		CO2,	K2,
	Electric iron-Water heater-Room heater.		CO3,	K3,
			CO4,	K4,
			CO5	K5
IV	ELECTRICAL APPLIANCES -II	6	CO1,	K1,
	Cooling appliances: Refrigerator – Air cooler - Air		CO2,	K2,
	Conditioner		CO3,	K3,
	Other electrical appliances: Washing Machine.		CO4,	K4,
			CO5	K5
V	LIQUID CRYSTAL SCREEN TELEVISION	6	CO1,	K1,
	LCD technology - LCD matrix types and operation -		CO2,	K2,
	LCD screens for television - LED TV - Edge LEDs,		CO3,	K3,
	Differences between LED and LCD displays.		CO4,	K4,
			CO5	K5
VI	SELF STUDY FOR ENRICHMENT	-	CO1,	K1,
	(Not to be included for External Examination)		CO2,	K2,
	Smartphones, Smartwatch, Global Positioning		CO3,	K3,
	System, CCTV.		CO4,	K4,
			CO5	K5

Text Books

- 1. Gulati R R, *Colour Television: Principles & Practice*, (2007) New Age International Publisher.
- 2. Anwani M L, Basic Electrical Engineering, (2014), Dhanpat Rai Co. Ltd., Delhi.
- 3. William D. Cooper, *Electrical Instruments and Measurement Techniques*, (1997), Prentice Hall India, New Delhi.

Reference Books

- 1. Bali S P, Consumer Electronics, (2008), Pearson Education, New Delhi.
- 2. Theraja B L and Theraja A K, A Textbook of Electrical Technology, (2014), S. Chand & Co.
- 3. R.R. Gulati, Modern Television Practice, New Age International Publishers, 2007.

Web References

- 1. https://www.esabna.com/euweb/mig_handbook/592mig6_2.htm
- 2. https://www.constellation.com/energy-101/electrical-safety-tips.html
- 3. <u>https://nptel.ac.in/courses/112/105/112105129/</u>

Pedagogy

Chalk and Talk, Seminars, Power Point Presentation, Quiz, Assignment and Group discussion.

Course Designer

Dr. R. Mekala

Semester IV	Internal Marks: 25		Exter	nal Marks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
23UPH4CC5	ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM	CC-V	6	5

- To develop knowledge in electrostatics and magnetostatics and apply theories of static andmoving charges.
- To give idea on the fundamentals of electromagnetic conduction and electromagnetic waves.
- To extend the understanding of its applications to instruments involving electric and magneticfields.
- To explore the applications of Electricity and Magnetism.
- To analyze various concepts in electromagnetism with real time applications.

Pre-requisites

- Knowledge about the concepts of electrostatic potential.
- Fundamental knowledge of currents in a network circuits.
- Concept of magnetic materials and its applications.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the Course, the Students will be able to				
CO 1	Understand the basic laws of electrostatics, magnetostatics and Electromagnetism.	K1, K2			
CO 2	Apply the Principles behind the electric and magnetic instruments.	K3			
CO 3	Analyze the behavior of circuits containing Inductance, Capacitance and Resistance connected in different combinations.	K4			
CO 4	Organize experiments to determine the absolute values of Q factor and power factor of LCR circuits.	K5			
CO 5	Interpret the circuit into a mathematical problem using circuit laws and theorems.	K5			

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	3	3	2	2	2	2
CO 2	3	3	3	3	3	3	2	2	2	2
CO 3	3	3	3	3	3	3	2	2	2	2
CO 4	3	3	3	3	3	3	3	3	2	2
CO 5	3	3	3	3	3	3	3	3	2	2

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" – indicates there is no correlation

UNIT	CONTENT	HOURS	Cos	COGNITIVE
	Floatnostatios			LEVEL
Ι	Coulomb's inverse square law – Gauss theorem and its applications – intensity at a point due to a charged sphere and cylinder – Principle of a capacitor – Capacity of spherical and cylindrical capacitors – Parallel plate capacitor – Effect of a dielectric – Energy stored in a capacitor – Loss of energy due to sharing of charges.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
П	Current Electricity Current density – Equation of continuity- Grouping of cells – Theory of Ballistic Galvanometer – Figure of merit – Damping Correction – Kirchhoff's laws – Wheatstone Bridge – Carey Foster's Bridge- Potentiometer Calibration of ammeter and voltmeter- Comparison of resistance	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	Magnetostatics Biot-Savart's law and its applications- straight conductor, Circular coil, Solenoid carrying current – Divergence and curl of magnetic field- Magnetic vector potential – Ampere's circuital law- Types ofmagnetic materials – Properties of dia,para and ferromagnetic materials – Magnetometer method – Cycle of magnetization and Hysteresis- Loss of energy per cycle	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Electromagnetic Induction Laws of electromagnetic induction – Self and mutual induction – Self-inductance of a solenoid – Mutual inductance of a pair of solenoids – Coefficient of coupling – Experimental determination of self and mutual inductance (Rayleigh's method) Growth decay of current in circuit containing Land R – Growth and decay of charge in circuit containing C and R – High resistance by leakage – Charging and discharging of capacitor through Land R.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	AC Circuits Alternating EMF – Alternating EMF applied to circuits containing L and R – C and R – Alternating EMF applied to circuits containing L, C and R – Series and Parallel resonance circuits – Sharpness of resonance– Q factor – Power in AC circuits – Power factor – Watt less current	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment: (Not to be included for External Examination) Applications of Capacitor – Superposition Theorem- Magnetic Circuit – Earth inductor – Transformer.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Murugeshan R(2017), *Electricity and Magnetism*(10th edition), S. Chand and Co., New Delhi.
- 2. Brij Lal and N Subrahmanyam(2000), *Electricity and Magnetism*(8th edition), Ratan Prakashan Mandir,Agra.

Reference Books

- 1. Vasudeva D N(2013), *Fundamentals of Magnetism and Electricity*(2nd edition), S. Chand & Co,New Delhi.
- 2. Sehgal N K, Chopra K L and Sehgal D L(2014), *Electricity and Magnetism*(3rd edition), Sultan Chand andSons, New Delhi.
- 3. Tiwari K K(2018), *Electricity and Magnetism*(2nd edition), S. Chand and Company, New Delhi.
- 4. David J. Griffith(2015), Introduction to Electrodynamics(2nd edition), Prentice Hall of India.
- 5. Paul A. Tipler and G. Mosca(2003), *Physics for Scientist and Engineers*, W.H.Freeman, NewYork.

Web References

- 1. https://nptel.ac.in/courses/115106122
- 2. https://www.edx.org/learn/physics/rice-university-electricity-and-magnetism-part-1
- 3. https://www.coursera.org/courses?query=electricity%20and%20magnetism

Pedagogy

Chalk and Talk, Assignment, Group discussion and Quiz

Course Designer

Dr.R.Meenakshi

Semester IV	Internal Marks: 40 External Marks						
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS			
24UPH4CC4P	ELECTRICITY AND MAGNETISM (P)	CP – IV	4	3			

- To develop practical knowledge of Electricity and Magnetism
- To enhance the experimental skills.
- To gain hands-on experience with a variety of techniques.
- To learn the basic principles and procedures of laboratory work.

Pre-requisites

- Basic knowledge on usage of scientific apparatus.
- Basic Physics principle in Electricity and Magnetism
- Understanding on circuit connection.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the Course, the Students will be able to	Cognitive Level
CO 1	Apply the physics principle involved in the various instruments and also relate the principles to new application.	K1, K2
CO 2	Apply experimental approaches to correlate with physics theory to develop practical understanding.	K2, K3
CO 3	Relate the concept of electricity to a real time applications	K4
CO 4	Demonstrate knowledge and understanding of experiments in Electricity and Magnetism	K5
CO 5	Design and develop circuits which enhance the existing scientific Knowledge.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	1	2	1	2	1	3	2	1	2	1
CO2	2	3	2	2	2	2	3	2	2	2
CO3	2	1	2	3	1	3	2	1	3	1
CO4	2	2	3	3	2	2	3	1	2	2
CO5	3	2	3	3	3	1	3	2	3	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" – indicates there is no correlation

LIST OF EXPERIMENTS (Any 8)

- 1. Post Office Box Temperature coefficient.
- 2. Carey Foster's Bridge Specific Resistance.
- 3. Potentiometer Temperature coefficient of a coil.
- 4. Potentiometer High range voltmeter calibration.
- 5. Series resonance circuit.
- 6. Parallel resonance circuit.
- 7. Ballistic Galvanometer Figure of merit.
- 8. B.G. Absolute capacity of condenser.
- 9. Deflection and Vibration magnetometer- Determination of M and H
- 10. Field along the axis of a coil Determination of M.
- 11. Potentiometer Ammeter calibration.
- 12. Meter Bridge Specific Resistance.

Text Book

1. Ouseph,C.C., Rao,U.J., Vijayendran,V., (2016). *Practical Physics and Electronics*. S.Viswanathan, Printers & Publishers Pvt Ltd., Chennai.

Reference Book

1. Prof.Namboodirippad M.N., Prof.Daniel, P.A., (1982). B.Sc., Practical Physics. G.B.C. Publications, Cochin.

Web References

- 1. https://vlab.amrita.edu/index.php?sub=1&brch=192
- 2. https://vlab.amrita.edu/index.php?sub=1&brch=192&sim=972&cnt=1
- 3. https://vlab.amrita.edu/index.php?sub=1&brch=192&sim=346&cnt=1

Pedagogy

Demonstration, Practical sessions and Viva-voce.

