CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC TIRUCHIRAPPALLI

PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

M. Sc. COMPUTER SCIENCE SYLLABUS 2024-2025 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

VISION

To create an ambience for a quality academic erudition which drives technologically adept, innovative and globally competent graduates with ethical values

MISSION

- To have a breath of knowledge across the subject areas of Computer Science
- To professionally enrich the students for successful career in Academic, Industry and Research
- To promote and inculcate ethics and code of professional practice among students

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning
PEO1	practices to match the highest quality standards and train the students to be effective leaders in
	their chosen fields.
	ACADEMIC EXCELLENCE
PEO2	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of
1 EO2	critical thinking and encourage them to achieve their goal.
	EMPLOYABILITY
PEO3	To equip students with the required skills in order to adapt to the changing global scenario and
1 E03	gain access to versatile career opportunities in multidisciplinary domains.
	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform
PEO4	students into committed professionals with a strong attitude towards the development of the
	nation.
	GREEN SUSTAINABILITY
PEO5	To understand the impact of professional solutions in societal and environmental contexts and
1 E O 3	demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc. COMPUTER SCIENCE PROGRAMME

	Programme Outcome				
PO NO.	On completion of M.Sc. Computer Science				
	The students will be able to				
	DOMAIN KNOWLEDGE				
PO 1	Acquire the in-depth computing knowledge both conceptual and applied pertaining to				
	the core discipline				
	PROBLEM SOLVING				
PO 2	Procure knowledge-based skills to satisfy the needs of society and the industry by				
	providing hands on experience of various technologies in Computer Science				
	INNOVATION AND CRITICAL THINKING				
PO 3	Critically evaluate global issues, recognize the need and identify sustainable solutions				
	through research capabilities towards Nation building initiatives				
	LIFE LONG LEARNING				
PO 4	Capable of upgrading and advancing knowledge through innovation and technology as				
	evidenced by current developments				
	LEADERSHIP AND TEAMWORK				
PO 5	Work in collaborative environment through applications of scientific reasoning and				
	communicate effectively to the stakeholders				

PROGRAMME SPECIFIC OUTCOMES FOR M.Sc. COMPUTER SCIENCE PROGRAMME

PSO	Programme Specific Outcomes	
NO.	Students of M.Sc. Computer Science will be able to	PO s Addressed
PSO 1	Identify, formulate and develop solutions for computational challenges	PO 1
130 1	chancinges	PO 2
DGC 2	Inculcate broad knowledge in core areas of Computer Science and	PO 1
PSO 2	emerging technologies in related domains	PO 2
	Integrate computing knowledge on crafting innovative solutions	PO 2
PSO 3	and to provide a gateway for research.	PO 3
		PO 4
	Develop analytical and technical skills to enhance employment	PO 3
PSO 4	potential and entrepreneurship	PO 4
		PO 5
	Imbibe professional and ethical skills to become a competent	PO 3
PSO 5	citizen for the betterment of society	PO 4
	,	PO 5

Cauvery College for Women (Autonomous), Trichy

PG & Research Department of Computer Science

M.Sc. Computer Science

LEARNING OUTCOME BASED CURRICULUM FRAMEWORK (CBCS-LOCF)

(For the Candidates admitted from the Academic year 2024-2025 and onwards)

er			Course Code	rs.	7.0		Exa	_	
Semester	Course	Course Title		Inst. Hrs. / week	Credits	·	Mar	ks	Total
Ser				Ins / w(Cr	Hrs.	Int.	Ext.	L
	Core Course– I (CC)	Analysis & Design of Algorithms	23PCS1CC1	6	5	3	25	75	100
	Core Course – II (CC)	Object Oriented Analysis and Design & C++	23PCS1CC2	6	5	3	25	75	100
Ι	Core Course –III (CC)	Mathematical and Logical Computing	24PCS1CC3	6	5	3	25	75	100
1	Core Practical - I (CP)	Algorithm and OOPS (P)	23PCS1CC1P	6	5	3	40	60	100
		A. Advanced Software Engineering	23PCS1DSE1A						
l	Discipline Specific Elective Course-I (DSE)	B. Advanced Computer Architecture	23PCS1DSE1B	6	3	3	25	75	100
1		C. Advanced Database Systems	23PCS1DSE1C						
ı		Total		30	23	-	-	-	500
	15 Days INTERNSHIP during Semester Holidays								
	Core Course– IV(CC)	Data Mining and Warehousing	22PCS2CC4	6	5	3	25	75	100
	Core Course– V(CC)	Compiler Design	23PCS2CC5	6	5	3	25	75	100
	Core Choice Course–I	A. Mobile Computing	22PCS2CCC1A		4				
	(CCC)	B. Wireless Sensor Networks	22PCS2CCC1B	6		3	25	75	100
	(666)	C. MANET	22PCS2CCC1C						
II	Core Practical-II(CP)	Data Mining (P)	22PCS2CC2P	6	5	3	40	60	100
11	Division of Flori	A. Cryptography and Network Security	22PCS2DSE2A						100
	Discipline Specific Elective Course-II (DSE)	B. Block chain and Cryptocurrencies	22PCS2DSE2B	6	3	3	25	75	
		C. Ethical Hacking	22PCS2DSE2C	1					
,	Internship	Internship	22PCS2INT	-	2	-	25	75	100
,	Extra Credit Course	SWAYAM	As pe	r UGC	Reco	mm	endati	on	1
		Total		30	24			_	600

ter				Inst. Hrs. / week	its	E		Exam	al
Semester	Course	Course Title	Course Title Course Code		Credits	Hrs	Marks		Total
Se				Ins	\mathbf{C}	H	Int.	Ext.	
	Core Course– VI (CC)	Machine Learning Techniques	23PCS3CC6	6	5	3	25	75	100
	Core Course – VII (CC)	Cloud Computing	22PCS3CC7	6	5	3	25	75	100
		A. Cyber Security	22PGCS3CCC2A						
	Core Choice Course– II	B. IoT	22PCS3CCC2B						
	(CCC)	C. Natural Language Processing	22PCS3CCC2C	5	4	3	25	75	100
	Core Practical - III (CP)	Cloud Computing (P)	23PCS3CC3P	5	4	3	40	60	100
III	Discipline Specific Elective	A. Computer Science for Competitive Examinations	22PCS3DSE3A			2	-	100	
	Course-III (DSE)	B. IoT (P)	22PCS3DSE3BP	5					100
		C. Natural Language Processing (P)	22PCS3DSE3CP		3	3	40	60	
	Generic Elective Course -I (GEC)	Data Analysis (P)	22PCS3GEC1P	3	2	3	40	60	100
	Extra Credit Course	SWAYAM		As p	er UG	C Rec	comme	endation	ı
		Total		30	23	-	-	-	600
	Core Course–VIII (CC)	Big Data Analytics	22PCS4CC8	6	5	3	25	75	100
		A. Robotic Process Automation	22PCS4CCC3A						
	Core Choice Course– III (CCC)	B. Virtual and Augmented Reality	22PCS4CCC3B	6	4	3	25	75	100
IV		C. Digital Image Processing	22PCS4CCC3C						
	Core Practical - IV (CP)	FOSS (P)	22PCS4CC4P	6	5	3	40	60	100
	Generic Elective Course-II (GEC)	Animation (P)	22PCS4GEC2P	3	2	3	40	60	100
	Project	Project Work	23PCS4PW	9	4	-	-	100	100
		Total		30	20				500
		Grand Total		120	90				2200

Courses & Credits for M.Sc. Computer Science Programme

S. No.	Courses	No of Courses	No. of Credits	Marks
1.	Core Course– (CC)	8	40	800
2.	Core Choice Course– (CCC)	3	12	300
3.	Core Practical - (CP)	4	19	400
4.	Discipline Specific Elective- (DSE)	3	9	300
5.	Generic Elective Course - (GEC)	2	4	200
6.	Project	1	4	100
7.	Internship	1	2	100
	Total	22	90	2200

The Internal and External marks for theory and practical courses are as follows:

Course	Internal Marks	External Marks
Theory	25	75
Practical	40	60
Project	-	100
Internship	25	75

For Theory courses:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e. 30 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Practical courses:

- a) The passing minimum for CIA shall be 40% out of 40 marks (i.e. 16 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 60 marks (i.e. 24 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Project Work:

a) The passing minimum not less than 50% out of 100 marks

For Internship:

a) The passing minimum not less than 50% in the aggregate.

Semester: I Internal Marks: 25			External M	ars: 75
COURSE	COURSE TITLE CATEGORY		HOUDS /	CREDITS
CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
23PCS1CC1	ANALYSIS & DESIGN OF ALGORITHMS	CORE	6	5

- To learn the Elementary Data Structures and algorithms
- To understand the basics of an algorithm, their analysis and design
- To inculcate the knowledge of Basic Traversal and Search Techniques, Greedy method, Divide and Conquer method, Dynamic programming and Backtracking

Prerequisite

Basic concepts of data structures and algorithms

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Get knowledge about algorithms and determine their time complexity	K1
CO2	Demonstrate specific search and sort algorithms using divide and conquer technique	K2
CO3	Apply different methods to analyze the algorithm performance	К3
CO4	Compare the concept of various algorithm technique	K4
CO5	Explore the algorithm technique on Real time applications	K5

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	3	1	3	2
CO2	3	3	3	2	3	3	3	2	3	3
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	2	1	2
CO5	3	3	3	3	3	3	3	2	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"-indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: - Algorithm Definition and Specification - Space complexity - Time Complexity - Asymptotic Notation. Elementary Data Structures: Stacks and Queues - Binary Trees - Binary Search Trees - Heaps - Heap sort - Graphs.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Basic Traversal And Search Techniques: Techniques for Binary Trees – Techniques for Graphs. Divide and Conquer: General Method – Binary Search – Merge Sort– Quick Sort.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	The Greedy Method: General Method – Knapsack Problem – Minimum Cost Spanning Trees: Prim's Algorithm – Kruskal Algorithm – Optimal storage on Tapes – Single Source Shortest Paths.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4,
IV	Dynamic Programming: General Method – Multistage Graphs – All Pair Shortest Path – Optimal Binary Search Trees – 0/1 Knapsack – Traveling Sales person Problem – Flow Shop Scheduling.	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4,
V	Back tracking: General Method – 8-Queens Problem – Sum of Subsets – Graph Coloring– Hamiltonian Cycles. Branch And Bound:-The Method–Traveling Sales person.	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4,
VI	Self Study for Enrichment: (Not included for End Semester Examination) NP Hard and NP Complete Problems: Basic Concept — COOK's theorem — NP Hard Graph Problems — NP Hard Code Generation.		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book

1. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekan.(2017). Fundamentals of Computer Algorithms. 2ndEdition, University Press.

Reference Books

- 1. Alfred V. Aho, John E Hopcraft, Jefffrey D. Ullman.(2004). *Data Structures and Algorithms*. Pearson Education.
- 2. Goodrich. Data Structures & Algorithms in Java. 3rdEdition, Wiley.
- 3. Skiena.(2008). The Algorithm Design Manual. 2nd Edition, Springer.
- 4. Anany Levith.(2003). Introduction to the Design and Analysis of algorithm. Pearson Education Asia.
- 5. Robert Sedgewick, Phillipe Flajolet.(1996). *An Introduction to the Analysis of Algorithms*. Addison-Wesley Publishing Company.