Course Designer

Dr. D.Devi

Semester IV	Internal Marks	:: 25	Extern	al Marks: 75
COURSE	COURSE TITLE	COURSE TITLE CATEGORY		CREDITS
CODE				
22UPH4AC6	CHEMISTRY - II	ALLIED	4	3

- \blacktriangleright To stimulate the concepts in basic chemistry and apply them in real world problems.
- To understand the preparation and properties of carbohydrates, amino acids and proteins.
- To study the basic concept of polymers, photochemistry, electrochemistry and magnetic properties.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recall the fundamental ideas in material science and biomolecules.	K1
CO2	Understand the characteristics of polymers, biomolecules, alloys, photochemical and electrochemical reactions	K2
CO3	Identify the types of polymerization, biomolecules, photolytic process, magnetic and nanomaterials	K3
CO4	Calculate the molecular weight, quantum yield and emf of a cell.	K3
CO5	Analyze the applications of industrial and bio materials	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	3	3	2	3	2	3
CO2	3	3	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	2
CO4	3	3	3	3	3	3	3	2	3	2
CO5	3	3	2	3	3	3	2	3	2	2

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Carbohydrates, Aminoacids and Proteins:	12	CO1,	K1, K2, K3,
	Carbohydrates - classification - glucose and		CO2,	K4
	fructose - preparation and properties - structure		CO3,	
	of glucose only - Fischer and Haworth cyclic		CO4,	
	structures - amino acids and proteins -		CO5	
	classification based on structure - essential and			
	non - essentials amino acids - preparation -			
	properties – uses - proteins - classification based			
	on physical properties and biological functions -			
	structure of proteins - primary and secondary			
	structure.			
II	Photochemistry:	12	CO1,	K1, K2, K3,
	Introduction - Photosynthesis - comparison between		CO2,	K4
	thermal and photochemical reactions - laws of		CO3,	
	photochemistry - Beer-Lambert law - Grotthus-		CO5	
	Dropper law - Einstein's law of photochemical			
	equivalence - quantum yield - actinometer - kinetics			
	of hydrogen-chlorine reaction - Jablonski diagram -			
	photoprocesses - phosphorescence - fluorescence -			
	photosensitization - quenching - types of			
	luminescence - thermoluminescence - bio-			
	luminescence - chemiluminescence.			
III	Electrochemistry and Magnetic Properties of	12	CO1,	K1, K2, K3,
	Materials:		CO2,	K4
	Galvanic cells - emf - standard electrode		CO3,	
	potential - reference electrodes -		CO4,	
	electrochemical series and its applications -		CO5	
	corrosion - types - methods of prevention $-$			
	galvanization - electroplating - cathodic			
	protection - magnetic properties of molecules -			
	types of magnetic behavior- dia - para - ferro -			

	antiferro magnetism - magnetic susceptibility -			
	determination of magnetic moment using Guoy			
	balance - applications of magnetic			
	measurements.			
IV	Material Science:	12	CO1,	K1, K2, K3,
	Ferrous and non-ferrous alloys - aluminium -		CO2,	K4
	copper - titanium - nickel alloys - types and		CO3,	
	composition of glass - cement - ceramics -		CO4,	
	nanomaterials - nanoparticles and bulk materials		CO5	
	- classification - synthesis - properties -			
	applications of carbon nanotube - graphene -			
	quantum dots - energy storage devices -			
	supercapacitors - batteries - solar cell			
V	Polymer Chemistry:	12	CO1,	K1, K2, K3,
	Introduction - functionality - nomenclature -		CO2,	K4
	classification of polymers - differences between		CO3,	
	thermoplastic and thermosetting polymers -		CO5	
	types - mechanism of polymerization - addition,			
	condensation and copolymerization - properties			
	of polymers - transition temperature - tacticity -			
	molecular weight - weight average and number			
	average - polydispersity index - preparation -			
	properties - uses of Nylon 6, 6 - epoxy resin.			
VI	Self-Study for Enrichment:	-	CO1,	K1, K2, K3.
	(Not to be included for External Examination)		CO2,	K4
	Techniques of polymerization - bulk - emulsion		CO3,	
	- solution - suspension - tertiary structure of		CO4	
	proteins - kinetics of hydrogen - bromine			
	reactions - fuel cells - properties of glass.			

Text Books

- Puri, B. R., Sharma, L. R., & Kalia, K. K. (2018). Principles of Inorganic Chemistry. 33rd edition. Shoban Lal Nagin Chand & Co., New Delhi.
- Bahl, B. S., & Bahl, A. (2010). Advanced Organic Chemistry. (12th edition), New Delhi, Sultan Chand & Co.
- Puri, B. R., Sharma, L. R., & Pathania, M. S. (2022). Principles of Physical Chemistry. 48th edition. Shoban Lal Nagin Chand & Co, New Delhi.
- 4. Arumugam, (2007). Materials Science, Anuradha Publications.
- Gopalan, R., & Sundaram, S. (2015). Engineering Chemistry I. 2nd edition, Sultan Chand & Sons.

Reference Books

- 1. Madan, R. D. (2000). Modern Inorganic Chemistry. S. Chand and Company. New Delhi.
- 2. Mohan, S. and Arjunan, V.(2016). Principles of Materials Science. MJP Publishers.
- Morrison, R. T., Boyd, R. N., & Bhattacharjee, S. K. (2011). Organic Chemistry. (7th edition), Pearson India, (2011).

Web References

- 1. https://web.mit.edu/5.33/www/lec/poly.pdf.
- 2. https://byjus.com/biology/biomolecules/.
- 3. <u>http://stpius.ac.in/crm/assets/download/Photochemistry.pdf.</u>
- 4. https://archive.nptel.ac.in/content/storage2/courses/113108051/module1/lecture1.pdf.
- 5. <u>https://www.ccri.edu/chemistry/courses/chem_1100/terezakis/notes/Chapter_19_Lect</u> <u>ure_Notes.pdf.</u>
- 6. <u>https://www.sathyabama.ac.in/sites/default/files/course-material/2020-10/UNIT-1_4.pdf.</u>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

> Dr. S. Devi

SEMESTER IV	Internal Marks: 25	Extern	al Marks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS / WEEK	CREDITS
22UPH4GEC2	PHOTOGRAPHY AND VIDEOGRAPHY	GEC-II	2	2

Objectives

- To acquire knowledge with modern cameras.
- To understand the concepts of Digital Photography & Sensitivity.
- To familiarize the concepts of various Lenses.
- To know the fundamentals of the shoot.
- To import the knowledge of getting creative with photography.

Pre-Requisities

- Understand the basic ideas about photography
- Knowledge about basic camera operations
- Skills to use various tools

Course Outcomes and Cognitive Level Mapping

CO No.	CO Statements On the successful completion of the course, the students will be able to	Knowledge Level
CO 1	Knowledge and skills in the use of basic tools, techniques, technologies and able to acquaint with basic camera operations.	K1
CO 2	Understanding of special features and utility purposes of various types of lenses and able to choose an appropriate lens for the job concerned	K2
CO 3	Demonstrate uses of cameras and lighting/digital technologies.	K2
CO 4	Utilize the concept of correct exposure and identify correct and incorrect exposure in photographs.	К3
CO 5	Apply understanding of aesthetics related to shooting and editing.	K3

Mapping with Programme Outcomes

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	2	2	3	3	3	2	2
CO2	2	3	2	2	2	2	3	2	2	2
CO3	2	2	3	2	3	2	2	3	2	3
CO4	2	2	2	3	3	2	2	2	3	3
CO5	2	2	3	3	3	2	2	3	3	3

"1" – Slight (Low) Correlation " "3" – Substantial (High) Correlation

n "-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Introduction Digital Photography - Advantages and Disadvantages – SLR – Aperture – Shutter Speed – ISO Sensitivity	3	CO1 "CO2 CO3 CO4 CO5	K1 K4 K2 K3 K3
Π	Lenses Specialized Lenses – Telephoto Lens – Wide-Angle Lens – Lens Multiplication Factor - Zoom Lens – Prime Lens – Macro (or Close-Up) Lens – Fish-Eye Lens – Tilt and Shift Lenses	6	CO1 CO2 CO3 CO4 CO5	K1 K2 K4 K3 K3
Ш	Composition Line - Rule of Odds - Rule of Thirds - The Phi Grid - Negative Space- Repetition - Color - Texture	6	CO1 CO2 CO3 CO4 CO5	K1 K2 K2 K3 K4
IV	Shooting video with DSLRFundamentals of the shoot – Exposure – Keeping the camera steady – Shooting to edit – Shooting JustEnough Variations – Watching and Learning from the Movies – Varying Focal Length – Mastering Shot Structure – Maintaining continuity between shots	9	CO1 CO2 CO3 CO4 CO5	K1 K4 K2 K3 K3
V	Getting Creative with Shoot Controlling Aperture for Effect – Finding the Best Angle – Using Camera Filters – Tooling withCamera Effects – Using Time-Lapse Photography	6	CO1 CO2 CO3 CO4 CO5	K1 K2 K2 K4 K3
VI	SELF STUDY FOR ENRICHMENT (Not to be included for External Examination) Applications of full frame camera, 50mm lenses, 100mm macro lenses, Tripods, Backlighting, Overhead angle.	-	CO1 CO2 CO3 CO4 CO5	K1 K2 K2 K3 K4

Text Book

- 1. Black, (2013), DSLR Photography for Beginners, Independently Published, 1st Edition.
- 2. John Carucci, (2013), *Digital SLR video & Filmmaking for Dummies*, John Wiley & Sons,Inc.

Reference Book

1. Tom Clark, (2011), *Digital PhotographyComposition for Dummies*, John Wiley & Sons, Inc.

Web References

- 1. www.digital-photography-school.com
- 2. https://www.linkedin.com/in/singhofen/
- 3. https://dev.to/singhofen
- 4. https://codepen.io/csinghofen

Pedagogy:

Chalk and talk, Assignment, power point presentation.

Course Designer

Dr. K. Kannagi

Semester IV	Internal Marks: 40	External Marks: 60						
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS				
22UPH4SEC1P	WEB DESIGNING (P)	SEC - I	2	2				

- To understand the concepts in web design.
- To design a webpage with font and colour variation.
- To develop a webpage using HTML tags.
- To animate the webpage.
- To apply the HTML tag to create the webpage.

Pre-requisites

- Basics of webpage designing.
- Fundamental ideas on HTML.
- Basics of Flash and Photoshop.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Identify the basic tags used in an HTML document.	K 1
CO2	Demonstrate the animating webpages.	K2
CO3	Develop HTML code for the webpage.	К3
CO4	Create formatting and link webpages.	K4
CO5	Make their own web page.	K5

Mapping with Programme Outcomes

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	1	2	2	2	2	3	3	2	2	2
CO2	2	2	2	3	3	3	3	2	2	3
CO3	2	2	2	2	3	3	3	2	3	3
CO4	2	2	2	2	3	3	3	2	3	3
CO5	2	2	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" – indicates there is no correlation

LIST OF EXPERIMENTS (Any 8)

- 1. Web page to demonstrate font variations.
- 2. Web page illustrating text formatting tags.
- 3. Sample code to illustrate three lists in HTML.
- 4. HTML page with seven separate lines in different colors. State color of each line in its text.
- 5. HTML code to form a table.
- 6. Web page for form filling.
- 7. HTML program for personal website.
- 8. HTML code to design your own curriculum vitae.
- 9. Web page to explain concepts using hyperlinks.
- 10. Web page to explain concepts using animated picture, movie and sound.

Text Books

- 1. Weixel et al, (2004). *Multimedia Basics*.(First Edition) Thomson Course Technology, India.
- 2. Xavier C, (2007). *Web Technology and Design*.(First Edition). New Age International, New Delhi.

Reference Books

- 1. Srivastava R N, (2011). *Web Technology*. (First Edition). Global Academic Publishers & Distributors.
- Daniel Gray, (2000). Web Design Fundamentals Hand Book. (First Edition). Sun Rise Printers Shahdara, Delhi.

Web References

- 1. https://www.w3schools.com/html
- 2. https://nptel.ac.in/courses/106/105/106105084/
- 3. <u>HTML Color Names (w3schools.com)</u>
- 4. <u>HTML page with 7 separate lines in different colors. State</u> color of each line in its text <u>RakeshMgs</u>
- 5. How to create a CV using HTML and host in github ? GeeksforGeeks

Pedagogy

Demonstration, Practical sessions and viva-voce.