Web References

- 1. https://nptel.ac.in/courses/106/106/106106131/
- 2. https://www.tutorialspoint.com/design and analysis of algorithms/index.htm
- 3. https://www.javatpoint.com/daa-tutorial

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer

Ms.P.Muthulakshmi

Semester: I	Internal Ma	rks: 25	External	Mars: 75
COURSE	COURSE TITLE CATEGORY		HOURS /	CREDITS
CODE	COURSETTIEE	CATEGORI	WEEK	CKEDITS
23PCS1CC2	OBJECT ORIENTED ANALYSIS AND DESIGN &C++	CORE	6	5

- To Present the object model, classes and objects, object orientation, machine view and model management view
- To learn the basic functions, principles and concepts of object oriented analysis and design
- To understand C++ language with respect to Object Oriented Analysis and Design

Prerequisites

Basics of Programming and Object Oriented Programming Concepts

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Understand the concept of Object Oriented development and modeling techniques	K1, K2
CO2	Gain knowledge about the various steps performed during object design	K2, K3
CO3	Abstract object-based views for generic software systems	К3
CO4	Link OOAD with C++ language	K4,K5
CO5	Apply the basic concepts of OOPs and familiarize to write C++ program	K5, K6

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	2
CO2	3	2	3	3	2	3	3	2	3	2
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" -indicates there is no Correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	The Object Model: The Evolution of the Object	18	CO1,	K1,
	Model – Elements of the Object Model – Applying		CO2,	K2,
	the Object Model. Classes and Objects: The		CO3,	
I	Nature of an Object – Relationships among		CO4,	
_	Objects- The Nature of Class – Relationship		CO5	K5,
	among Classes – The Interplay of Classes and Objects.			K6
	Introduction to C++-Input and Output in C++- C++	18	CO1,	K1,
	Declarations - Control Structures.		CO2,	K2,
II			CO3,	K3,
11			CO4,	K4,
			CO5	K5,
		1.0	001	K6
	Functions in C++ - Classes and Objects in C++-	18	CO1,	K1,
	Constructors and Destructors—Operator		CO2,	K2,
III	Overloading and Type Conversion.		CO3,	K3, K4,
111			CO ₄ ,	K5,
			CO3	K6,
	Inheritance – Pointers and Arrays-C++ And	18	CO1,	K1,
	Memory: the new and Delete operators –		CO2,	K2,
	Polymorphism and Virtual Functions.		CO3,	K3,
IV			CO4,	K4,
1,			CO5	K5,
				K6
	Applications with Files-Exception Handling -	18	CO1,	K1,
	Working with Strings - Overview of Standard		CO2,	
	Template Library (STL).		CO3,	K3,
V			CO4,	K4,
			CO5	K5,
	Self-StudyforEnrichment:		CO1,	K6 K1,
	-	-	CO1,	K1, K2,
	(Not included for End Semester Examinations)		CO ₂ ,	K3,
VI	Classification: The Importance of Proper		CO4,	K4,
	Classification –Identifying Classes and Objects –		CO5	K5,
	Key Abstractions and Mechanisms.			K6
	Notation: The Unified Modeling Language -			
	Component Diagrams-Deployment Diagrams-Use			
	Case Diagrams-Activity Diagrams-Class			
	Diagrams-Object Diagrams.			

Text Books

- 1. Grady Booch, Robert A. Maksimchuk, Michael W. Engle, BobbiJ. Young, Jim Conallen, Kelli A. Houston. (2014). *Object Oriented Analysis and Design with Applications*. 3rdEdition, Pearson Education. (Unit: I)
- 2. Ashok N.Kamthane.(2009), *Object-Oriented Programming with ANSI & TurboC++*, 7th *Impression*, Pearson Education Limited.(Unit:II V)

Reference Books

- 1. Balagurusamy (2003), Object Oriented Programming with C++, Second Edition, TMH
- 2. Yashwant Kanetkar .(2019). Let Us C++, Third Edition, BPB.

Web References

- 1. https://onlinecourses.nptel.ac.in/noc19 cs48/preview
- 2. https://nptel.ac.in/noc/courses/noc16/SEM2/noc16-cs19/
- 3. https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented_analysis.htm

Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Quiz, Seminar

Course Designer

Ms. K. Pradeepa

Semester I	Internal Marks:	ExternalMarks:75		
COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY		CREDITS
24PCS1CC3	MATHEMATICAL AND LOGICAL COMPUTING	CORE	6	5

- Explore the basic concepts of Discrete Mathematics, Graph Theory.
- Acquire the knowledge of Fundamentals in combinatorics.
- Analyze the method of logical reasoning to solve variety of problems.

Prerequisite

Basic Knowledge in Relations, Functions and Graph Theory.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Define the various concepts in Relations, Combinatorics and Graphs.	K1
CO2	Understand the different terminologies of functions, Predicate Calculus, Recurrence Relations and Graphs and Fuzzy sets.	K2
CO3	Analyze the problems in different aspects and give solutions in their respective streams.	К3
CO4	Examine some methodologies for the related area in an effective manner.	K4
CO5	Apply the notions to distinct problems and get solutions in a easy way.	K5

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	2	2	3	2	2	2	3
CO2	2	2	3	2	2	2	2	2	2	3
CO3	3	2	3	2	2	3	2	2	3	3
CO4	3	2	2	2	2	2	2	2	2	2
CO5	2	2	2	3	3	2	3	3	2	2

[&]quot;1" – Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" indicates there is no correlation.

UNIT	CONTENT	HOU RS	COs	COGNITIVE LEVEL
	Relations:- Binary Relations-Operations on Relations- Propertie		CO1,	K1,
	of Binary Relations in a Set-Equivalence Relations and Partia		CO2,	K2,
I	Orderings— Representation of a Relation by a Matrix	18	CO3,	K3,
	Representation of a Relation by a Digraph. Functions:-More of		CO4,	K4,
	Functions- Some Important Functions.		CO5	K5
			CO1,	K1,
	Foundations:Logic- Predicate Calculus:Well Formed formulas		CO2,	K2,
II	Truth Table of Well Formed Formula –Tautology, Contradiction	18	CO3,	K3,
	and Contingency-Equivalence of Formulas-Algebra o		CO4,	K4,
	Propositions- Normal Forms of Well -Formed Formulas-Rules o Inference for Propositional Calculus.		CO5	K5
	Combinatorics:- Permutations-Combinations-Permutations with		CO1,	K1,
	Repetitions- Combinations with Repetitions -Permutations of set		CO2,	K2,
III	with indistinguishable objects. Recurrence Relations: Formulation	18	CO3,	K3,
	as Recurrence Relations-Solving Recurrence Relation by Iteration		CO4,	K4,
	Solving Recurrence Relations- Solving Linear Homogeneou Recurrence Relations of Order Two.		CO5	K5
			CO1,	K1,
	Cronbs Connected Combs Evenueles of Suscial Combs Evel	18	CO2,	K2,
IV	Graphs -Connected Graphs -Examples of Special Graphs-Eule		CO3,	K3,
	Graphs-Hamiltonian Circuits and Paths.		CO4,	K4,
			CO5	K5
	From Classical(Crisp) Sets to Fuzzy Sets: Fuzzy sets: Basic		CO1,	K1,
	types – Fuzzy sets: Basic Concepts. Fuzzy Sets Versus Crisp		CO2,	K2,
V	Sets: Additional Properties of α – cuts. Operations on Fuzzy	18	CO3,	K3,
	Sets: Types of Operations–Fuzzy Complement.		CO4,	K4,
			CO5	K5
	Self Study for Enrichment:		CO1,	K1,
	(Not included for End Semester Examination)		CO2,	K2,
VI	Hashing Functions-Functionally Complete Sets- Solving Linear	-	CO3,	K3,
	Non homogeneous Recurrence Relations-Crisp sets: An		CO4,	K4,
	Overview		CO5	K5

Text Books

- 1. Chandrasekaran. N, and Umaparvathi. M(2015), *Discrete Mathematics*, PHI Learning Private Limited, NewDelhi.
- 2. George. J. Klir and Bo Yuan(2013), Fuzzy Sets And Fuzzy Logic, Prentice Hall of India, New Delhi.

Chapters and Sections

UNIT-I Chapter 5: Sections 5.1- 5.5, 5.8, 5.9[1]

UNIT-II Chapter 1: Section1.1[1]Chapter 2:Sections2.1-2.5, 2.7, 2.8[1] UNIT-III Chapter 3: Sections3.1-3.5[1]Chapter 6: Sections6.1-6.4[1]

UNIT- IV Chapter 10: Sections 10.1-10.4[1]

UNIT- V Chapter 1: Sections 1.3, 1.4 [2] Chapter 2: Sections 2.1 [2]

Chapter 3: Sections 3.1, 3.2 [2]

Reference Books

- 1. Tremblay, J.P.&Manohar, R. (1997). Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 2. Ralph, P.Grimaldi.(2002). Discrete and Combinatorial Mathematics, Pearson Asia Education.
- 3. Narsingh Deo.(1997). Graph Theory With Applications To Engineering & Computer Science. Prentice Hall of India, New Delhi.
- 4. Ganesh, G.J.M. (2006). *Introduction To Fuzzy Sets And Logic*, Prentice-Hall of India, New Delhi.

Web References

- 1. https://www.youtube.com/results?search_query=negation+of+the+statement
- 2. https://www.youtube.com/results?search_query=permutation
- 3. https://www.youtube.com/results?search query=graph+theory+definitions+and+exa
 mples
- 4. https://www.youtube.com/results?search_query=trees+in+graph+theory
- 5. https://discrete.openmathbooks.org/pdfs/dmoi-tablet.pdf
- 6. https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar.

Course Designer

Dr. S. Saridha

Semester: I	Internal Mar	ks: 25	External Mars: 75		
COURSE CODE	COURSE TITLE CATEGOR		HOURS / WEEK	CREDITS	
23PCS1CC1P	ALGORITHM AND OOPS (P)	CORE	6	5	

- To learn the applications of the data structures using various techniques
- To understand C++ language with respect to Object Oriented Analysis and Design (OOAD) concepts
- T build application of OOPS concepts

Prerequisites

Basic understanding of C++ Programming

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Identify and apply the suitable data structure for the given real world problem	K2, K3
CO2	Able to understand and implement OOPS concepts.	K2,K3
CO3	Apply the concepts of Stack, Queue, Tree, List using C++	К3
CO4	Analyze the concepts of sorting and searching algorithms using relevant data structures.	K4
CO5	Interpret and Solve problem involving graphs, trees and heaps	K6

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	2
CO2	3	2	3	3	2	3	3	2	3	2
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" - Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" -indicates there is no Correlation.

Exercises

- 1. Write a program to solve the Tower of Hanoi using recursion.
- 2. Write a program to traverse through Binary Search Tree using traversals.
- 3. Write a program to perform various operations on Stack using Linked list.
- 4. Write a program to perform various operations in a circular queue.
- 5. Write a program to sort an array of elements using Quick sort.
- 6. Write a program to solve the number of elements in ascending order using Heap sort.
- 7. Write a program to solve the knapsack problem using Greedy method
- 8. Write a program to search an element in a tree using Divide & Conquer strategy.
- 9. Write a program to place the 8 queens on an 8 x 8 matrix so that no two queens Attack.
- 10. Write a C++ program to perform Virtual Function
- 11. Write a C++ program to perform Parameterized Constructor
- 12. Write a C++ program to perform Friend Function
- 13. Write a C++ program to perform Function Overloading
- 14. Write a C++ program to perform Single Inheritance
- 15. Write a C++ program to perform Employee Details using files.

Web References

- 1. https://onlinecourses.nptel.ac.in/noc19 cs48/preview
- 2. https://www.tutorialspoint.com/object_oriented_analysis_design/ooad_object_oriented analysis.htm
- 3. https://www.geeksforgeeks.org/c-plus-plus/?ref=shm
- 4. https://www.tutorialspoint.com/cplusplus-program-to-implement-stack-using-linked-list
- 5. https://webeduclick.com/cpp-program-tower-of-hanoi-using-recursion/

Pedagogy

Power Point Presentation, Live Demonstration

Course Designer

Ms. S.Saranya

Semester: I	Internal Ma	rks:25	External	Marks:75
COURSE CODE	COURSE TITLE CATEGORY		HOURS / WEEK	CREDITS
23PCS1DSE1A	ADVANCED SOFTWARE ENGINEERING	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To learn the concepts of Software Engineering
- To provide the idea of decomposing the given problem into Analysis, Design, Testing and Maintenance phases
- To inculcate knowledge on Software Project Management, Software Design & Testing

Prerequisites

Basics of Software Engineering & Software Project Management

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO	CO Statement	Cognitive Level
Number		
CO1	Understand about Software Engineering process	K1, K2
CO2	Make use of Software Project Management Skills, Design and Quality Management	К3
CO3	Analyze on Software Requirements and Specification	K4
CO4	Analyze and Compare Software Testing, Maintenance and Software Re-Engineering	K4, K5
CO5	Design and conduct various types and levels of software quality or a software project	K5, K6

COs	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	2	2	3	3	3	2	2	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no Correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: The Problem Domain – Software Engineering Challenges - Software Engineering Approach. Software Processes: Software Process – Characteristics of a Software Process – Software	16	CO1, CO2, CO3, CO4,	K1, K2, K3, K4,
	Development Process Models – Other software processes.		CO5	K5, K6
II	Requirements Analysis and Specification: Requirements Gathering and Analysis- Software Requirements Specification (SRS) - Formal System Specification - Axiomatic Specification - Algebraic Specification. Software Quality Management: Software Quality-Software Quality Management System-ISO 9000 - SEI Capability Maturity Model.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	Software Project Management: Responsibilities of a Software Project Manager – Project Planning – Metrics for Project Size Estimation – Project Estimation Techniques – Empirical Estimation Techniques – COCOMO – Halstead's Software Science – Staffing Level Estimation – Scheduling– Organization and Team Structures – Staffing – Risk Management – Software Configuration Management.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	Software Design: Outcome of the Design Process - Characteristics of a good software design - Cohesion and Coupling -Layered Arrangement of Modules- Function Oriented Design - Object Oriented Design. Function Oriented SoftwareDesign: Structured Analysis-Structured Design-Detailed Design-Design Review.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
V	Software Testing: Basic concepts and Terminologies – Design Test Cases: Functional testing– Structural testing – Levels of testing: Unit testing, Integration Testing and System Testing – Debugging–Program Analysis tools-Some General Issues Associated with Testing: Regression testing. Software Maintenance: Characteristics of Software Maintenance – Software Reverse Engineering – Software Maintenance Process Models: Software Re-engineering.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self-Study for Enrichment: (Not included for End SemesterExaminations) Requirement engineering -Strategy of Design- IEEE Recommended Practice for Software Design Descriptions - Reliability Estimation. Case Study: Student Result Management System.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,

Text Books

- 1. Pankaj Jalote, (2005). *An Integrated Approach to Software Engineering*, 3rd Edition, Springer Science + Business Media. (Unit: I)
- 2. Rajib Mall,(2018). Fundamentals of Software Engineering, 5thEdition, PHI Learning Private Limited. (Unit: II V)

Reference Books

- 1. K.K.Aggarwal and Yogesh Singh,(2005). *Software Engineering*. Revised 2nd Edition, New Age International Publishers.
- 2. R.S.Pressman(2010). A Practitioner's Approach-Software Engineering. McGraw-Hill Higher Education.
- 3. Carlo Ghezzi.M, Jazayeri, D.Mandrioli (2010). Fundamentals of Software Engineering, PHI Publication

Web References

- 1. https://www.javatpoint.com/software-engineering-tutorial
- 2. https://onlinecourses.swayam2.ac.in/cec20_cs07/preview
- 3. https://onlinecourses.nptel.ac.in/noc19 cs69/preview
- 4. https://www.google.co.in/books/edition/FUNDAMENTALS_OF_SOFTWARE_ENGINEER ING FIF/-
- 5. https://www.google.co.in/books/edition//pJc3xKQfD-MC?hl=en&gbpv=1

Pedagogy

Chalk & Talk, PPT, Group Discussion, Seminar and Assignment

Course Designer

Dr.K.Reka

Semester: I	Internal Ma	arks: 25	External	Marks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
23PCS1DSE1B	ADVANCED COMPUTER ARCHITECTURE	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To understand the micro-architectural design of processors
- To learn about the various techniques used to obtain performance improvement and power savings in current processors
- To gain knowledge in distributed and Parallel Computing Architecture

Prerequisites

Basic Knowledge about Microprocessor

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO 1	Remember and Understand the computer architecture	K1, K2
CO 2	Interpret and Experiment with different pipelined processor	K2, K3, K5
CO3	Organize and Analyze the architectural features of advanced processors	K3, K4
CO 4	Examine and Evaluate the cache and memory related issues in multiprocessors	K4, K5
CO 5	Assess the historical and current developments in computer architecture and adopt to the needs	K5, K6

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	3	3	3	3	3	3
CO 2	3	2	3	2	3	2	3	2	2	3
CO3	2	3	2	3	2	3	3	3	3	3
CO 4	3	3	3	2	3	3	3	3	2	2
CO 5	2	3	3	3	2	2	3	3	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Fundamentals of Quantitative Design and Analysis: Classes of Computers - Defining Computer Architecture-Trends in Technology, Power, Energy and Cost - Dependability- Measuring, Reporting, and summarizing Performance - Quantitative Principles of Computer Design	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
II	Instruction-Level Parallelism: Concepts and Challenges – Basic Compiler Techniques for Exposing ILP – Reducing Branch Costs with Advanced Branch Prediction - Overcoming Data Hazards with Dynamic Scheduling-Hardware-Based Speculation - Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
III	Data-Level Parallelism in Vector SIMD and GPU Architectures: Vector Architecture - SIMD Instruction Set Extensions for Multimedia -Graphics Processing Units- Detecting and Enhancing Loop-Level Parallelism	19	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
IV	Thread-Level Parallelism: Centralized Shared-Memory Architectures-Performance of Symmetric Shared-Memory multiprocessor-Distributed Shared-Memory and Directory-Based Coherence-Synchronization-Models of Memory Consistency	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
V	Warehouse-scale Computers to Exploit Request Level and Data-Level Parallelism:Programming Models and Workloads for Warehouse-Computer Architecture of Warehouse-Scale Computers – The Efficiency and cost of Warehouse-Scale Computers	17	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
VI	Self Study for Enrichment (Not included for End Semester Examinations) Historical Perspectives Quantitative Design and Analysis: Limitations of Instruction-Level Parallelism and Its Exploitation-Fallacies and pitfalls of Data-Level Parallelism in Vector-Cross Cutting Issues in Thread - Level Parallelism-Using Energy Efficiency inside the server.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,

Text Book

1. John L Hennessey, David A Patterson (2019). Computer Architecture A Quantitative Approach. Sixth Edition, Morgan Kaufmann Elsevier.

Reference Books

- 1. Kai Hwang, Faye Brigg(2000). *Computer Architecture And Parallel Processing*. International Edition, McGraw-Hill.
- 2. SimaD, Fountain T, Kacsuk P(2000). Advanced Computer Architectures: A Design Space Approach. Addison Wesley.

Web References

- 1. www.cs.iiie.edu.in/
- 2. https://passlab.githlub.io/CSE565/note

Pedagogy

Chalk and talk & Seminar

Course Designer

Ms. A. Jabeen

Semester: I	Internal Marks: 25		External Mar	ks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
23PCS1DSE1C	ADVANCED DATABASE SYSTEMS	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To inculcate knowledge in Transaction Management with ACID properties
- To learn about advanced concepts of Database Management System
- To gain Knowledge in Information retrieval using XML and Internet Databases

Prerequisites

Basic knowledge about Relational Database Management Systems.

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level	
CO1	CO1 Remember and Understand the concepts of databases		
CO2	Demonstrate and make use of different kinds of databases	K2, K3	
CO3	Identify and analyze databases for real life applications	K3, K4	
CO4	Compare and evaluate the performance of databases based on its transaction and concurrency control feature	K4, K5	
CO5	Interpret and develop parallel, distributed, object oriented And advanced databases for handling real time data	K5, K6	

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	2	3	2	3	3	3	2	2	3
CO3	2	3	2	3	2	3	3	3	3	3
CO4	3	3	3	2	3	2	3	3	2	2
CO5	2	3	3	3	2	3	3	3	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Transactions Management: Transaction Concepts – A	18	CO1,	K1,
	Simple Transaction Model - Transaction Atomicity and		CO2,	K2,
I	Durability - Transaction Isolation- Serializability		CO3,	K3,
1	Transaction Isolation and Atomicity. Concurrency		CO4,	K4,
	Control: Lock based Protocols – Deadlock Handling –		CO5	K5,
	Multiple Granularity - Timestamp - Based Protocols -			K6
	Validation - Based Protocols.			
	Parallel Databases: I/O Parallelism – Interquery	16	CO1,	K1,
	Parallelism - Intraquery Parallelism - Intraoperation		CO2,	K2,
	Parallelism-Interoperation Parallelism- Query		CO3,	K3,
II	Optimization - Design of Parallel Systems - Parallelism		CO4,	K4,
	on Multicore Processors		CO5	K5,
				K6
	Distributed Databases: Homogeneous and	20	CO1,	K1,
	Heterogeneous Databases - Distributed Data Storage -		CO2,	K2,
111	Distributed Transactions - Commit Protocol -		CO3,	K3,
III	Concurrency Control in Distributed Databases-		CO4,	K4,
	Availability - Distributed Query Processing-		CO5	K5,
	Heterogeneous Distributed Databases-Cloud Based			K6
	Databases - Directory Systems			
	Object Based Databases: Complex Data Types -	18	CO1,	K1,
	Structured types and Inheritance in SQL - Table		CO2,	K2,
IV	Inheritance - Array and Multiset Types in SQL - Object		CO3,	K3,
	Identity and Reference Types in SQL - Implementing		CO4,	K4,
	O-R features-Object Relational Mapping - Object-		CO5	K5,
	Oriented versus Object-Relational.			K6
	XML: Extensible Markup Language: Structured,	18	CO1,	K1,
	Semi Structured and Unstructured Data - XML		CO2,	K2,
V	Hierarchical (Tree) Data Model - XML Documents,		CO3,	K3,
V	DTD, XML Schema - Storing and Extracting XML		CO4,	K4,
	documents from Databases-XML Languages -		CO5	K5,
	Extracting XML documents from Relational Databases.			K6
	Self Study for Enrichment	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
VI	Case Studies: SQL - MYSQL -Oracle - PostgreSQL-		CO3,	K3,
'1	NOSQL -DynamoDB- MongoDB.		CO4,	K4,
	-		CO5	K5,
				K6

Text Books

- 1. Abraham Silberschatz., Henry F. Korth. S. Sudarshan (2013). *Database System Concepts*.6thEdition, McGraw Hill.(Unit I IV)
- 2. Ramez Elmasri, Shamkant. B. Navathe (2015). *Fundamentals of Database Systems*. 6th Edition, Pearson Education. (Unit V)

Refernce Books

- 1. Thomas Connolly, Carolyn Begg. (2015). *Database Systems, A Practical Approach to Design, Implementation and Management*. 6thEdition, Pearson Education.
- 2. Raghu Ramakrishnan, Johannes Gehrke. (2007). *Database Management System*. 3rd Edition, McGraw Hill Higher Education.