Course Designer

Dr. B. Anitha

Semester V	Internal Marks: 25	External Marks: 75						
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS				
23UPH5CC6	OPTICS	CC-VI	6	5				

- To study the nature of light waves.
- To understand the basic ideas of geometric optics.
- To differentiate between optical properties like diffraction and interference.
- To gain knowledge on the working principles of optical instruments.
- To design simple optical instruments with fundamental ideas.

Pre-requisites

- Knowledge about the behavior of light waves.
- Fundamental knowledge of the different characteristics.
- Basic ideas of the different optical instruments.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the Course, the Students will be	Level
	able to	
CO 1	Understand the basic principles of light waves.	K1, K2
CO 2	Analyze the characteristics of optical waves.	K3
CO 3	Classify different properties of light waves like interference, polarization and diffraction.	K4
CO 4	Develop practical knowledge of different optical instruments and their applications	K5
CO 5	Design simple optical instruments by applying the concepts of light waves.	K5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	2	3	3	3	2	3	3
CO 2	3	3	3	3	3	3	2	2	3	3
CO 3	3	3	3	3	3	3	3	2	3	3
CO 4	3	3	3	3	3	3	3	3	3	3
CO 5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation "2" – Moderate (Medium) Correlation "-" – indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
I	Geometrical Optics Lenses – Introduction- Conjugate Points-Planes and Distances-Location of the image-Lens Maker's Equation-Newton's Lens Equation-Magnification. Lens aberrations - Spherical aberrations -Coma- Astigmatism - Curvature of field- Distortion - Chromatic aberrations.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	Interference Fresnel's Biprism - Lloyd's single mirror experiments - Achromatic fringes-Haidinger Fringes -Fringes in wedge shaped films - Newton's Rings - Michelson's interferometer - Determination of wavelength and refractive index- Reflective and antireflective coatings –Interference filters	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	Diffraction Rectilinear propagation of light - Zone plate - Fresnel diffraction - Diffraction at circular aperture, circular disc and a straight edge - Fraunhofer diffraction - Diffraction at a single and double slit - Missing orders in double slit - Theory of diffraction grating - Determination of wavelength - Dispersive power - Rayleigh's criterion and resolving power of a prism and telescope.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Polarization Plane of polarization - Brewster's law - Malu's law - Double refraction - Nicol prism - Huygen's explanation of double refraction - Elliptically and circularly polarized light -Quarter and half wave plates - Production and determination of plane, elliptically and circularly polarized light - Optical activity - Fresnel's theory-Specific rotation- Laurent's half shade polarimeter.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Optical Instruments Microscopes - Simple Microscope (Magnifying glass) - Compound Microscope - Ultra-Microscope - Eyepieces - Huygen's Eyepiece - Ramsden's Eyepiece - Comparison of Eyepieces - Telescope - Refracting astronomical telescope - Abbe Refractometer - Pulfrich refractometer - Photographic Camera - Prism binoculars.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
- 1. Dr. Subramaniyam N, Brijlal and Dr.Avathanulu M N, (2016). *A Textbook of Optics*. (25th Revised Edition), S. Chand & Co. Pvt.Ltd., New Delhi.
- 2. Ajoy Ghatak, (2010). *Optics*. (6th Edition), Tata McGraw Hill Co., Mumbai.

Reference Books

- 1. Kakani S L, Bhandari K C, (2002). *A Text Book of Optics* (2nd Edition), S.Chand and Sons, New Delhi.
- 2. Murugeshan R, Kiruthiga Sivaprasath, (2003). Optics and Spectroscopy(Reprint), S. Chand and Sons, New Delhi.

Web References

- 1. https://www.youtube.com/watch?v=ML7HcZo6IaE
- 2. <u>https://www.physicsclassroom.com/class/waves/Lesson-3/Interference-of-</u> Waveshttps://www.digimat.in/nptel/courses/video/108105102/L28.html
- 3. https://www.toppr.com/guides/physics/wave-optics/diffraction/
- 4. https://www.physicsclassroom.com/class/light/Lesson-1/Polarization
- 5. https://archive.nptel.ac.in/courses/115/105/115105104/

Pedagogy

Chalk and Talk, Assignment, Power Point Presentation, E-content, Group discussion and quiz.

Course Designer

Dr.D.Devi

Semester V	Internal Marks: 40	External Marks: 60			
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22UPH5CC5P	GENERAL AND ELECTRONICS (P)	CP-V	3	3	

- To acquire knowledge of spectrometry and to find optical constants.
- To impart the knowledge about the vibrator circuits.
- To analyze the various parameters related to operational amplifiers.
- To understand the working of amplifiers.
- To enable the students to gain knowledge of basic gate through discrete components.

Pre-requisites

• Fundamental knowledge and hands on experience of general and electronics experiments of Physics.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Students will be	Level
	able to	
CO 1	Explain the basic concepts of experimental physics.	K2
CO 2	Understand knowledge the principles of amplifiers and vibrators through the experiments	K2
CO 3	Explore the concepts of spectrometry involved in the optical instrument.	К3
CO 4	Verify experimentally the concepts about Logic circuits	K4
CO 5	Develop the skill in handling instruments in the construction of circuits	K5

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	1	2	1	2	2	2	2	1	2	1
CO 2	1	2	2	2	2	2	2	2	2	1
CO 3	1	2	2	2	2	2	2	2	1	1
CO 4	2	2	2	2	3	2	2	2	1	1
CO 5	2	2	2	2	3	2	2	2	1	1

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" - indicates there is no correlation

LIST OF EXPERIMENTS (ANY 8)

- 1. Spectrometer Prism Dispersive power.
- 2. Spectrometer Cauchy's constants.
- 3. Koenig's method Uniform bending.
- 4. Regulated power supply using Zener diode Percentage of regulation.
- 5. FET Characteristics.
- 6. Emitter follower.
- 7. Astable Multivibrator.
- 8. AND, OR and NOT gates using discrete components.
- 9. Op Amp Adder and Subtractor.
- 10. Transistor Characteristics Common Base.
- 11. Full wave Bridge rectifier.
- 12. Hartly oscillator.

Text Book

- Ouseph C.C., Rao, U.J., &Vijayendran, V. (2009), *Practical Physics and Electronics*, S. Viswanathan, Printers & Publishers Pvt Ltd
- 2. Dr. Somasundaram S, (2012), Practical Physics, Apsara Publications
- 3. S. Poornachandra *Electronic Laboratory Primer a design approach*, B. Sasikala, Wheeler Publishing, New Delhi.
- 4. Electronic lab manual Vol I, K A Navas, Rajath Publishing

Reference Book

- 1. Jones, B.K., (1986). *Electronics for Experimentation and Research*. Prentice-Hall.
- 2. Zbar, P.B., Malvino, A.P., & Miller, M.A., (1994). *Basic Electronics: A Text-Lab Manual. Tata Mc-Graw Hill*, New Delhi.
- 3. Advanced Practical Physics, S.P Singh, Pragati Prakasan.
- 4. An advanced course in Practical Physics, D. Chattopadhaya, C.R Rakshit, New Central Book Agency Pvt. Ltd
- 5. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.

Web References

- 1. https://www.msuniv.ac.in/Download/Pdf/b2efcbdbc4be452
- 2. <u>https://www.studocu.com/in/document/reva-institute-of-technology-and-management/bachelors/MSc electronics-lab-student-copy/17586392</u>
- 3. https://www.vlab.co.in/broad-area-physical-sciences

Pedagogy

Demonstration, Practical Sessions and Viva Voce

Course Designer

Dr. S. Priya

Semester V	Internal Marks: 25	External Marks: 75			
COURSE CODE	COURSE TITLE	CATEGORY	HRS/ WEEK	CREDITS	
23UPH5CC7	ATOMIC AND NUCLEAR PHYSICS	CC – VII	6	5	

- To acquire the knowledge of Atomic Structure.
- To understand the concepts of electronic structure of atoms.
- To know the structure of atom and nucleus using different models.
- To familiarize the concepts of nuclear reactions.
- To impart the knowledge of nuclear detector and accelerators.

Pre-Requisites

- Basic properties of electromagnetic rays.
- Impart knowledge in electronic configuration of atoms.
- Develop knowledge about the concepts of nuclear physics.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the Course, the Students will be able to.	Cognitive Level
CO 1	Understand the knowledge of basic properties of Cathode rays and Positive rays. Calculate the values of e/m and Critical potential.	K1, K2
CO 2	Extend the concept of vector atom model to draw the electronic configuration of atoms and the Periodic classification.	K2
CO 3	Apply the Quantum mechanical principles in Spectral transitions (Lande's 'g' factor)	K3
CO 4	Recall the properties of Thomson's Parabola method, spin motion of electrons, experimental methods to detect particles.	K4
CO 5	Discuss the concept of quantum numbers, special lines, nuclear transformations and particle detector in nuclear physics.	K5

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	3	3	3	3	3	3	2	2	2
CO 2	2	3	3	3	3	3	3	2	2	2
CO 3	2	3	3	3	3	3	3	2	2	2
CO 4	2	3	3	2	3	3	3	2	2	2
CO 5	2	3	3	2	3	3	3	2	2	3

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation "-" – indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	CATHODE RAYS AND POSITIVE RAYS Cathode rays–properties–e/m of cathode rays– Milliken's oil drop method–Positive rays–Properties– e/m of Positive rays: Thomson's parabola method– Aston's Bainbridge-Determination of critical Potential– Franck and Hertz's experiment - Davi's and Goucher method	17	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
П	VECTOR ATOM MODEL Various quantum numbers, L-S and J-J Coupling– Pauli's exclusion principle–electronic configuration of elements and periodic classification–magnetic dipole moment of electron due to orbital and spin motion– Bohr magneton-Stern and Gerlach experiment.	17	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	FINE STRUCTURE OF SPECIAL LINES Special terms and notations-selection rules- intensity rule and internal rule-Fine structure of sodium D lines-Alkali spectra-Fine structure in Alkali spectra- spectrum of Helium-Zeeman effect-Larmor's theorem-Debye's quantum mechanical explanation of the normal Zeeman effect-Anamolous Zeeman effect-theoretical explanation Lande's 'g' factor and splitting of D1 and D2 lines of sodium.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	STRUCTURE OF NUCLEI AND NUCLEAR TRANSFORMATIONS Nuclear Structure: Basic properties of nuclei-Mass defect and Binding energy-Packing Fraction-Stable Nuclei-Liquid drop model - Shell Model. Nuclear Transformations: Radioactive decay-Half life- Mean life-Properties of α , β , γ -rays- successive disintegration and equilibriums-Cross section—Nuclear reactions-Nuclear fission and fusion-Nuclear reactors.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
v	PARTICLEDETECTORSANDPARTICLE ACCELERATORSParticleDetectors:WilsonCloudchamber-GeigerMullerCounter-solidstatedetectors.ParticleAccelerators:Cyclotron-Betatron-Synchrotron-electronand proton	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

VI	SELF STUDY FOR ENRICHMENT (Not to be included for External Examination) Electronic structure of atoms-Elementary particles- Interactions and particles-Leptons-Hadrons- Elementary Particle Quantum numbers-Quarks-Field Bosons	-	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
----	--	---	---------------------------------	----------------------------

- 1. Subrahmanyam N and Brijlal and seshan, (2007), *Atomic and nuclear Physics*, S. Chand, Revised edition.
- 2. Murugesan Kiruthiga Sivaprasath R, (2011), Modern Physics, S. Chand, Revised edition.
- 3. Beiser. Shobhit mahajan S. Rai Choudhury, (2009), *Perspectives of Modern Physics*, Tata McGraw Hill, 6th edition.