Web References


- 1. https://www.exploredatabase.com/p/advanced-database-concepts
- 2. https://www.wideskills.com/introduction-to-database

Pedagogy

Chalk and talk, Lecture, Discussion, Quiz, Demonstration, and PPT

Course Designer

Ms. R. Sridevi

Semester II	Internal Ma	rks: 25	External M	arks:75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PCS2CC4	DATA MINING AND WAREHOUSING	CORE	6	5

- Able to understand the data sets and data preprocessing
- Demonstrate the working of algorithms for data mining tasks such as association rule mining, classification, clustering and regression
- Exercise the data mining techniques with varied input values for different parameters
- Ability to apply mining techniques for realistic data
- To prepare the students for building career in data warehousing and data mining areas

Prerequisites

Basic knowledge in Probability, Programming Languages and Database concepts

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO 1	Recognize the basic concepts and functionality of data mining and warehousing.	K1, K2
CO 2	Identify and Choose appropriate data mining techniques	K2, K3
CO 3	Apply and Analyse the suitable solution to the problem	K3, K4
CO 4	Build and Justify the results produced by data mining	K3, K5
CO 5	Categorize and evaluate skills in selecting the appropriate data mining algorithm for solving practical problems	K4, K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	2	2	3	3	3	2	2
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"-indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: Data mining — Kinds of data to be mined— Kinds of patterns to be mined— Kinds of Applications to be targeted-Major Issues in Data mining—Data mining Trends and Research Frontiers: Other Methodologies — Data mining Applications—Data mining Trends.	16	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5,
II	Data Pre-Processing: Data Cleaning—Data Integration—Data Reduction: Overview of Data Reduction Strategies Wavelet Transforms — Principle Component Analysis Attribute Subset Selection—Data Transformation and Data Discretization: Data Transformation Strategies Overview — Data Transformation by Normalization. Mining Frequent Patterns, Associations and Correlations: Basic concepts — Frequent Itemset Mining Methods-Pattern Evaluation Methods.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	Advanced Pattern Mining: Pattern Mining: A Road Map — Pattern Mining in Multilevel, Multidimensional Space-Constraint-Based Frequent Pattern Mining. Data Warehousing: Basic Concepts — Data Warehouse Modeling: Data cube and OLAP — Data Warehouse Design and usage.	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5,
IV	Classification: Basic concepts- Decision Tree Induction - Bayes Classification Methods - Rule Based Classification - Model Evaluation and Selection-Techniques to improve Classification Accuracy - Classification using Frequent Patterns.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
V	Cluster analysis: Basic concepts and methods – Cluster analysis – Partitioning methods - Hierarchical Methods – Density Based Methods-Grid Based Methods-Evaluation of Clustering.	20	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5,
VI	Self Study for Enrichment (Not included for End Semester Examinations) Classification: Advanced Methods: Classification by Back Propagation – Support Vector Machines –K - Nearest-Neighbor Classifiers – Genetic algorithms. Advanced Cluster Analysis: Clustering High Dimensional data. Outlier Detection: Outlier and Outlier Analysis.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Book

1. Jiawei Han, Micheline Kamber, JianPei. (2019). *Data Mining: Concepts and Techniques*. Third Edition, Morgan Kaufman Publishers.

Reference Books

- 1. Margaret H. Dunham. (2006). Data Mining Introductory and Advanced Topics. Pearson Education.
- 2. C. S. R. Prabhu (2010). Data Warehousing: Concepts, Techniques, Products and Applications, Second Edition, PHI Learning Private Ltd.
- 3. K.P.Soman, Shyam Diwakar, V.Ajay. (2010). *Insight into Data Mining Theory and Practice*. First Edition, PHI Learning Private Ltd.

Web References

- 1. www.tutorialride.com/data-mining/data-mining-tutorial.htm
- 2. https://hanj.cs.illinois.edu/bk3/bk3 slidesindex.htm
- 3. www.guru99.com/datawarehouse-architecture.htm
- 4. www.tutorialpoint.com/dwh/dwh data warehousing.htm

Pedagogy

Chalk and Talk, Group discussion, Seminar& Assignment.

Course Designer

Ms. S. Udhaya Priya

Semester: II	Internal Mar	ks: 25	External Marks: 75 HOURS / WEEK CREDITS		
COURSE CODE	COURSE TITLE	CATEGORY		CREDITS	
22PCS3CC6 / 23PCS2CC5	COMPILER DESIGN	CORE	6	5	

- To enrich the knowledge in various development phases of compiler and its uses
- To learn Code optimization techniques, machine code generation and use of symbol table
- To identify the similarities and differences among various parsing techniques and grammar transformation techniques

Prerequisites

Basic Knowledge in Programming Languages, Data Structures and Discrete Mathematics

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Understand the structure of compiler, applications of finite automata, regular expressions, Grammar and identify the significance of different phases of the compiler.	K1, K2
CO2	Demonstrate the construction of finite automaton, various parsing, intermediate, target code generation and code optimization techniques.	K2
СО3	Construct the finite automaton, various parsing tables and develop intermediate and target code by using storage Allocation strategies.	K3, K4
CO4	Analyze and explain the relationship among the phases of compiler, various parsing and code optimization techniques	K4, K5
CO5	Assess and Recommend tools, methods, and techniques to build compiler	K4, K5

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	2	3	3	3	3	2
CO4	3	3	3	3	2	3	3	3	3	2
CO5	3	3	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-"indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction to Compiler— The Structure of a Compiler — Lexical Analysis: The Role of the Lexical Analyzer — Specification of Tokens—Finite Automata— Nondeterministic Finite Automata—Deterministic Finite Automata—From Regular Expressions to Automata-Conversion of an NFA to a DFA-Construction of an NFA from Regular Expression	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Syntax Analysis: The Role of the Parser-Context Free Grammars-Verifying the language generated by a grammar-Context Free Grammars versus Regular Expressions-Writing a Grammar-Eliminating ambiguity -Elimination of Left Recursion-Left Factoring — Top-Down Parsing-Recursive Descent Parsing — Nonrecursive Predictive Parsing- Bottom-Up Parsing- Shift-Reduce Parsing	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	LR Parsers- The LR-Parsing algorithm-Constructing SLR Parsing tables-Canonical LR(1) Parsing tables-Constructing LALR Parsing tables. Syntax-Directed Translation: Inherited and Synthesized Attributes – Dependency Graphs – S-Attributed Definitions – L-Attributed Definitions – Construction of syntax trees- Syntax Directed Translations Schemes	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Intermediate-Code Generation: Variants of Syntax trees – Three Address code – Types and Declarations - Translation of Expressions – Type Checking - Control Flow – Back patching - Switch Statements – Intermediate Code for Procedures.	16	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
V	Code Generation: Issues in the design of a Code Generator - Basic Blocks and Flow graphs— Optimization of Basic Blocks- The DAG Representation of Basic Blocks - Peephole Optimization	16	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Compiler Construction tools -Input buffering- Recognition of tokens- Symbol Tables - Lexical analyzer Generator Lex-Parser Generator YACC. Error recovery in Parsing — Run time Environments- Storage organization- The target machine - A simple code generator.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book

1. Alfred V. Aho, Monica S.Lam, Ravi Sethi and Jeffrey D. Ullman, (2013). "Compilers - Principles, Techniques and Tools", Second Edition, Pearson Education.

Reference Books

- 1. Kennath C. Louden,(2006). "Compiler Construction: Principles and Practice", Vikas publishing House.
- 2. S. Godfrey Winster, S.Aruna Devi, R.Sujatha,(2020). "Compiler Design", Second Edition, Yesdee Publishers.
- 3. Raghavan V, (2017). "Principles of Compiler Design" Tata McGraw Hill Education Pvt. Ltd.

Web References

- 1. https://www.geeksforgeeks.org/introduction-of-finite-automata/
- 2. https://www.slideshare.net/appasami/cs6660-compiler-design-notes?next_slideshow=1
- 3. https://www.javatpoint.com/lr-parser
- 4. https://www.tutorialspoint.com/compiler design/compiler design phases of compiler.htm
- 5. https://byjus.com/gate/intermediate-code-generation-in-compiler-design-notes/
- 6. https://www.youtube.com/watch?v=F9ZoFP7D474
- 7. https://www.codingninjas.com/codestudio/library/code-generation-4403

Pedagogy

Chalk & Talk, PPT, Group Discussion, Seminar and Assignment

Course Designer

Ms. K. Sangeetha

Semester II	Internal M	larks: 25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS	
22PCS2CCC1A	MOBILE COMPUTING	CORE CHOICE	6	4	

- To understand Wireless networks GSM, UMTS and WAP Architecture
- To gain basic knowledge about Android Application Development
- To create real time application using Content Providers

Prerequisites

Java, Computer Fundamentals and Networking

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO	CO Statement	Cognitive
Number		Level
CO 1	Define and Outline the Mobile Computing frameworks	K1, K2
CO 2	Demonstrate the network concepts and Identify Routing protocols	K2, K3
CO 3	Identify and Analyze the basics of Android Programming	K3, K4
CO 4	Examine and Assess the Interfaces for the Android platform	K4, K5
CO 5	Explain and Build the key Android programming concepts	K5, K6

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	3	2	3	3	3	2	3
CO 2	3	3	3	3	3	3	3	2	3	3
CO3	3	3	3	3	3	3	3	3	2	3
CO 4	3	3	3	2	3	3	2	3	3	3
CO 5	3	3	2	2	3	3	3	2	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: Applications- Simplified Reference Model – Wireless Transmission: Signal Propagation- Path Loss of Radio Signals-Multipath Propagation- Multiplexing – Modulation- Cellular Systems- Telecommunication Systems: GSM – System Architecture- Handover – Security. Satellite Systems: Applications— Basics.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Wireless LAN: Advantages- Disadvantages- Design Goals- IEEE 802.11 — System Architecture-MAC Frames — MAC Management — Synchronization - Power Management — Roaming -Bluetooth - Architecture. Mobile Network Layer: Mobile IP-Goals — Entities and Terminology—IP Packet Delivery — Agent Advertisement and Discovery-Registration — Adhoc Networks — Routing - Routing Strategies-Destination Sequence Distance Vector — Dynamic Source Routing- Hierarchical Algorithms - Alternative Metrics.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Getting started with Android Programming: Introduction to Android – Obtaining the Required Tools-Creating an Android Application-Anatomy of an Android Application. Activities, Fragments, and Intents: Understanding Activities-Applying styles and Themes to an activity-Hiding the activity title- Displaying a dialog window-Displaying a progress dialog-Linking Activities Using Intents –Resolving Intent Filter collision-Returning Intents from an Intent-Fragments.	21	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Getting to know the Android User Interface: Understanding the Components of a Screen-Adapting to Display Orientation - Managing Changes to Screen Orientation -Designing user interface with views: Using Basic Views - Using Picker Views-Using List Views to Display Long Lists.	21	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
V	Displaying Pictures and Menus with Views: Using Image views to display Pictures-Some additional views. Content Providers: Sharing Data in Android-Messaging: SMS Messaging-Sending SMS messages programmatically- Getting feedback after sending a message-Receiving SMS message- Sending E-mail-Location Based Services: Displaying Maps	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	(Not included for End Semester Examinations) Data Persistence: Creating and using databases. Content Providers: Sharing data in Android-Using Content Provider. Developing Android services: Creating own services-Establishing communication between a service and an activity-Binding activity to services.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Jochen H.Schiller.(2014). *Mobile Communications*. 2nd Edition, Addison Wesley Pearson Education.
- 2. Wei Meng Lee.(2012). *Beginning Android 4 Application Development*. 1st Edition, Wiley India Pvt Ltd.