Reference Books

- 1. Serway R. A., Moses C. J. and Moyer C. A., (2004), *Modern Physics*, 3rd Edition, Brooks/Cole Publications.
- 2. Semat H, and Albright J. R., (1985), *Introduction to Atomic and Nuclear Physics*, 5th Edition, Chapman and Hall.
- 3. Ghosal S. N., (2007), Atomic Physics, S. Chand, Revised edition.
- 4. Ghosal S. N., (2008), Nuclear Physics, S. Chand, Reprint.

Web References

- 1. https://oyc.yale.edu/physics
- 2. https://ocw.mit.edu/courses/physics/
- 3. https://www.digimat.in/nptel/courses/video/115104043/L01.html

Pedagogy

Chalk and talk, PPT, Quiz, Seminars, Assignment and Group discussion.

Course Designer

Dr. R. Mekala

Semester V	Internal Marks: 25 External Marks: 7						
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS			
23UPH5CC8	ANALOG ELECTRONICS	CC - VIII	6	5			

- To provide the knowledge of intrinsic, extrinsic semiconductors.
- To acquire a diversified knowledge on semiconductors and diodes
- To impart the knowledge about the transistor characteristics in different configurations and its charcteristics.
- To grasp the basic ideas of feedback and its application in amplifiers and oscillators To gain the knowledge on the special semiconductor devices and operational amplifiers.

Pre-Requisites

- Basic ideas on semiconductors and oscillators.
- Import basic mathematical knowledge.
- Understanding of Transistors and other electronic devices and its operations.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Students will be able to,	Level
CO 1	Outline knowledge of semiconductors, transistors, rectifiers, operational amplifiers and different types of semiconductor devices.	K1,K2
CO 2	Outline the idea on action of transistors, diodes, special semiconductor devices and operational amplifiers.	K2,K3
CO 3	Identify the operation of transistor, diodes, amplifiers, oscillators, operational amplifier and special semiconductors devices and its characteristics	K3,K4
CO 4	Construct the various mathematical operations of transistors, diodes, amplifiers, oscillators, operational amplifier and special semiconductors devices	K4, K5
CO5	Analyze the amplitude and frequency response and characteristics of transistors, diodes and special semiconductors devices	K4, K5

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	2	2	3	2	3	2	3	3	3
CO 2	2	2	2	2	2	3	2	3	3	3
CO 3	3	3	3	3	3	3	2	3	3	3
CO 4	2	3	3	2	3	3	2	3	3	3
CO 5	3	2	2	3	3	3	3	3	3	3

"1" - Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" – indicates there is no correlation.

CONTENT	HOURS	COs	COGNITIVE
			LEVEL
FORS AND DIODES	16	CO1,	K1,
Extrinsic semiconductor-n-type		CO2,	K2,
type semiconductor-PN junction		CO3,	КЗ,
PN junction –V-I characteristics of PN		CO4,	K4,
ier - Half wave rectifier- Full wave		CO5	K5
wave bridge rectifier-Zener diode-			
Ti zener diode-zener as a voltage			
a Filters Types of filters			
VSIS AND TDANSISTODS	10	CO1	<i>V</i> 1
Circhhoff's Current law (KCI)-and	10	CO1,	K1, K2
)-Theyenin's theorem- Norton's		CO2,	K2, K3
		CO3,	K3, K4
ing the transistor terminals-Transistor		CO4,	K4, K5
istor as a Amplifier - Transistor		005	K.J
mon Base and Common Emitter			
racteristics of Common Base and			
r connection - Transistor load line			
ing point -Faithful amplification -			
g- stabilization- stability factor.			
ND OSCILLATORS	20	CO1,	K1,
sistor amplifier-Practical Circuit of		CO2,	K2,
er- D.C and A.C Equivalent circuits-		CO3,	КЗ,
Classification of Power Amplifiers-		CO4,	K4,
nlifians Duck null amplifians		CO5	K5
pinners- Push- pull amplifier.			
nitter Follower-Sinusoidal Oscillator-			
Circuit-Positive feedback amplifier -			
ion-Colpitt's oscillator- Hartley			
CONDUCTOR DEVICES	18	CO1.	K1.
ffect Transistor-Junction Field Effect		CO2.	K2.
-Difference between JFET and Bipolar		CO3.	K3,
Oxide Semiconductor FET		CO4,	K4,
s of MOSFET- Silicon Controlled		CO5	K5
V-I Characteristics of SCR-SCR as a			
tion Transistor (UJT)-UJT relaxation			
	10		
L AMPLIFIERS	18	CO1,	K1,
ristics-Common mode rejection ratio		CO2,	K2,
ig and Non inverting amplifier-		CO3,	K3,
or, integrator, Differentiator-Voltage		CO4,	K4,
\sim comparator-Log \propto antilog		005	KS
-iow, high pass and band pass filters.		CO1	V1
DI FUK ENKICHMENT	-	CO1,	
retor Monostable multivibrator		CO2,	$\mathbb{K}^{2},$ \mathbb{V}^{2}
la of transistor bissing. Does resistor		CO3,	NJ, VA
is of transistor blashing- dase resistor		CO4, CO5	K4, 177
	CONTENT FORS AND DIODES Extrinsic semiconductor-n-type type semiconductor-PN junction PN junction –V-I characteristics of PN ier - Half wave rectifier- Full wave I wave bridge rectifier-Zener diode- f zener diode-Zener as a voltage imiting Diode (LED)-Photo diode- e-Filters – Types of filters. VSIS AND TRANSISTORS Kirchhoff's Current law (KCL)-and _)-Thevenin's theorem- Norton's ing the transistor terminals-Transistor istor as a Amplifier - Transistor istor as a Amplifier - Transistor ing net transistor terminals-Transistor istor as a Amplifier - Transistor ing point -Faithful amplification - g-stabilization- stability factor. ND OSCILLATORS sistor amplifier-Practical Circuit of er- D.C and A.C Equivalent circuits- Classification of Power Amplifiers- Ilector Efficiency-Efficiency of Class uplifiers- Push- pull amplifiers. /e voltage feedback in amplifier- nitter Follower-Sinusoidal Oscillator- 'Circuit- Positive feedback amplifier- ion-Colpitt's oscillator- Hartley CONDUCTOR DEVICES ffect Transistor-Junction Field Effect -Difference between JFET and Bipolar Oxide Semiconductor FET s of MOSFET- Silicon Controlled V-I Characteristics of SCR-SCR as a etion Transistor (UJT)-UJT relaxation FAMPLIFIERS ristics-Common mode rejection ratio ng and Non inverting amplifier- or, Integrator, Differentiator-Voltage o comparator-Log & antilog -low, high pass and band pass filters. DY FOR ENRICHMENT Ied for External Examination) rator - Monostable multivibrator – Is of transistor biasing- Base resistor	CONTENTHOURSFORS AND DIODES16Extrinsic semiconductor-n-type16Extrinsic semiconductor-PN junctionPN junction –V-1 characteristics of PNler - Half wave rectifier- Full wave1l wave bridge rectifier-Zener diode-1f zener diode-Zener as a voltage1imiting Diode (LED)-Photo diode-e-Filters – Types of filters.18VSIS AND TRANSISTORS18Kirchhoff's Current law (KCL)-and.)-Thevenin's theorem- Norton'sing the transistor terminals-Transistor18istor as a Amplifier - Transistor18ing the transistor terminals-Transistor18ing point -Faithful amplification -20sistor amplifier-Practical Circuit of20er - D.C and A.C Equivalent circuits-20Classification of Power Amplifiers-20llector Efficiency-Efficiency of Class18pilfiers- Push- pull amplifiers.20ve voltage feedback in amplifier-18ffect Transistor-Junction Field Effect18ONDUCTOR DEVICES18ffect Transistor Junction Field Effect18off MOSFET- Silicon ControlledV-I Characteristics of SCR-SCR as a tion Transistor (UJT)-UJT relaxationLAMPLIFIERS18ristics-Common mode rejection ratio18ristics-Common mode rejection ratio18og and Non inverting amplifier- or, integrator, Differentiator-Voltage o comparator-Log & antilog -low, high pass and band pass filtersDY FOR ENRICHMENT end for External Examinati	CONTENTHOURSCOsFORS AND DIODES Extrinsic semiconductor-n-type type semiconductor-PN junction PN junction -V-I characteristics of PN ier - Half wave rectifier-Ener diode- f zener diode-Zener as a voltage minting Diode (LED)-Photo diode- e-Filters – Types of filters.16CO1, CO2, CO3, CO4, CO5XSIS AND TRANSISTORS Kirchhoff's Current law (KCL)-and _)-Thevenin's theorem- Norton's18CO1, CO2, CO3, CO3, CO4, CO3, CO3, CO4, CO3, CO3, CO4, CO5ing the transistor terminals-Transistor istor as a Amplifier - Transistor mon Base and Common Base and r connection - Transistor load line ing point -Faithful amplification - g-stabilization- stability factor.20CO1, CO2, CO3, CO4, CO2, CO3, CO4, CO5ND OSCILLATORS sistor amplifier-Practical Circuit of er-D.C and A.C Equivalent circuits- Classification of Power Amplifiers. lector Efficiency-Efficiency of Class plifiers-Push- pull amplifiers. re voltage feedback in amplifier- nitter Follower-Sinusoidal Oscillator- Circuit-Positive feedback amplifier - ion-Colpitt's oscillator- Hartley18CO1, CO2, CO3, CO3, CO4, CO5CONDUCTOR DEVICES iffeet Transistor (UJT)-UJT relaxation18CO1, CO2, CO3, CO4, CO5CAMPLIFIERS o, omparator-Log & antilog - low, high pass and band pass filters.18CO1, CO2, CO3, CO3, CO4, CO5V FOR ENRICHMENT o, fut or Monostable multivibrator – ds of transistor biasing- Base resistor-CO1, CO2, CO3, CO3, CO4, CO3, CO4, CO5

- 1. Mehta V.K. & Rohit Mehta (2012). Principles of Electronics (11th edition) S.Chand.
- 2. Chattopadhyay. D, Raxshit P.C, Sara B.and Purkait (2006). *Foundations of electronics* (7th edition) New Age International.
- 3. Vijayendran.V, (2010). *Introduction to Integrated Electronics*.(6th edition) S. Viswanathan Printers and Publishers Pvt. Ltd., Chennai.
- 4. Salivahanan S, Suresh Kumar N, (2011). *Electronic Devices and Circuits*. (2nd edition) Tata McGraw Hill Education New Delhi.

Reference Books

- 1. Theraja. B.L, (2012) Basic electronics solid state. (Reprint (2012)) S.Chand
- 2. Millman and Halkias, (2008) *Integrated Electronics* (48th Reprint) Tata McGraw Hill Education. New Delhi.

Web References

- 1. https://www.educba.com/digital-computer-fundamentals/
- 2. <u>https://collegedunia.com/exams/number-system-mathematics-articleid-3097</u>
- 3. https://www.tutorialspoint.com/difference-between-half-adder-and-full-adder
- 4. <u>https://electronicsdesk.com/8085-microprocessor.html</u>
- 5. https://www.digimat.in/nptel/courses/video/108105102/L01.html

Pedagogy

Chalk and Talk, Seminars, Power Point Presentation, Quiz, Assignment and Group discussion.

Course Designer

Dr.T.Noorunnisha

Semester V	Internal Marks: 25	External Marks: 75						
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS				
23UPH5DSE1A	MATERIALS SCIENCE	DSE-I	5	3				

- To formulate the knowledge in material science and to understand the chemical structure and bonding between the molecules
- To gain cognition on the defects in materials
- To acquire the knowledge about smart materials and its mechanical properties
- To develop the understanding of Nanomaterials and its property correlation
- To know the concept of materials for nuclear and space applications

Pre-requisites

- To know the relationship between different types of crystal structures with the properties of materials
- To gain the physical property of condensed matter is intimately related to their electronic structure
- To emphasise the structure-property correlation in materials

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the Course, the Students will be able to	Cognitive Level
CO 1	Interpret the different types of crystal structure and bonding in solids, and the physical ramifications of these differences.	K1
CO 2	Explain out the different kinds of technological properties of materials	K2
CO 3	Identify the Smart materials in the material engineering and to understand their role in materials behavior	К3
CO 4	Examine the Nanomaterials on explaining the mechanical behavior of materials	K4
CO 5	Develop the Nuclear materials and their use in space	K5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	2	3	3	2	3	3	2	3
CO 2	2	3	3	2	3	2	3	3	2	2
CO 3	3	3	3	2	3	2	2	3	3	3
CO 4	3	2	3	3	3	3	2	3	2	2
CO 5	2	2	3	3	3	2	3	3	2	2

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation

"-" - indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
Ι	CRYSTAL STRUCTURE AND CHEMICAL BONDS Introduction to crystals – Classification of crystal system –Bravais lattice – Lattice planes and Miller indices – Interplanar spacing in a cubic lattice – Cubic lattice – SC – BCC – FCC – Sodium chloride and Diamond crystal structure – Bonding of solids (Ionic, Covalent, Metallic, Hydrogen and Vander Waal)	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	TECHNOLOGICAL PROPERTIES Introduction to material science – Classification of engineering materials – Structure – Property relationships in materials - Stability and metastability – Selection of materials – Weldability – Machineability – Formability – Castability.	14	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	SMART MATERIALS Metallic glass – Fiber reinforced materials – SAW materials – Biomaterials – Ceramics -Nuclear engineering materials-Nanophase materials - SMART materials- Conducting polymers- Optical materials - Fiber optic materials and their applications.	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	NANO MATERIALS AND MECHANICAL BEHAVIOUR OF MATERIALS Nanoscience and nanotechnology – Nanomaterials- Properties of nanomaterials (size dependent) - synthesis of nanomaterials- Fullerenes-Application of nanomaterials – Carbon nanotubes- Fabrication and structure of carbon nano tubes Different mechanical Properties of engineering materials – Fracture – Creep – Testing technique –factors affecting mechanical properties of material- Heat treatment-cold and hot working-types of mechanical tests- Metals forming process – Deformation of crystals and polycrystalline materials.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
v	MATERIALS FOR NUCLEAR AND SPACE APPLICATIONS Nuclear fuels - fuel cladding- moderators, control materials -coolants - shielding materials - Space programme - structural material and their properties - system requirements - extreme high temperature materials - materials for thermal protection - pressure vessels - lubrication.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	SELF STUDY FOR ENRICHMENT: (Not to be included for External Examination) Hybridisation - Delocalised chemical bonding-Diamond and Zinc sulphide structures. Close packed structures - packing efficiency and density of materials.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

- 1. Arumugam, M., (2009). *Material Science* (1st edition) Anuradha agencies, Kumbakonam.
- 3. Raghavan V., (2004). Material Science Engineering. (5thedition) PrIntice Hall, India
- 4. Avadhanulu, M.N., (2014) Material Science, S.Chand & Company, New Delhi, 2014.
- 5. Hayra Choudhury S.K., (1991). *Materials Science and Processes*. (1st edition) Indian Book Distributing Co, New Delhi.

Reference Books

1. Pillai S.O., (2005). Solid State Physics (6th edition) New age International Private Limited

Web References

- 1. https://archive.nptel.ac.in/courses/113/102/113102080/
- 2. https://archive.nptel.ac.in/courses/122/102/122102008/
- 3. <u>https://archive.nptel.ac.in/content/storage2/courses/112108150/pdf/Lecture_Notes/MLN_01.</u> <u>pdf</u>
- 4. https://nptel.ac.in/courses/118104008

Pedagogy

Chalk and Talk, Power point presentation, Interaction, Problem solving Assignment.

Course Designer

Dr.S.Gowri

Semester V	Internal Marks: 25	External Marks: 75					
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS			
23UPH5DSE1B	LASER PHYSICS	DSE - I	5	3			

- To gain knowledge in the basic of lasers.
- To explain the fundamentals of lasers and its types.
- To analyze the properties of laser.
- To differentiate the types of lasers.
- To familiarize with the diverse applications of laser.

Pre-requisites

- Basic knowledge about electromagnetic radiation.
- Fundamental knowledge on absorption and emission.
- Basic ideas on application of lasers.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, the students will be able to	Cognitive Level
CO1	Define the characteristics of electromagnetic radiation and their interaction with matter.	K1
CO2	Explain the basic principle of laser.	K2
CO3	Apply the functions of laser for practical applications in various field.	K3
CO4	Differentiate the various types of lasers and their working principle.	K4
CO5	Summarize properties of laser and its applications.	K5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	1	3	3	3	3	3	2	1	2	3
CO 2	2	3	3	3	2	3	2	1	2	2
CO 3	1	3	3	3	3	3	3	1	3	3
CO 4	2	3	3	3	3	3	3	1	3	2
CO 5	3	3	3	3	3	3	3	2	3	3

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" – indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	PRINCIPLES OF LASER	16	CO1,	K1,
	Introduction to electromagnetic radiation - Principle of		CO2,	K2,
	lasers - Conditions of lasing action - Absorption -		CO3,	K3,
	Emission - Einstein's co-efficient - Population inversion		CO4,	K4,
	- Laser pumping - Stimulated and spontaneous		CO5	K5
	emission - Two and three level laser			
	systems.			
II	CHARACTERISTICS OF LASER	14	CO1,	K1,
	Monochromaticity - Coherence - Directionality and		CO2,	K2,
	divergence - Brightness - Laser modes: Longitudinal		СОЗ,	КЗ,
	mode - Transverse mode - Beam quality - Threshold		CO4,	K4,
	condition - Line shape functions - Mode locking -		CO5	K5
	Q - Switching.			
III	TYPES OF LASERS	15	CO1,	K1,
	Solid state lasers - Ruby laser- Nd: YAG Laser -		CO2,	K2,
	Semiconductor lasers - Features of semiconductor		CO3,	K3,
	lasers- Diode lasers - Gas laser: He-Ne laser - CO2		CO4,	K4,
	laser - Liquid lasers: dye lasers - Chemical lasers.		CO5	K5
IV	LASERS IN INDUSTRY AND	16	CO1,	K1,
	COMMUNICATION		CO2,	K2,
	Laser cutting - Welding - Drilling - Hardening - Fibre		CO3,	K3,
	optic communication -Total internal reflection - Block		CO4,	K4,
	diagram of fibre optic communication system -		CO5	K5
	Advantages of fibre optic communication - Hologram -			
	Recording and reconstruction of hologram - LIDAR.			
V	LASERS IN MEDICAL AND MILLITARY	14	CO1,	K1,
	APPLICATIONS		CO2,	K2,
	Lasers in Surgery - Ophthalmology - Dentistry-		CO3,	K3,
	Dermatology - Lasers in cancer diagnosis and therapy-		CO4,	K4,
	Cardiology - Laser range finder - Target designation.		CO5	K5
VI	SELF-STUDY FOR ENRICHMENT	-	CO1,	K1,
	(Not included for End Semester		CO2,	K2,
	Examinations)		CO3,	K3,
	Laser induced photochemical processes - Multiphoton		CO4,	K4,
	Infrared Excitation - Unimolecular Laser Induced		CO5	K5
	Reaction.			

- 1. Nagabhushana S (2013). *Laser and Optical Instrumentation*. I. K. International Publishing House, New Delhi.
- 2. Srivastava S K (2019). *Laser Systems and Applications*. 3rd Edition. New Age International Publisher, New Delhi.
- 3. Laud B B (2011). *Laser and Nonlinear Optics*. 3rd Edition. New Age International Publisher, New Delhi.
- 4. Thyagarajan K et. al. (1986). Lasers Theory and Application. 2rd Edition. Plenum Press

Reference Books

- 1. Seigman, (1986) Lasers. 3rd Edition. Oxford University Press.
- 2. Seelto O, (2010) Principles of Laser. 5th Edition. Springer Publication.

Web References

- 1. Interaction of Radiation with Matter Physics LibreTexts
- 2. <u>Types of Lasers Search (bing.com)</u>
- 3. Properties of Lasers (worldoflasers.com)
- 4. Applications of Lasers Search (bing.com)
- 5. https://application.wiley-vch.de/books/sample/3527327150_c01.pdf
- 6. https://nptel.ac.in/courses/104/104/104104085/

Pedagogy

Chalk and Talk, Seminar, Assignment, Power point Presentation, Group discussion and Quiz.

Course Designer

Dr. G. Maheswari

Semester V	Internal Marks: 25External Marks: 75								
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS					
23UPH5DSE1C	ASTROPHYSICS AND COSMOLOGY	DSE - I	5	3					

- To learn the composition and nature of the universe from solar system.
- To gain the knowledge of astronomy and celestial mechanics.
- To gain knowledge about stars and stellar evolution, interstellar matter, galaxies, and clusters of galaxies.
- To provide the basic knowledge about the theory and techniques of observational astronomy and physics of the astrophysical phenomenon.
- To learn the large scale structure of the Universe and its history.