Reference Books

- 1. Raj Kamal.(2012), Mobile Computing, 2nd Edition, Oxford University Press.
- 2. Asoke K Talukder, Hasan Ahmed, Roopa R Yavagal(2010). *Mobile Computing*. 2nd Edition, Tata McgrawHill Publishing Company Limited.

Web References

- 1. https://www.tutorialspoint.com/gsm/gsm architecture.html
- 2. https://www.geeksforgeeks.org/advantages-and-disadvantages-of-wlan
- 3. http://developer.android.com/guide/
- 4. http://developer.android.com/reference/packages.html

Pedagogy

Chalk and Talk, Lecture, Group Discussion, e-Contents-Power point, Demonstration

Course Designer

Ms.K.Pradeepa

Semester II	Internal M	larks: 25	External M	arks:75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PCS2CCC1B	WIRELESS SENSOR NETWORKS	CORE CHOICE	6	4

- To get a thorough knowledge about sensors and its architecture
- To learn the characteristics of wireless transmission
- To understand the working of MAC and Routing Protocols for sensor networks
- To gain knowledge in Transport layer, QoS and Security for sensor networks

Prerequisites

Basic knowledge in Data Communication Networks

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Cognitive Level
CO 1	List and Summarize the applications, challenges of wireless sensor networks	K1, K2
CO 2	Interpret and Make use of the architecture for the wireless networks	K2, K3
CO 3	Apply and Correlate the concepts in sensor networking	K3, K4
CO 4	Categorize and compare the different routing protocols	K4, K5
CO 5	Evaluate and Conclude the QoS in wireless networks	K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	3	2	3	3	3	2	3
CO2	3	3	3	3	3	3	3	2	3	3
CO3	3	3	3	3	3	3	3	3	2	3
CO4	3	3	3	2	3	3	2	3	3	3
CO5	3	3	2	2	3	3	3	2	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Introduction: Application Examples-Types of	18	CO1,	K1,
I	Applications -Challenges for Wireless Sensor		CO2,	K2,
	Networks-Why are sensor networks different-		CO3,	K3,
	Single-node architecture: Hardware components		CO4,	K4,
			CO5	K5
	Single-Node Architecture: Energy Consumption	18	CO1,	K1,
	of Sensor Nodes - Operating Systems and		CO2,	K2,
II	Execution Environments- Network Architecture:		CO3,	K3,
	Sensor Network Scenarios-Design principles of		CO4,	K4,
	WSNs.		CO5	K5
	MAC Protocols: Fundamentals of MAC Protocol	18	CO1,	K1,
	- Low Duty Cycle Protocols and Wakeup		CO2,	K2,
III	Concepts-Contention-based protocols -The IEEE		CO3,	K3,
	802.15.4 MAC protocol		CO4,	K4,
			CO5	K5
	Routing protocols: Energy efficient unicast-	18	CO1,	K1,
	Broadcast and multicast-Geographic routing.		CO2,	K2,
IV	Data-centric and content based Networking:		CO3,	K3,
	Data centric routing		CO4,	K4,
		1.0	CO5	K5
	Transport Layer and Quality of Service: QoS-	18	CO1,	K1,
	Transport protocols-Sensing models-Coverage		CO2,	K2,
	measures-Reliable data transport-Single packet		CO3,	K3,
V	delivery-Congestion situations in sensor networks.		CO4, CO5	K4, K5
	Advanced application support: Security		003	K.S
	Fundamentals-Security considerations in wireless			
	sensor networks -DoS Attacks			
	Self Study for Enrichment	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
VI	Link Layer Protocols: Fundamentals-Tasks and		CO3,	K3,
	requirements-Error control-Framing-Link		CO4,	K4,
	Management		CO5	K5
	141ming Cilicit			

Text Book

1. Holger Karl, Andreas Willig (2015). *Protocols and Architectures for Wireless Sensor Networks*. Student Edition, John Wiley & Sons.

Reference Books

- 1. Waltenegus Dargie, Christian Poellabauer (2010). *Fundamentals of Wireless Sensor Networks Theory and Practice*. 1st Edition, John Wiley and Sons.
- 2. Xiang-Yang Li (2008). Wireless Ad Hoc and Sensor Networks: Theory and Applications. Illustrated Edition, Cambridge University Press.
- 3. Feng Zhao, Leonidas J.Guibas (2007). Wireless Sensor Networks-An Information Processing. 1st Edition, Elsevier.
- 4. Kazem Sohraby, Daniel Minoli, Taieb Znati (2007). Wireless Sensor Networks Technology, Protocols, and Applications. Student Edition, John Wiley and sons.
- 5. Anna Hac (2003). Wireless Sensor Network Designs. 1st Edition, John Wiley and sons.

Web References

- 1. https://www.intechopen.com/chapters/38793
- 2. https://www.geeksforgeeks.org/wireless-sensor-network-wsn/
- 3. https://nptel.ac.in/courses/106105160
- 4. http://www.tfb.edu.mk/amarkoski/WSN/Kniga-w02

Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Quiz and Seminar

Course Designer

Dr. D. Radhika

Semester II	Internal M	larks: 25	External M	arks:75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PCS2CCC1C	MANET	CORE CHOICE	6	4

- To understand the principles of adhoc networks
- To get a knowledge of routing protocols and their performance
- To gain knowledge about battery management schemes
- To identify the issues and solutions of transport layer

Prerequisites

Computer Networks

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Cognitive Level
CO 1	Recall and Understand the fundamentals of Mobile ad-hoc Networks.	K1, K2
CO 2	Identify and analyze the current features of MANET and WSN	K3, K4
CO 3	Determine and Classify the functions of various routing protocols and their implications	K3, K4
CO 4	Identify the issues of architecture and its protocol, and Design solutions to overcome the issues	K3, K5
CO 5	Discriminate the current trends in MANETs and WSNs from industry and research point of views.	K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO ₁	2	3	3	3	1	3	3	2	3	1
CO2	2	3	3	2	2	3	3	2	3	2
CO3	2	3	3	2	2	3	2	2	2	2
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Introduction: Fundamentals of Wireless	14	CO1,	K1,
	Communication Technology – The Electromagnetic		CO2,	K2,
I	Spectrum – Radio Propagation Mechanisms – Characteristics of the Wireless Channel – IEEE 802		CO4,	K3,
1	Networking Standard – Ad Hoc Networks:		CO5	K4
	Introduction – Issues in Ad Hoc Wireless Networks –			K5
	Ad Hoc Wireless Internet			
	Routing Protocols for Ad Hoc Wireless Networks:	16	CO1,	K1,
	Issues in Designing a Routing Protocol for Ad Hoc		CO2,	K2,
II	Wireless Networks – Classifications of Routing Protocols – Table–Driven Routing Protocols – On-		CO3,	К3,
	Demand Routing Protocols - Hybrid Routing Protocols.		CO4,	K4,
	2 chang 110000012 11, ond 110 and 110		CO5	K5
	Multicast Routing in Ad Hoc Wireless Networks:	20	CO1,	K1,
	Issues in Designing a Multicast Routing Protocol –		CO2,	K2,
III	Classifications of Multicast Routing Protocols – Tree– Based Multicast Routing Protocols– Mesh–Based		CO3,	К3,
	Multicast Routing Protocols— Mesii—Based Multicast Routing Protocols— Energy—Efficient		CO4,	K4,
	Multicasting.		CO5	K5
	Transport layer and Security Protocols for Ad Hoc	20	CO1,	K1,
	Wireless Networks: Issues in Designing a Transport		CO2,	K2,
	Layer Protocol for Ad Hoc Wireless Networks -		CO3,	K3,
IV	Classification of Transport Layer Solutions – Network Security Requirements - Security in Ad Hoc Wireless		CO4,	K4,
	Networks - Network Security Attacks - Secure Routing		CO5	K5
	in Ad Hoc Wireless Networks – Quality of Service in			
	Ad Hoc Wireless Networks: Network Layer Solutions	20	G 0 1	77.1
	Energy Management in Ad Hoc Wireless Networks: Battery Management Schemes-Transmission Power	20	CO1,	K1,
	Battery Management Schemes-Transmission Power Management Schemes-Recent advances in Wireless		CO2,	K2,
V	Networks: Ultra-Wide-Band Radio Communication-		CO4,	K3,
	Wireless Fidelity Systems.		CO5	K4,
				K5
	Self Study for Enrichment	-	CO1,	K1,
	(Not included for End Semester Examinations) Wireless Sensor Networks: Sensor Network		CO2,	K2,
VI	Architecture – Data Dissemination – Data Gathering –		CO3,	K3,
, ,	MAC Protocols for Sensor Networks – Location		CO4,	K4,
	Discovery - Quality of Sensor Networks - Evolving		CO5	K5
	Standards – Other Issues.			

Text Book

1. C.Siva Ram Murthy, B.S.Manoj (2014). *Ad hoc Wireless Networks Architectures and protocols*. Pearson Education.

Reference Books

- 1. Stefano Basagni, Marco Conti, Silvia Giordano (2015). *Mobile Ad Hoc Networking: The Cutting Edge Directions*. 2nd Edition, Wiley India.
- 2. Mohamad Taha Sultan (2018). Wireless Technologies in Mobile Ad-Hoc Networks. Globe Edit.

Web References

- 1. https://www.tutorialspoint.com/what-is-ad-hoc-network
- 2. https://www.javatpoint.com/mobile-adhoc-network
- 3. https://www.geeksforgeeks.org/introduction-of-mobile-ad-hoc-network-manet/
- 4. http://et.engr.iupui.edu/~dskim/manet/

Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment

Course Designer

Ms. R. Sangeetha

Semester II	Internal M	Iarks: 40	External Ma	arks: 60
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PCS2CC2P	DATA MINING (P)	CORE	6	5

- Exposure on Solving of data science problems
- Analyze real life data sets for analysis and prediction.
- Able to explore data using Python and R

Prerequisites

Data Mining, Python and R languages

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO	CO Statement	Cognitive
Number		Level
CO 1	Interpret on data insights to evaluate preprocessing techniques	K2
CO 2	Identify various algorithms used in information analysis of data	К3
	mining Techniques	
CO 3	Evaluate the performance of various data mining algorithms	K5
CO 4	Visualize the results produced by data mining techniques	K6
CO 5	Formulate library functions of Python and R	K6

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	2	3
CO4	3	3	3	3	2	3	3	3	3	2
CO5	3	3	3	3	3	3	3	3	2	2

[&]quot;1"-Slight (Low) Correlation
"3"-Substantial (High) Correlation

[&]quot;2"—Moderate (Medium) Correlation "-"indicates there is no Correlation.