Pre-requisites

- Basic knowledge of the principles of Physics
- Knowledge about astronomical concepts
- Experience to interpret data through the use of mathematical tools.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the Course, the Students	Level
	will be able to	
CO 1	Understand Tools of Astronomy and celestial mechanics.	K1, K2
CO 2	Apply mathematical tools and physics laws to understand the nature of Planets, Stars and Galaxies.	K3
CO 3	Understand the astronomical observations for the celestial objects.	K4
CO 4	Analyses the results and interpret the nature of the solar system, variety of stars and galaxies.	K5
CO 5	Interpret the concepts of projects in astronomy.	K5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	3	3	2	3	3	2	2	2	3
CO 2	3	2	3	3	2	3	2	2	2	2
CO 3	2	3	2	3	3	2	2	3	2	3
CO 4	3	3	3	2	3	3	3	3	2	2
CO 5	3	3	3	3	2	3	3	3	2	3

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" – indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	ASTRONOMICAL SCALES Astronomical Distance, Mass and Time Scales- Brightness, Radiant Flux and Luminosity- Measurement of Astronomical Quantities- Astronomical Distances-Stellar Radii - Masses of Stars Stellar Temperature	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
П	BASIC CONCEPTS OF POSITIONAL ASTRONOMY Celestial Sphere -Geometry of a Sphere-Spherical Triangle - Astronomical Coordinate Systems: Geographical Coordinates - Horizon System- Equatorial System-Conversion of Coordinates- Measurement of Time: Sidereal Time - Apparent Solar Time-Mean Solar Time - Equation of Time- Calendar	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	ASTRONOMICAL TECHNIQUES Basic Optical Definitions for Astronomy- Magnification Light Gathering Power-Resolving Power and Diffraction-Limit-Atmospheric Windows-Optical Telescopes Types of Reflecting Telescopes-Telescope Mountings Space Telescopes- Detectors and their Use with Telescopes-Types of Detectors-Detection Limits with Telescopes	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	NATURE OF STARS AND GALAXIES Classification of binary stars- Mass determination using visual binaries –Formation of spectral line- Hertzsprug –Russel diagram – Hubble sequence- Spiral and Irregular galaxies – Spiral structure- Elliptical galaxies - Interaction of galaxies – Formation of galaxies	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	COSMOLOGY Newtonian Cosmology Olbers's Paradox- Cosmological principle- Dust model of the universe- Evaluation of the pressureless dust universe Microwave background Steady state model of the universe- Cooling of the universe after the big bang- Discovery of the Cosmic micro wave background - origin cosmic microwave background Relativistic cosmology Euclidean - Elliptic and Hyberbolic geometries - Robertson Walker Matric for curved space time- Friedmann equation - Cosmological constant- Effects of dark energy Observational cosmology Origin of the cosmological red shift- Distance to the most remote objects in the universe- Particle Horizon and Horizon distance	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

	SELF STUDY FOR ENRICHMENT:			
	(Not to be included for External Examination)		CO1,	K1,
	The shape and size of our Galaxy- Interstellar		CO2,	K2,
VI	extinction and Reddening-Galactic coordinates,	-	CO3,	КЗ,
	Galactic rotation-Stellar population-Inter Stellar		CO4,	K4,
	Medium- The galactic magnetic field and Cosmic		CO5	K5
	rays			

- 1. Bradley W. Carroll & Dale A. Ostlie (2006), *An introduction to Modern Astrophysics* (Second Edition) Pearson
- 2. IGNOU(2006), Basics of Astronomy IGNOU course book PHE-15 Astronomy and Astrophysics (First Edition), Neeraj Publications

Reference Books

- 1. Harwit M. (2000), Astrophysical concepts(Second Edition), Springer
- 2. G. B. Rybicki & Lightman A. P.(1986), *Radiative processes in astrophysics* (Second Edition), *Wiley-VCH*)

Web References

- 1. https://egyankosh.ac.in/handle/123456789/19452
- 2. https://egyankosh.ac.in/handle/123456789/6051

Pedagogy

Chalk and Talk, Assignment, Group discussion and Quiz

Course Designer

Dr.R.Meenakshi

Semester V	Internal Marks:40 External Marks: 60								
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS					
22UPH5SEC2P	PHYSICS CONCEPTS THROUGH ANIMATION (P)	SEC-II	2	2					

- To provide a basic skill in Simulation and Photoshop
- To create a physics-oriented animations using Flash package
- To expose the Photoshop tools to prepare physics-oriented objects
- To develop the skill of animation diagrams through physics concepts
- To formulate 3D-Animation to prepare physics-oriented objects

Pre-requisites

- Explore and understand the phenomenon of physics
- Create animation to learn physics and understand the concepts
- Output the concept in physics-based animation

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Students will be able to	Level
CO 1	Develop the skills to simulate physics concepts.	K1, K2
CO 2	Construct the animation of physics-oriented objects using flash.	К3
CO 3	Construct the basic circuit diagram of physics using photoshop.	K4
CO 4	Examine the skill of animation to prepare physics-oriented objects.	K5
CO 5	Develop video through physics concepts 3D Animation.	K5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	1	1	1	2	1	3	2	1	2	1
CO 2	2	3	2	2	2	3	3	1	2	1
CO 3	1	1	2	3	1	3	2	1	3	1
CO 4	2	3	3	3	2	1	3	1	3	2
CO 5	2	3	3	2	2	2	2	1	2	2

"1" – Slight (Low) Correlation

``2''-Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation

LIST OF EXPERIMENTS (Any 8)

- 1. Create an animation of Simple Pendulum
- 2. Create an animation of Atomic Model
- 3. Create an animation of Dispersion of Light
- 4. Create an animation of Projectile Motion
- 5. Create an animation of Law of Gravitation
- 6. Create an animation of Newton's Law
- 7 Create an animation of Kepler's law of ellipses
- 8 Create an animation of Photoelectric effect
- 9. Create an animation of Magnetic Forces on the Segments of a Current Carrying Loop
- 10. Draw a simple Physics Circuit

Text Book

- Kogent Learning Solutions.,(2013) Flash CS6 in simple Steps(Revised edition). Dreamtech Press.
- DT Editorial Services., (2018), *Photoshop CS6 in Simple Steps*, (New edition) Dreamtech Press.

Reference Book

1. Daven Brown and et.al., (1997), Web Development for the Designer, Macmillion

Web References

- 1. <u>https://www.udemy.com/course/animation-in-flash/</u>
- 2. http://www.floobynooby.com/flashcourseA.html
- 3. https://phys23p.sl.psu.edu/phys_anim/EM/mag_torque_loop.mp4

Pedagogy

Demonstration, Practical sessions, Group discussion and Survey.

Course Designer

Dr.S.Gowri

Semester VI	Internal Marks: 25	External Marks: 75							
COURSE CODE	COURSE TITLE	CATEGORY	HRS / WEEK	CREDITS					
23UPH6CC9	FUNDAMENTALS OF MICROPROCESSOR	CC-IX	6	5					

- To understand the architecture of Intel 8085.
- To impart knowledge about the instruction set.
- To understand the interfacing circuits for various applications.
- To introduce the architecture of microprocessors Intel 8086.
- To analyze the basic concepts and programming of Intel 8085.

Pre-requisites

- Knowledge about digital circuits.
- Concepts of programming languages.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the Course, students will be able to	Cognitive Level
CO 1	Understand the architecture and functioning of the Intel 8085/8086 microprocessor.	K1, K2
CO 2	Demonstrate proficiency in programming using the instruction set of the Intel 8085 microprocessor.	K3
CO 3	Develop skills in troubleshooting and debugging programs written for the Intel 8085/8086 microprocessor.	K3
CO 4	Apply knowledge of microprocessor architecture and programming to analyze and optimize performance in microcontroller-based systems.	K4
CO 5	Interpret technical concepts related to microprocessor 8085/8086 effectively through written reports, presentations, and documentation.	K5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	1	1	3	1	1	1	3	2	2
CO 2	2	2	1	3	1	3	3	2	2	3
CO 3	1	1	2	3	1	2	3	1	2	2
CO 4	1	1	2	3	1	3	3	3	2	3
CO 5	2	2	1	3	1	3	3	3	2	3

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" – Indicates there is no Correlation.

UNIT	CONTENT	HOURS	Cos	CONGNITIVE LEVEL
I	ARCHITECTURE OF INTEL 8085 Architecture of 8085 - Registers in 8085 - Pin configuration of 8085 – Data and Address buses- Instruction cycles – Fetch operation – Execute operation – Machine cycle and State – Instruction and data flow – Timing diagram – Memory read and memory write cycles – I/O read - I/O write	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
П	INSTRUCTION SETS OF INTEL 8085 Instruction types -Data transfer - Arithmetic - Logical- Branching- Stack and I/O instructions – Instruction word size - Addressing modes of 8085- Direct-Register- Register Indirect-Immediate-Implicit – STACK – Subroutine- MACRO.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	INTEL 8085 PROGRAMING Assembly language Programming - Addition of two 8-bit numbers: Sum 8- bit, Sum 16-bit - Subtraction of two 8-bit numbers – Finding one's complement of 8 bit number - Shift an 8-bit number left by one bit- Finding the largest number in a data array – Finding the smallest number in a data array – Sum of a series - Multiplication- Division- Arranging the numbers in ascending order – Arranging a numbers in descending order.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	INTEL 8086 Introduction – Pin Configuration-Operating modes of 8086 –Functional units- Interrupts-8086 bus cycle-classification of 8086 instructions- Data transfer- Arithmetic-Logical- Rotate- Shift- Branch – Binary address of 8086 registers- Addressing modes	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
v	PERIPHERALDEVICESANDTHEIRINTERFACINGAddress space partitioning- Memory mapped I/O scheme-I/O scheme-I/O mapped I/O scheme-Memory and I/O interfacing-Data transfer schemes:Synchronous data transfer-Asynchronous data transfer-Interrupt driven data transferHardware and SoftwareInterrupts-Programmableperipheral interface (Intel 8255)-Programmable DMAcontroller –Intel 8257.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	SELF STUDY FOR ENRICHMENT (Not included for End Semester Examination) Assembly language Programs using Microprocessor – 8 - bit decimal subtraction-Decimal to Hexadecimal Conversion- Shift an 8-bit number left by 2 bit - Shift a 16-bit number left by one bit - Mask off Most Significant 4 bits of an 8-bit number - Intel 8237 A.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

- 1. Ram B. (2013) *Fundamental of Microprocessor and Microcontroller*. (8th Edition) Dhanpat Rai Publications(P) Ltd, New Delhi.
- 2. Godse A. P Godse D.A. (2017) *Microprocessors and microcontrollers*. (4th Edition), Technical Publications, Pune.

Reference Books

- 1. Ramesh Gaonkar (2013) *Microprocessor Architecture, Programming, and Applications with the* 8085. (6th Edition), Penram International Publishing, Mumbai.
- 2. Nagoorkani A. (2012) *Microprocessors & Microcontrollers*. (2nd Edition) RBA Publications, Chennai.

Web References

- 1. https://www.elprocus.com/8085-microprocessor-architecture/
- 2. https://archive.nptel.ac.in/courses/108/105/108105102/
- 3. https://www.youtube.com/watch?v=hwwhsNOqqm8
- 4. http://classcentral.com/course/swayam-micropocessor-an-interfacing-17694.
- 5. https://kanchiuniv.ac.in/coursematerials/VIJAYARAGHAVAN_mp%20_mc

Pedagogy

Chalk and Talk, Seminar, Assignment, Power point Presentation, Group discussion and Quiz

Course Designer

Dr.D.Devi

Semester VI	Internal Marks: 25External Marks: 7						
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS			
24UPH6CC10	CLASSICAL AND QUANTUM PHYSICS	CC-X	6	5			

- To expose the fundamentals of Theoretical Physics.
- To provide the knowledge of the applications in Quantum Physics.
- To list the fundamental principles of D'Alembert and Hamiltonian principles.
- To apply the Schrodinger's wave equation.

Pre-Requisites

- Understand the fundamental Principles of Classical mechanics.
- Apply the concepts of wave mechanics.
- Represent the quantum theories.
- Study the applications of Quantum mechanics.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the Course, the Student will be able to,	Cognitive Level
CO1	Understand the fundamental principles of classical mechanics.	K1
CO2	Understand the Hamilton's formulation.	K1
CO3	Learn the classical concepts and explain the De Broglie's matter waves.	K2
CO4	Identify the basic principles of Quantum mechanics.	K3
CO5	Develop the knowledge about solvable quantum states.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	2	3	2	3
CO2	3	2	3	3	2	3	2	3	2	3
CO3	3	2	2	3	2	3	3	3	3	3
CO4	3	3	2	2	3	3	3	2	2	3
CO5	3	3	2	2	3	3	3	2	2	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" indicates there is no correlation

UNIT	CONTENT	HOURS	Cos	COGNITIVE
			001	
I	ELEMENTARY PRINCIPLES OF		COI,	KI,
	CLASSICAL MECHANICS	10	CO2,	K2,
	Newtonian mechanics: Conservation laws for a single	18	CO3,	K3,
	particle and a system of particles –Degrees of freedom		CO4,	K4,
	– Types of constraints – Generalized coordinates –		CO5	K5
	D'Alembert's principle and Lagrange's equation of			
	motion – Procedure for formation of Lagrange's			
	equations – Applications to: (a) Compound Pendulum			
	(b) Atwood's machine and (c)			
	Simple Pendulum.			
II	HAMILTONIAN FORMALISM		CO1,	K1,
	Variational principle and derivation of Hamilton's		CO2,	K2,
	equation of motion –Principle of least action – Phase	18	CO3,	K3,
	space – cyclic coordinates – conservation theorems:		CO4,	K4,
	generalized momentum and Energy – Examples in		CO5	K5
	Hamiltonian Dynamics: (a) Harmonic Oscillator (b)			
	Motion of a particle in a central force field.			
III	GENESIS OF QUANTUM TRANSITION		CO1,	K1,
	Inadequacy of classical concepts: Black body		CO2,	K2,
	radiation - Planck's hypothesis – Photoelectric effect	18	CO3,	КЗ,
	– Compton effect – de Broglie's hypothesis – matter		CO4,	K4,
	waves – Expression for Phase velocity and group		CO5	K5
	velocity – Relation between Phase velocity and group			
	velocity – Experimental evidences for de Broglie's			
	matter waves: Davison and Germer experiment $-G.P.$			
	Thomson's experiment – Heisenberg's uncertainty			
	Principle – Electron microscope – Gamma ray			
	microscope.			
IV	BASICS OF OUANTUM MECHANICS		CO1.	K1,
	Basic postulates of quantum mechanics –		CO2.	K2.
	Development of Schrödinger wave equation –Time	18	CO3.	K3.
	Independent and Dependent forms of equations –		CO4.	K4.
	Properties of wave function – Orthogonal and		CO5	K5
	normalized wave function – Eigen function and Eigen		000	_
	values – Expectation values and Ehrenfest's theorem.			
V	FXACTLY SOLVABLE SYSTEMS		CO1	K1
•	Eree particle - Linear harmonic oscillator - Particle		CO1,	K1, K2
	in a box _The barrier penetration problem _ Tunnel	18	CO2,	K2, K3
	effect _ Rectangular Potential Well _ Rigid rotator	10	CO3,	K3, K4
	effect – Rectangular Fotentiar Wen – Rigid Totator.		CO4, CO5	K5
VI	SELESTUDVEODENDICHMENT		C01	KJ K1
V I	(Not to be included for External Examination)	-	CO^{1}	K7
	Lagrangian and Hamiltonian Formulation of		CO_2	K3
	relativistic mechanics - Theory of small oscillations		CO3,	КЗ, КЛ
	Normal modes of oscillations and frequencies		CO4,	K5
	(frequencies) - CO as linear symmetrical malasula		COS	IN.J
	its normal frequencies and			
	its normal modes			
	its normal modes.			

- 1. Murughesan R, (2016), *Modern Physics*, (Revised Edition), S. Chand & Company Ltd, New Delhi.
- 2. Upadhyaya.J.C, (2019), Classical Mechanics, (Revised Edition), Himalaya Publishing House, New Delhi.
- 3. Gupta S L, Kumar V and Sharma H V, (2012), *Classical Mechanics*, (Revised Edition) S. Chand& Company Ltd, New Delhi.
- 4. Goldstein H, (2011), Classical Mechanics, (3rd edition) Narosa Book distributors, New Delhi.
- 5. Sathya Prakash, (2007), Quantum Mechanics, (Revised Edition), Pragathi Prakashan, Meerut.
- 6. Mathew P M and Venkatesan K, (1987), *A Text Book of Quantum Mechanics*, Tata McGraw Hill, New Delhi.

Reference Books

- 1. Aruldhas G, (2008), Classical Mechanics, (Revised Edition), PHI Publisher, New Delhi.
- 2. Mathews P M and Venkatesan K, (1987), *A Text Book of Quantum Mechanics*, (Revised Edition) Tata McGraw Hill, New Delhi,
- 3. Ajoy Ghotak and Loganathan S, (1999), *Quantum Mechanics: Theory and Applications*, (6th Edition) McGraw Hill, New Delhi.

Web References

- 1. https://onlinecourses.nptel.ac.in/noc20_ph17/preview
- 2. https://onlinecourses.nptel.ac.in/noc24_ph15/preview
- 3. https://www.classcentral.com/course/swayam-classical-mechanics-i-292951
- 4. https://nptel.ac.in/courses/115106066

Pedagogy

Chalk and Talk, Seminars, Power Point Presentation, Quiz, Assignment and Group discussion.

Course Designer

Dr. A. Mary Girija

Semester VI	Internal Marks: 40		Externa	l Marks: 60
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UPH6CC6P	ELECTRONICS AND MICROPROCESSOR (P)	CP - VI	3	3

- To enable the student to gain practical knowledge.
- To acquire basic understanding of laboratory technique.
- To investigate the basic idea behind digital technology.
- To develop the programming skills of Microprocessor.
- To understand the theory and develop practical application skills.

Pre -requisites

- Basic knowledge on usage of scientific apparatus.
- Develop the knowledge of 8085 Programme.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, the students	Level
	will be able to	
CO1	Recall the principles of electronics.	K1
CO2	Understand the basic operations of 8085.	K2
CO3	Make use of fundamental principles and experiment circumstances.	К3
CO3	Analyze working principles of electronic circuits.	K4
CO5	Design simple program using microprocessor.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	2	3	2	1	2	3
CO2	3	3	2	3	2	3	3	2	3	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	2	3	3	3	1	3	3	2
CO5	3	2	3	3	3	3	2	3	3	3

"1" - Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" – indicates there is no correlation.

LIST OF EXPERIMENTS (Any 8)

Digital Electronics

- 1. Construction of Half Subtractor and Full Subtractor.
- 2. Flip flops using gates.
- 3. Demorgan's theorem.
- 4. BCD to 7 segment decoder- 7 segment LED display.
- 5. Digital to analog converter.
- 6. Analog to digital converter.
- 7. Solving Boolean expression using K-Map.

Microprocessor 8085

- 1. 8-bit addition and 8-bit subtraction.
- 2. 8-bit multiplication and 8-bit division.
- 3. Conversion from decimal to hexadecimal.
- 4. Conversion from hexadecimal to decimal system.
- 5. Finding the largest number in a data array.
- 6. Find the sum of series.

Text Books

- 1. Ouseph, C.C., Rao, U.J., Vijayendran, V., (2016). *Practical Physics and Electronics*. S.Viswanathan, Printers & Publishers Pvt Ltd., Chennai.
- 2. Vijayendran.V, (2009). *Introduction to Integrated Electronics: Digital and Analog* (Revised Edition). Viswanathan S., Printers & Publishers Pvt Ltd., Chennai.
- 3. Ram.B, (2013). *Fundamental of Microprocessor and microcontroller* (8th Edition)[.] Dhanpat Rai Publications (P) Ltd., New Delhi.

Reference Books

 Anand Kumar.A, (2016). Fundamentals of Digital Electronics. (4th Edition). PHI Learning Pvt. Ltd., New Delhi.

Web References

- 1. https://de-iitr.vlabs.ac.in/exp/truth-table-gates/simulation.html
- 2. https://de-iitr.vlabs.ac.in/exp/half-full-adder/simulation.html
- 3. http://vlabs.iitkgp.ernet.in/coa/exp13/index.html#
- 4. https://www.vlab.co.in/
- 5. https://de-iitr.vlabs.ac.in/exp/realization-of-logic-functions/theory.html

Pedagogy

.

Demonstration and practical sessions.

Course Designer

Dr.A.Mary Girija

.

Semester VI	Internal Marks: 25		Exte	rnal Marks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
23UPH6DSE2A	COMMUNICATION PHYSICS	DSE - II	5	3

- To acquire knowledge in basic concepts of communication systems.
- To learn about function of various communication systems.
- To develop knowledge in various communication systems.
- To explore various applications of communication systems.
- To analyze various concepts in communication systems.

Pre-requisites

- Knowledge about the concepts of communication systems.
- Fundamental knowledge in basic principle of communication systems.
- Concept of communication systems and its applications.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the Course, the Students will be	Level
	able to	
CO 1	Outline the basic concepts of communication systems	K1. k2
CO 2	Critique the ideas of radio and radar system and its applications	K3
CO 3	Predict the parameters such as total internal reflection, acceptance angle and numerical aperture in order to formulate the optical sensor	K3
CO 4	Utilization of GSM, Cell, FAX, Modem and Wi–Fi in mobile communication system	K4
CO 5	Design and analysis of satellite communication systems	K5

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	3	2	2	3	3	2
CO 2	3	2	3	3	3	2	3	3	2	2
CO 3	3	3	3	2	3	3	3	3	2	2
CO 4	3	3	2	3	3	3	3	3	3	3
CO 5	3	3	3	3	2	2	2	3	2	2

"1" – Slight (Low) Correlation

"3" –Substantial (High) Correlation

"2"-Moderate (Medium) Correlation

"-" - indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	BASICS COMMUNICATION SYSTEM Communication systems – Modulation – need for modulation – Bandwidth requirements- Noise - Thermal noise – Noise calculations - Signal to noise Ratio - Noise figure - Calculation of noise figure – Measurement of noise figure.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
П	RADIO AND RADAR COMMUNICATION Radio Broadcasting, Transmission and Reception – Amplitude modulation – Frequency modulation – Demodulation – Essentials in demodulation – AM radio receivers – FM radio receivers – Basic radar system – Doppler effect - Pulsed radar system – CW doppler radar -Frequency modulator CW Radar.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	OPTICAL FIBER COMMUNICATION Structure of optical fiber – Principal and propagation of light in optical fiber – Total internal reflection – Acceptance angle – Numerical aperture – Types of optical fibers based on material – Number of modes – Refractive index profile – Fiber optical communication system – Fiber optic sensors.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	WIRELESS COMMUNICATION GSM – Mobile services– Concept of cell – System architecture – Radio interface – Logical channels and frame hierarchy – Protocols – Localization and calling – Handover– Facsimile (FAX) – Application – VSAT (very small aperture terminals) – Modem – IPTV (internet protocol television) – Wi–Fi – 3G – 4G.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	SATELLITE COMMUNICATION Introduction to satellite communication system – Satellite orbits – Classification of satellites – Types of satellites – Basic components of satellite communication – Constructional features of satellites – Satellite foot points – Satellite communication in India.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	SELF STUDY FOR ENRICHMENT: (Not to be included for External Examination) Passive Radars – 3D Radars – 5G – laser-based communications	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

- 1. Metha V.K (2013), Principles of Electronics (Revised), S. Chand and Co., New Delhi.
- 2. Anokh Singh and Chopra A.K (2013), *Principles of communication Engineering* (Revised), S. Chand and Co., New Delhi.
- 3. Mani I. P(2014), A text book of Engineering Physics(Revised), Dhanam Publications, India.