Exercises

R

- 1. Built in functions
- 2. Operators
- 3. Looping statements
- 4. Reading and Writing Different Types of Datasets
- 5. Correlation and Covariance
- 6. Classification
- 7. Clustering
- 8. Visualizations

PYTHON

- 1. To compute central tendency and dispersion measures.
- 2. Implement python libraries.
- 3. Data Preprocessing
- 4. Implement Simple Linear and Multiple Linear Regressions.
- 5. Implement decision tree
- 6. Implement KNN
- 7. Implement K-means clustering
- 8. Implement Association Rule Mining

Web References

- 1. https://www.springboard.com/blog/data-science/data-mining-python-tutorial/
- 2. https://dzone.com/refcardz/data-mining-discovering-and
- 3. https://www.rdatamining.com/
- 4. https://edisciplinas.usp.br/pluginfile.php/

Pedagogy

Demonstration

Course Designer

Ms. S.Udhaya Priya

Semester II	Internal M	larks: 25	External Ma	arks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PCS2DSE2A	CRYPTOGRAPHY AND NETWORK SECURITY	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To overview the principles of Network Security
- To inculcate the encryption standards and techniques
- To gain knowledge in establishing IP security

Prerequisites

Computer Networks

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Cognitive Level
CO 1	Understand and state the Network security concepts	K1, K2
CO 2	Classify and apply network security principles	K2, K3
CO 3	Interpret and analyze network security protocols	K3, K4
CO 4	Examine and Defend network security threat	K4, K5
CO 5	Interpret with various network security applications	K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	2	2	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	2	2	3	3	2	3	2
CO5	3	3	3	2	3	3	3	3	3	3

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Computer and Network Security concepts:	18	CO1,	K1,
	Computer security concepts-The OSI Security		CO2,	K2,
	architecture-Security Attacks - Security Services -		CO3,	K3,
I	Security Mechanisms-A model for Network Security.		CO4,	K4,
	Classical Encryption Techniques: Symmetric Cipher		CO5	K5
	Model-Substitution Techniques -Transposition			
	Techniques –Steganography.			
	Block Ciphers and the Data Encryption Standard:	20	CO1,	K1,
	Traditional Block Cipher Structure-The Data		CO2,	K2,
II	Encryption Standard-A DES Example -The Strength		CO3,	K3,
11	of DES-Block cipher design Principles- Public key		CO4,	K4,
	cryptography and RSA: Principles of Public Key		CO5	K5
	Cryptosystems – The RSA Algorithm.			
	Digital Signatures: Digital signatures-Mutual Trust:	20	CO1,	K1,
	X.509 Certificates-Public Key Infrastructure. User		CO2,	K2,
III	Authentication: Remote User-Authentication		CO3,	K3,
111	Principles-Remote User-Authentication Using		CO4,	K4,
	Symmetric Encryption-Kerberos-Remote User-		CO5	K5
	Authentication Using Asymmetric Encryption.			
	Network Access Control and Cloud Security: Cloud	20	CO1,	K1,
	Computing-Cloud Security Risks and		CO2,	K2,
IV	Countermeasures. Transport-Level Security: Web		CO3,	K3,
1 V	Security Considerations-Transport layer Security-		CO4,	K4,
	Wireless Network Security: Wireless Security -		CO5	K5
	Mobile Device Security.			
	Electronic Mail Security: Internet Mail Architecture-	12	CO1,	K1,
	Email Formats- S/MIME-Pretty Good Privacy - IP		CO2,	K2,
V	Security: IP Security Overview -IP Security Policy-		CO3,	K3,
	Encapsulating Security Payload- Combining Security		CO4,	K4,
	Associations.		CO5	K5
	Self Study for Enrichment	_	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
	System Security: Malicious Software: Viruses and		CO3,	K3,
VI	Related Threats-Distributed Denial of Service Attacks.		CO4,	K4,
'	Intruders: Intrusion Detection – Password		CO5	K5
	Management-Firewalls: Need for Firewalls-Types of			
	Firewalls.			

Text Book

1. William Stallings. (2017). *Cryptography and Network Security-Principles and Practices*. 7th edition, Pearson Education, New Delhi.

Reference Books

- 1.Behrouz.A.Forouzan(2020).Cryptography and Network Security.5th Edition. Tata McGraw Hill, New Delhi.
- 2. Atul Kahate (2017). *Cryptography and NetworkSecurity*.3rd Edition, Tata McGraw Hill, NewDelhi.
- 3. Charles P Fleeger, Shari Lawrence P Fleeger. (2011). *Security in Computing*. 4th Edition, Pearson Education, New Delhi.

Web References

- 1. https://www.open.edu/openlearn/science-maths-technology/computing-and ict/systems-computer/network-security/scs.carleton.ca/~paulv/5900wBooks.html
- 2. scs.carleton.ca/paulv/5900wBooks.html
- 3. https://en.wikipedia.org/wiki/Network security
- 4. https://www.slideshare.net/HatemMahmoud/network-security-applications-4562405
- 5. https://www.intechopen.com/books/security-enhanced-applications-for-information-systems/cybersecurity-in-the-real-world

Pedagogy

Chalk and Talk ,PPT, Discussion, Assignment

Course Designer

Ms.G.Sujatha

Semester II	Internal Mar	Internal Marks: 25			
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/ WEEK	CREDITS	
22PCS2DSE2B	BLOCKCHAIN AND CRYPTOCURRENCIES	DISCIPLINE SPECIFIC ELECTIVE	6	3	

- To assess blockchain applications in a structured manner
- To impart knowledge in block chain techniques and able to present the concepts clearly and structured
- To get familiarity with future currencies and to create own crypto token

Prerequisites

Basic knowledge in Cryptography, Data Structures, Distributed Systems and networking

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO	CO Statement	Cognitive
Number		Level
CO 1	Understand the various technologies and its business use	K1
CO 2	Summarize the blockchain applications in a structured manner	K2
CO 3	Make use of the modern concepts of blockchain technology	К3
CO 4	Compare the modern currencies	K4
CO 5	Interpret the applications in real world scenario	K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	2	2	3	2	2	2	2	2	2	2
CO2	2	2	3	2	2	2	2	2	2	2
CO3	3	2	3	2	2	2	2	2	3	2
CO4	3	2	2	2	2	3	2	2	2	2
CO5	2	2	2	3	3	3	2	2	2	2

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Basic Concepts: Decentralized society - Distributed	18	CO1,	K1,
	Database, Byzantine General problem - Fault tolerance,		CO2,	K2,
ī	Hadoop Distributed File System, Distributed Hash Table,		CO3,	K3
I	ASIC resistance, Turing Complete - P2P network - Private		CO4,	K4,
	key - Public key - Cryptography - Hash Function - Digital Signature - ECDSA - Memory Hard Algorithm - Zero		CO5	K5
	Knowledge Proof			
	Blockchain: Introduction-Advantage over conventional	18	CO1,	K1,
	distributed database - Network and protocols - Block chain		CO2,	K2,
	network - Mining - Mechanism - Life Cycle of Block chain -		CO3,	K3
II	Distributed consensus - Merkle Patricia Tree - Gas Limit -		CO4,	K4,
	Transactions and Fee - Anonymity - Reward - Chain policy-		CO5	K5
	Life of Block chain applications -Soft and Hard Fork -			
	Private and Public blockchain.			
	Distributed Consensus: Nakamoto consensus - Proof of	18	CO1,	K1,
	work - Proof of Stake - Proof of Burn - Difficulty level -		CO2,	K2,
TIT	Sybil Attack - Energy Utilization and alternate - Fabric		CO3,	K3
III	model - SDKs - Components of Fabric Model - Architecture		CO4,	K4,
	of Hyperledger fabric.		CO5	K5
	Cryptocurrency: History - Distributed ledger - Bitcoin	18	CO1,	K1,
	protocols - Mining strategy and rewards - Ethereum -		CO2,	K2,
IV	construction - Truffle - DAO - dApps - Smart Contract -		CO3,	K3
	Boot strapping - GHOST Vulnerability - Attacks - Sidechain		CO4,	K4,
	- Namecoin		CO5	K5
	Applications: Payment Channels and State Channels -	18	CO1,	K1,
	State Channels—Basic Concepts and Terminology -		CO2,	K2,
	1		CO3,	K3
V	Simple Payment Channel Example-Routed Payment		CO4,	K4,
	Channels- Bitcoin Transactions- Transaction Outputs		CO5	K5
	and Inputs-Wallet Technology details			
	Self Study for Enrichment	_	CO1,	K1,
	·	_	CO1,	K1, K2,
	(Not included for End Semester Examinations)		CO2,	K2, K3
VI	Cryptocurrency Regulations: Stakeholders - Roots and		CO3, CO4,	K4,
	Bitcoin - Legal Aspects - Crypto currency exchange - Black		CO5	K4, K5
	market and Global economy			

Text Books

- Daniel Drescher(2017). Blockchain Basics A Non-Technical Introduction in 25 steps, 1st Edition, Apress.
- 2. Andreas M.Antonopoulos.(2019). *Mastering Bitcoin: Unlocking Digital Cryptocurrencies*. 2nd Edition, O'REILLY.

Reference Books

- 1. Paul Vigna and Michael J.Casey (2016). *The Age of Cryptocurrency*, 1st Edition, Picador St.Martin's Press.
- 2. Imran Bashir (2018). Mastering Blockchain. 1st Edition, Packt, Birmingham.
- 3. David Hooper, Kevin Solorio (2019). Hands-On Smart Contract Development with Solidity and Ethereum: From Fundamentals to Deployment, 1st Edition, O'REILLY.
- 4. Chris Dannen (2017). Introducing Ethereum and Solidity, 1st Edition, Apress.

Web References

- 1. https://www.simplilearn.com/tutorials/blockchain-tutorial/blockchain-technology
- 2. https://sjce.ac.in/wp-content/uploads/2021/12/Block-Chain-notes.pdf
- 3. https://mrcet.com/downloads/digital notes.pdf
- 4. https://www.ibm.com/in-en/topics/what-is-blockchain

Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment.

Course Designer

Dr. D. Radhika

Semester II	Internal M	larks: 25	External Ma	arks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PCS2DSE2C	ETHICAL HACKING	DISCIPLINE SPECIFIC ELECTIVE	6	3

- To understand and analyze information security threats and countermeasures
- To gain knowledge about security audit and testing
- To study the issues related to hacking and types of attacks

Prerequisites

Basic knowledge in Operating Systems, Networking and Programming Language

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO	CO Statement	Cognitive
Number		Level
CO 1	Recall and Understand the vulnerabilities in hacking	K1, K2
CO 2	Analyze and apply testing for security	K3, K4
CO3	Plan and Execute vulnerability assessment test for a network	K4, K5
CO 4	Assess the various kinds of standard attacks	K5
CO 5	Determine the target system vulnerability and make use of	K5
	penetration test using standard hacking methods in an ethical	
	manner	

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	2	3	3	3	2	3	3	3	3	2
CO2	3	3	2	3	2	3	3	2	3	2
CO3	3	3	2	3	2	3	3	2	3	3
CO4	2	3	3	3	3	3	3	3	3	3
CO5	3	3	2	3	2	3	3	3	3	2

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction to Hacking: Important terminologies-Categories of Penetration Test-Writing Reports-Structure of a Penetration Testing Report-Vulnerability Assessment Summary-Risk Assessment-Methodology-Linux Basics: Major Linux Operating systems-File structure inside of Linux-Linux Scheduler(Cron Jobs)-Users inside of Linux-Common Applications of Linux-What is Back Track-Changing the Default Screen Resolution-Some Unforgettable basics-Information Gathering Techniques-Active Information Gathering-Passive Information Gathering-Copying Websites Locally-Yougetsignal.com-Intercepting a Response-What Web-Netcraft-Some basic Parameters-TIP regarding Filetype-Xcode Exploit Scanner-Interacting with DNS Servers-Nslookup-DIG-Forward DNS Lookup with Fierce-Reverse DNS Lookup with fierce-What is DNS Cache Snooping-Automating DNS Cache Snooping Attacks-Problem with SNMP-Sniffing SNMP Passwords-SMTP Enumeration	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Vulnerability Assessment: What are Vulnerability Scanners and how do they work?-Pros and Cons of a Vulnerability Scanner-Vulnerability Assessment with Nmap-Updating the database-Testing SCADA environments with Nmap-Nessus Vulnerability Scanner-Installing Nessus on Back Track-Adding a User-creating a new policy-Safe Checks-Silent Dependencies-Port Range Network Sniffing: Introduction-Types of sniffing-Hubs versus Switches-Promiscuous versus Non promiscuous Mode-MITM Attacks-ARP Protocol Basics-How ARP works-ARP Attacks-Denial of Service attacks-Tools of the trade-Using ARP Spoof to perform MITM Attacks-Hijacking Session with MITM Attack-Hijacking the session-DNS Spoofing-DHCP Spoofing	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Capturing Traffic: Using Wireshark-ARP Cache Poisoning-DNS Cache Poisoning-SSL Attacks-SSL Stripping-Password Attacks: Password management-Online password attacks-offline password attacks-Client Side Exploitation-Bypassing filters with Metasploit payloads-Client side attacks-Social Engineering: Social Engineering toolkit-Spear Phishing attacks-Web Attacks-Mass E-mail attacks-Multipronged Attacks.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

IV	Bypassing Antivirus Applications: Trojans-How Antivirus application works-Microsoft Security essentials-Virustotal-Getting past an antivirus program-Post Exploitation: Meterpreter-Meterpreter scripts-Local privilege escalation-Lateral Movement-Pivoting Persistence-Web Application Testing: Using Burp proxy-SQL Injection-XPath Injection-Local file inclusion-Remote file inclusion-Command Execution-Cross Site Scripting-Cross site Request forgery-Web application Scanning with w3af.	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
V	Wireless Hacking: Introduction-Requirements-Introducing Aircracks-ng-Uncovering Hidden SSIDs-Turning on the Monitor mode-Monitoring Beacon frames on Wireshark-Monitoring with Airodump-ng-Speeding up the process-Placing your wireless adapter in Monitor mode-Determining the target with Airodump-ng-Cracking a WPA/WPA2 Wireless Network using Aircrack-ng-Capturing packets-Capturing the Four way handshake-Cracking WPA/WPA2-Reducing the delay-Web Hacking: Attacking the authentication-Brute Force and Dictionary Attacks-Types of Authentication-Brute Force attack-SSRF Attack-impact-Server hacking-Finding the local root exploit-basic syntax-Updating the password-Finding a WHMCS Server-Symlinking the Configuration file.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) Using Kali Linux: Linux Command Line-The Linux filesystem-User privileges-File permissions-Editing files-Data manipulation-Managing Installed Packages- Processes and Services-Managing Networking- Netcat: The Swiss Army knife of TCP/IP Connections	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Rafay Baloch(2014). Ethical Hacking and Penetration Testing Guide. 1st Edition, CRC Press(for Unit I, II & V)
- 2. Georgia Weidman(2014). Penetration testing: A hands-on introduction to hacking. 1st Edition, No Starch Press(for Unit III, IV & VI)

Reference Books

- 1. Stuttard, Dafydd and Marcus Pinto(2011). *The web application hacker's handbook: Finding andexploiting security flaws*. 2ndEdition, John Wiley & Sons.
- 2. Himanshu Sharma(2017). *Kali-linux Ethical Hacker's cook book: End-to-End penetration testing solution*. 1st Edition, Packt Publishing.
- 3. Kimberly Graves(2010). Certified Ethical Hacker Study Guide. 1st Edition, Wiley India Pvt Ltd.
- 4. Kevin Beaver. (2018). Ethical Hacking for Dummies. 6th Edition, Wiley

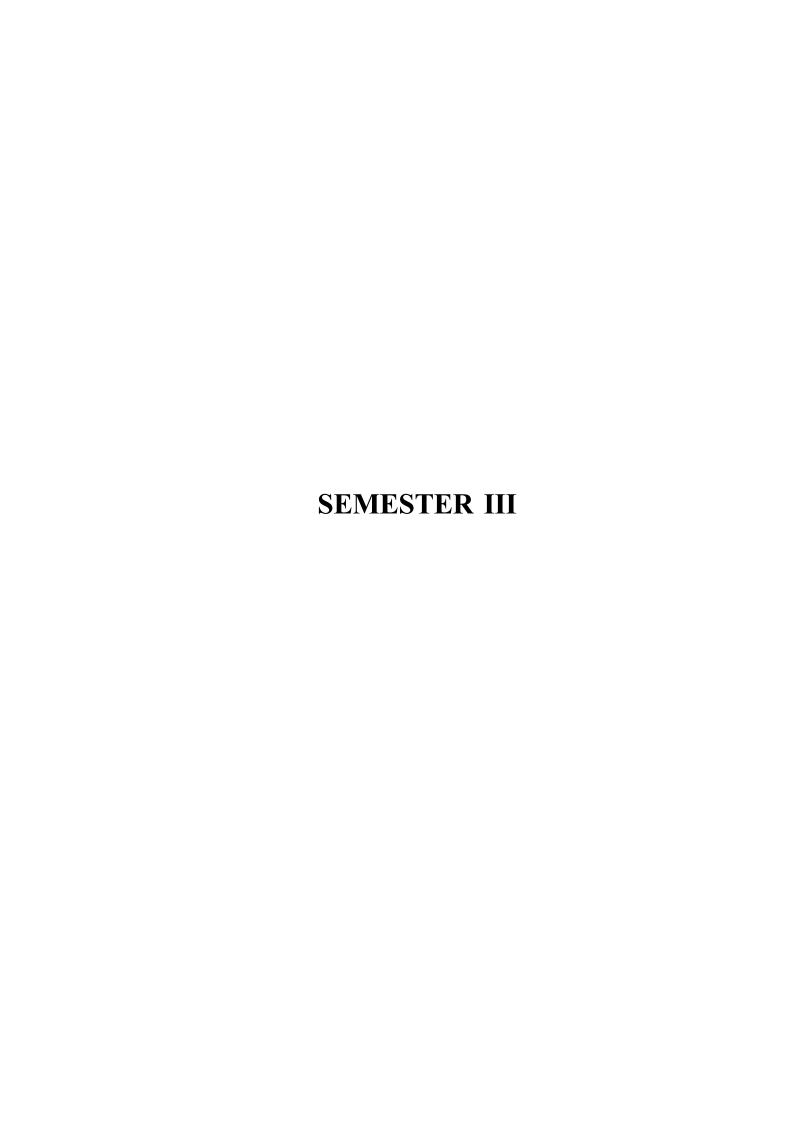
Web References

- 1. https://www.elsevier.com/books/
- 2. https://www.elsevier.com/books/cyber-security-awareness-forlawyers
- 3. https://books.google.co.in/books
- 4. https://www.coursera.org/specializations/ethical-hacking
- 5. https://nptel.ac.in/courses

Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment

Course Designer


Ms. S. Saranya

Semester II	Internal Ma	arks: 25	External M	arks: 75
COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY		CREDITS
22PCS2INT	22PCS2INT INTERNSHIP INTERNSHIP		-	2

- At the end of Semester I, the students should undergo an internship in a reputed IT company or IT division of reputed company
- Minimum number of days for the internship is 15 days
- A project report and a certificate of attendance are to be submitted after completing the internship

EVALUATION PATTERN FOR INTERNSHIP

Internal Components	Marks	External Components	Marks
Institution Profile	5	Regularity	10
Presentation Skill	10	Problem solving	10
Report Evaluation	10	Participation and Hands – on training	20
respons By unuarion	10	Professional Attitude	15
		Report Writing	20
Total	25	Total	75

Semester: III	Internal Ma	arks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS /WEEK	CREDITS	
23PCS3CC6	MACHINE LEARNING TECHNIQUES	CORE	6	5	

- To study basic concepts and techniques of Machine Learning
- To solve real world problems through implementation of machine learning algorithms
- To be able to formulate new approaches in machine learning

Prerequisites

Probability, Linear Algebra and Calculus

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO 1	Recognize and Understand the rudiments of MachineLearning	K1, K2
CO 2	Examine and Analyze the concepts of neural networks and Bayesian analysis from probability models and methods	K2, K4
CO 3	Identify, Analyze and Interpret various Learning algorithms	K3, K4, K5
CO 4	Apply and Evaluate the solutions of various Machine Learning techniques	K4, K5
CO 5	Assess, Distinguish and Determine the Machine Learning techniques for Real-world applications	K3, K4, K5

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	3	2	2	3	3	3	3	2
CO 2	3	3	3	3	3	3	3	3	3	3
CO 3	3	3	3	3	3	3	3	3	3	3
CO 4	3	3	3	3	3	3	3	3	3	3
CO 5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: Learning-Types of Machine Learning-Supervised Learning-The Machine Learning Process. Preliminaries: Some Terminology-Testing Machine Learning Algorithms - Turning Data into Probabilities-The Bias-Variance Tradeoff. Learning with Trees: Using Decision Trees-Constructing Decision Trees-Classification and Regression Trees (CART) –Issues in Decision Tree Learning.		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Probabilistic Learning: Gaussian Mixture Models-Nearest Neighbour Methods. Support Vector Machines: Optimal Separation-The Support Vector Machine Algorithm-Extension to the SVM .Graphical Models: Bayesian Networks-Markov Random Fields-Hidden Markov Models (HMMS).	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Neurons, Neural Networks, and Linear Discriminants: Neuron Networks-The Perceptron-Linear Separability-Linear Regression. The Multi-Layer Perceptron: Going Forwards-Going Backwards: Back Propagation of Error-The Multi-Layer Perceptron in Practice-Deriving Back-Propagation.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Dimensionality Reduction: Linear Discriminant Analysis (LDA)-Principal Component Analysis (PCA)-Factor Analysis- Independent Components Analysis (ICA)-ISOMAP. Unsupervised Learning: The K-Means Algorithm- Vector Quantisation-The Self-Organising Feature MAP.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Evolutionary Learning: The Genetic Algorithm (GA)-Generating Offspring: Genetic Operators-Using Genetic Algorithms-Genetic Programming. Ensemble Learning: Boosting-Bagging-Random Forests-Different ways to combine Classifiers. Reinforcement Learning: Introduction- The Learning Task- Q Learning.	20	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) Combining Inductive and Analytical Learning: The EBNN Algorithm – The FOCL Algorithm. Evaluating Hypotheses: Estimating Hypothesis Accuracy- Basics of Sampling Theory-A General Approach for Deriving Confidence Intervals-Difference in Error of Two Hypotheses.	1	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

1. Stephen Marsland (2015). Machine Learning an Algorithmic Perspective. 2nd Edition, CRCPress

(Unit I - Chapter: 1,2 & 12 Unit II - Chapter: 7, 8 & 16 Unit III - Chapter: 3,4 Unit IV - Chapter: 6, 14 Unit V - Chapter: 10,13)

2. Tom M. Mitchell (2018). *Machine Learning*. 1st Edition, McGraw-Hill Education (India)Private Limited (Unit V- Chapter:13)

Reference Books

- 1. Patanjali Kashyap(2017). Machine Learning for Decision Makers. 1st Edition. Apress.
- 2. Ethem Alpaydin (2010). Introduction to Machine Learning. Second Edition. The MIT Press.