Reference Books

- 1. Dennis Roddy, John Coolen (1990), *Electronic Communication*, (3rd edition), PHI, India
- 2. Gerd Keiser (2000), Optical fiber communications (Revised), McGrw Hill, India.
- 3. William C.Y. lee (1991), *Cellular telecommunication* (2nd edition), Tata Mcraw hill, India.

Web References

- 1. https://electronicsdesk.com/radar-system.html
- 2. <u>https://www.toppr.com/guides/physics/communication-systems/satellite-communication/</u>
- 3. https://www.sciencedirect.com/topics/social-sciences/mobile-communication

Pedagogy

Lecture with Discussion, Power point presentation, Seminar, Assignment.

Course Designer

Dr. G. Maheswari

Semester VI	Internal Marks: 25		Exter	nal Marks: 75
COURSE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
CODE				
23UPH6DSE2B	COMPUTATIONAL PHYSICS	DSE-II	5	3

- To solve the problems in physics using computational methods using MAT Lab.
- To Learn Scientific Word Processing using programming tools for preparing articles, papers etc. which include mathematical equations, picture and tables
- To introduce the exciting world of programming to the students through MATLAB.
- To introduce the techniques of Numerical methods.
- To provide Data Analysis and Visualization.

Pre-requisites

- Basic Computer Programming Knowledge and Understanding
- Basic Mathematical Knowledge on solving equations.
- Fundamental idea about MATLAB software
- Knowledge on numerical methods.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Student will be able to	Level
CO 1	To understand the basic programming techniques in MATLAB.	K1
CO 2	To address analytically intractable problem errors	K2
CO 3	To Create user-interface graphics objects in MAT LAB	K2
CO 4	To understand various numerical techniques using MATLAB	K2
CO 5	To show how physics can be applied in a much broader context than discussed in a traditional curriculum	К3

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	3	3	3	3	2	2
CO 2	2	2	2	3	2	2	3	2	2	2
CO 3	2	2	2	3	3	3	3	3	2	2
CO 4	3	3	3	2	2	3	3	3	2	2
CO 5	2	2	2	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
Ŧ	ΙΝΤΟΝΙΟΤΙΟΝ ΤΟ ΜΑΤΙ ΑΒ.	10	001	
1	Example of problems in physics requiring	10	CO1,	K1, K2
	computational approach - MATLAB Environment:		CO2,	κ2, κ2
	Getting Started –Saving your works – Predefined		CO3,	КЗ, КЛ
	MATLAB Functions – Using Predefined Functions –		CO4, CO5	K5
	Manipulating Matrices – Computational Limitations-		005	N.J
	Special Values and Functions.		~ ~ .	
II	ERROR ANALYSIS	15	CO1,	K1,
	Need for error analysis - Definition of error -		CO2,	K2,
	Absolute error - Relative error - Precision - Addition		CO3,	K3,
	- Subtraction - Multiplication - Division - Error in		CO4,	K4,
	numerical methods - Truncation error - Round off		CO5	K5
	Errors - Methods for reducing error - Mean - Median			
	- Mode - Standard deviation -Variance - Correlation			
III	MATLAB AND DATA VISUALIZATION	15	CO1,	K1,
	Creation of arrays and matrices - Arithmetic		CO2,	K2,
	Operations- Saving and Restoring - Solution of		CO3,	КЗ,
	simultaneous equations- MATLAB plot module -		CO4,	K4,
	Import export data - Plotting graphs-1D plot – 2D plot		CO5	K5
	- mesh $-$ surf $-$ 3D plots			
IV	NUMERICAL METHODS USING MAT	15	CO1,	K1,
	LAB		CO2,	K2,
	Roots of algebraic and transcendental equations –		CO3,	K3,
	bisection method, Newton Raphson method-		CO4,	K4,
	Interpolation – Lagrangian interpolation-		CO5	K5
	Numerical Integration: Transzoidal Simpson's			
	Method			
V	APPLICATIONS IN PHYSICS USING MAT	20	CO1	K1
v	LAR	20	CO1,	K1, K2
	Calculate time period using Simple Pendulum -		CO3	K3.
	Verify Hooke's Law - Falling object in one		CO4.	K4.
	dimension - Two-dimensional motion- Projectile		CO5	K5
	motion - V-I Characteristics of Junction and			
	Zener diode			
VI	SELF STUDY FOR ENRICHMENT		CO1,	K1,
	Curve Fitting – Fitting Linear and parabolic curves by		CO2,	К2,
	the method of least squares- Symbolic Math -Creating		CO3,	КЗ,
	symbolic objects -Creating symbolic expressions.		CO4,	K4,
			CO5	K5

- 1. Amos Gilat, 2007, "MATLAB An Introduction with Applications", (4th Edition), John Wiley & Sons.
- 2. Kincaid D. and Chenney W, 2009, "Numerical Analysis: Mathematics of Scientific Computing", (1st Edition), AMS, University Press, Hyderabad.
- 3. Rizwann Butt, 2008, "Introduction to Numerical Analysis using MATLAB", (1st Edition), Jones and Publishers.
- 4. Sastry S.S, 2005, "Introductory Methods of Numerical Analysis", (4th Edition), Prentice Hall of India.
- 5. V.K.Mittal, R.C.Verma & S.C.Gupta, 2009, "Computational Physics", (1st Edition), ANE Books.

Reference Books

- 1. Joel Franklin, 2018, "*Computational Methods for Physics*, (1st Edition), Cambridge Press University.
- 2. Gupta, Agarwal and Varshney, 2008, "Design and Analysis of Algorithms", (2nd Edition), PHI Learning, New Delhi, India.

Web References

- 1. https://www.mathworks.com/videos/introduction-to-matlab-81592.html
- 2. https://www.educba.com/introduction-to-matlab/
- 3. <u>https://ocw.mit.edu/courses/18-s997-introduction-to-matlab-programming-fall-2011/</u>

Pedagogy

Chalk and Talk, Power Point Presentation, Seminar, Quiz, Assignment and Group discussion.

Course Designer

Dr. T. Noorunnisha.

Semester VI	Internal Marks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS / WEEK	CREDITS
23UPH6DSE2C	MEDICAL PHYSICS	DSE -II	5	3

- To gain knowledge in general concepts of human body mechanism.
- To understand the principles, features, and applications of ECG, EMG and EEG
- To Provide the working of laser radiation on tissues
- To Understand effects of imaging-properties in X -rays
- To get knowledge about NMR and Clinical MRI
- To enhance the ability to know the generation and detection of ultrasound

Pre-requisites

- A Thorough Knowledge of physics in medicine
- Strong Insight in the mechanics of a human body
- Grasping Power in the concepts and application of lasers in medicine
- Ability to make use of medical imaging techniques in day today life.

Course Outcome and Cognitive Level Mapping

СО	CO Statement					
Number	On the successful completion of the course, thestudents will be able					
	to					
CO 1	Remember and understand the basic concepts across all areas of medical physics.					
CO 2	Identify the mechanics of a human body.					
CO 3	Analyze the principles of ECG, EMG and EEG.					
CO 4	Explain the production, types and application of lasers in medicine.	K5				
CO 5	Explain the ultrasound imaging method and its application in medical field.	K5				

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	2	1	3	3	2	2	2
CO 2	3	3	2	2	2	3	1	2	2	2
CO 3	2	3	3	2	2	3	3	1	2	2
CO 4	3	3	2	2	2	1	2	2	2	2
CO 5	3	2	2	2	1	3	3	2	3	1

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation,

"3" – Substantial (High) Correlation

"-" indicates there is no correlation.

Os COGNITIVE
LEVEL
D1, K1,
D2, K2,
D3, K3,
D4, K4,
O5 K5
D1, K1,
D2, K2,
D3, K3,
D4, K4,
O5 K5
D1, K1,
D2, K2,
D3, K3,
D4, K4,
O5 K5
\mathcal{L}_{1}
M_{2} , M_{2} , M_{3}
$\Delta A = KA$
$\gamma_{4}, \qquad \qquad$
D1 K1
γ_{2} K_{2}
74 K4
5 K5

VI

Text Books

- 1. J.R.Cameron and J.G Skofonick (1978) *Medical Physics*, (1st Edition) John Wiley & Sons, New York.
- 2. R. W Wayanant (2001) Lasers in Medicine, (1st Edition), Plenum, New York.
- 3. S.Webb (1988) The physics of medical imaging, (2nd Edition), Hilger, New Delhi.
- 4. R. S Khandpur (1997) *Handbook of Biomedical Instrumentation, (3rd Edition), Tata McGraw-*Hill, India.
- 5. S.Atheena Milagi Pandian (2019) *Biomedical Engineering*, (1st Edition) Amazon, Notion Press, Chennai.
- 6. W.Mark Saltzman (2009) Biomedical Engineering, (1st Edition), Cambridge University Press, UK

Reference Books

- 1. O.Glasser (1946) Medical Physics, Volume 1-3, (2nd Edition), Chicago review press, US.
- 2. Leslie Cromwell (1999) *Biomedical Instrumentation and measurement,* (2nd Edition), Prentice Hall of India, New Delhi,India.
- John G. Webster (1998) *Medical Instrumentation Application and Design*, (3rd Edition), John Wiley and sons, New York.

Web References

- 1. <u>https://comp-ocpm.ca/english/about-comp/what-is-medical-physics/what-is-medical-physics.html</u>
- 2. https://www.iomp.org/medical-physics/
- 3. https://www.news-medical.net/health/The-Role-of-Physics-in-Medicine.aspx
- 4. https://archive.nptel.ac.in/noc/courses/noc21/SEM2/noc21-bt50/

Pedagogy

Chalk and Talk, Seminar, Assignment, Power point Presentation, Group discussion and Quiz

Course Designer

Dr.K.Kannagi