Web References

- 1. https://www.simplilearn.com/tutorials/machine-learning-tutorial
- 2. https://machinelearningmastery.com/start-here/
- 3. https://www.mygreatlearning.com/blog/machine-learning-tutorial/
- 4. https://onlinecourses.nptel.ac.in/noc23 cs18/preview
- 5. https://onlinecourses.nptel.ac.in/noc21_cs85/preview
- 6. https://youtu.be/i LwzRVP7bg?si= InbwVhpKK5u0j1b

Pedagogy

Chalk and talk, Discussion, Quiz, Assignment & PPT

Course Designer

Dr. K. Reka

Semester : III	Internal Ma	rks:25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS /WEEK	CREDITS	
22PCS3CC7	CLOUD COMPUTING	CORE	6	5	

- To provide an in-depth and comprehensive knowledge of the Cloud Computing fundamental issues, technologies, applications and implementations.
- To motivate students to do programming and experiment with the various cloud computing environments
- To introduce about the Cloud Standards

Prerequisites

Distributed and Grid Computing

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Understand and discuss the fundamentals of various cloud models	K1, K2
CO2	Determine the applications and the architectures of cloud	K3, K5
CO3	Identify and Examine services and appropriate virtualization concepts	K3, K4
CO4	Explore and recommend cloud solutions for mobile cloud and mobile web services	K4, K5
CO5	Justify and Enhance real time cloud applications to its appropriate environment	K5, K6

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	2	3	2	3	3	2	3	2
CO2	3	3	2	3	2	3	3	2	3	2
CO3	3	3	2	3	3	3	3	2	3	3
CO4	3	3	2	3	3	3	3	2	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Defining Cloud Computing- Cloud Types: The NIST model - The Cloud Cube Model -Deployment models - Service models - Examining the Characteristics of Cloud Computing: Paradigm shift- Benefits of cloud computing - Disadvantages of cloud computing - Assessing the Value Proposition: Measuring the Cloud's value: The laws of cloudonomics - Cloud computing obstacles - Behavioral factors relating to cloud adoption - Measuring cloud computing costs - Avoiding Capital Expenditures - Computing the Total Cost of Ownership - Specifying Service Level Agreements.		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
II	Understanding Cloud Architecture: Exploring the Cloud Computing Stack-Composability- Infrastructure – Platforms - Virtual Appliances - Communication Protocols –Applications – Connecting to the Cloud. Understanding Services and Applications by Type: Defining Infrastructure as a Service (IaaS) - Defining Platform as a Service (PaaS) - Defining Software as a Service (SaaS) –SaaS characteristics- Salesforce.com and CRM SaaS – Defining Identity as a Service (IDaaS).	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	Understanding Abstraction and Virtualization: Using Virtualization Technologies – Load Balancing and Virtualization: Advanced load balancing - The Google cloud – Understanding Hypervisors: Virtual machine types-VMware vSphere-Understanding Machine Imaging –Porting Applications: The Simple Cloud API-AppZero Virtual Application Appliance. Capacity Planning-Load testing-Resource ceilings - Network Capacity - Scaling.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	Understanding Service Oriented Architecture: Introducing Service Oriented Architecture – Defining SOA Communications – Managing and Monitoring SOA. Using the Mobile Cloud: Working with Mobile Devices – Defining the Mobile Market–Using Smartphones with the Cloud. Working with Mobile Web Services: Understanding Service Types–Performing Service Discovery – Using SMS – Defining WAP and other Protocols –Performing Synchronization		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	Cloud Programming and Software Environments: Parallel and Distributed Programming Paradigms — Programming support of Google App Engine — Programming on Amazon AWS and Microsoft Azure — Ubiquitous Clouds and the Internet of Things: Cloud Trends in Supporting Ubiquitous Computing.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,

	Self Study for Enrichment	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
	Using Media and Streaming: Understanding the		CO3,	K3,
371	Streaming process- Protocols in use – The cloud		CO4,	K4,
VI	computing advantages -Audio Streaming – Working		CO5	K5,
	with VoIP applications-Skype – Google Voice and			K6
	Google Talk-Video Streaming – Television in the			
	cloud - Streaming video formats - YouTube			

Text Books

- 1. Barrie Sosinsky.(2011). Cloud Computing Bible. Wiley Publishing Inc.(Unit I IV)
- **2.** Kai Hwang, Geoffrey C.Foxand Jack J.Dongarra (2013). *Distributed and Cloud computing: From parallel processing to the Internet of Things.* Morgan Kaufmann (Unit V)

Reference Books:

- 1. Michael Miller(2012). Cloud Computing. 7th Edition, Pearson Education Inc.
- 2. Rajkumar Buyya & Co,(2011). Cloud Computing Principles and Paradigms, John Wiley & Sons Publications

Web References

- 1. https://www.tutorialspoint.com/cloud computing/index.htm
- 2. https://data-flair.training/blogs/cloud-computing-tutorial/

Pedagogy

Chalk & Talk, Discussion, Quiz, Assignment & PPT

Course Designer

Ms. S. Udhaya Priya

Semester : III	Internal Mar	·ks:25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS /WEEK	CREDITS	
22PGCS3CCC2A	CYBER SECURITY	CORE CHOICE	3(T) + 2(P)	4	

- To develop skills in students that can help them plan, implement, and monitor cyber security mechanisms to ensure the protection of information technology assets.
- To expose students to governance, regulatory, legal, economic, environmental, social, and ethical contexts of cyber security.
- To expose students to the responsible use of online social media networks.
- To systematically educate the necessity to understand the impact of cyber-crimes and threats with solutions in a global and societal context.
- To select suitable ethical principles, commit to professional responsibilities and human values, and contribute value and wealth for the benefit of society

Prerequisites

Basic Knowledge of Cyber Security

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Understand the cyber security threat landscape	K1,K2
CO2	Develop a deeper understanding and familiarity with various types, cyber crimes, vulnerabilities, and remedies thereto.	K2, K3
CO3	Analyse and evaluate existing legal frameworks and laws on cyber security.	K4, k5
CO4	Analyse and evaluate the digital payment system security and remedial measures.	K4, K5
CO5	Analyse and evaluate the cyber security risks, plan suitable security controls	K4, k5

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	P0 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	2	3	3	3	3	2
CO4	3	3	3	3	2	3	3	3	3	2
CO5	3	3	3	3	2	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

Syllabus Theory:

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Overview of Cyber Security: Cyber security increasing threat landscape, -Cyberspace, attack, attack vector, attack surface, threat, risk, vulnerability, exploit, exploitation, hacker., Non-state actors, Cyber terrorism, Protection of end user machine, Critical IT and National Critical Infrastructure, Cyber warfare, Case Studies.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Cyber Crimes: Cyber Crimes targeting Computer systems and Mobiles- data diddling attacks, spyware, logic bombs, DoS, DDoS, APTs, virus, Trojans, ransomware, data breach., Online scams and frauds- email scams, Phishing, Vishing, Smishing, Online job fraud, Online sextortion, Debit/credit card fraud, Online payment fraud, Cyberbullying, website defacement, Cyber-squatting, Pharming, Cyber espionage, Cryptojacking, Darknet-illegal trades, drug trafficking, human trafficking., Social Media Scams & Frauds- impersonation, identity theft, job scams, misinformation, fake news cyber crime against persons —cyber grooming, child pornography, cyber stalking., Social Engineering attacks, Cyber Police stations, Crime reporting procedure, Case studies.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Cyber Law: Cyber Crime and legal landscape around the world, IT Act, 2000 and its amendments. Limitations of IT Act, 2000. Cyber Crime and punishments, Cyber Laws and Legal and ethical aspects related to new technologies-AI/ML, IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Data Privacy and Data Security: Defining data, meta-data, big data, non-personal data. Data protection, Data privacy and data security, Personal Data Protection Bill and its compliance, Data protection principles, Big data security issues and challenges, Data protection regulations of other countries- General Data Protection Regulations(GDPR),2016 Personal Information Protection and Electronic Documents Act (PIPEDA). Social mediadata privacy and security issues.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Cyber security Management, Compliance and Governance: Cyber security Plan-cyber security policy, cyber crises management plan., Business continuity, Risk assessment, Types of security controls and their goals, Cyber security audit and compliance, National cyber security policy and strategy.	9	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

	Self Study for Enrichment	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
VI	Case Studies: Largest Cyber Attacks: Yahoo Data		CO3,	K3,
, ,	Breach, Equifax Data Breach, WannaCry Malware Attack,		CO4,	K4,
	Simple Locker.		CO5	K5

Reference Books

- 1. Vivek Sood, (2017). Cyber Law Simplified. McGraw Hill Education
- 2. Sumit Belapure and Nina Godbole, (2011). *Computer Forensics and Legal Perspectives*. Wiley India Pvt. Ltd.
- 3. Dorothy F. Denning, (1998). *Information Warfare and Security*. Addison Wesley.
- 4. Henry A. Oliver, (2015). Security in the Digital Age: Social Media Security Threats and Vulnerabilities. Create Space Independent Publishing Platform.
- 5. Natraj Venkataramanan and Ashwin Shriram, (2016). *Data Privacy Principles and Practice*. 1st Edition, CRC Press.
- 6. W.Krag Brothy, (2008). *Information Security Governance, Guidance for Information Security Managers*. 1st Edition, Wiley Publication.
- 7. Martin Weiss, Michael G.Solomon, (2015). *Auditing IT Infrastructures for Compliance*. 2nd Edition, Jones & Bartlett Learning.

Web References

- 1. https://www.tutorialspoint.com/principles-of-information-system-security
- 2. https://www.geeksforgeeks.org/principle-or-information-system-secutiry/
- 3. https://www.techtarget.com/searchsecurity/definition/cybersecurity
- 4. https://www.ukessays.com/essays/computer-science/analysis-of-the-yahoo-data-breaches.php
- 5. https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
- 6. https://www.techtarget.com/searchsecurity/definition/WannaCry-ransomware
- 7. https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

Practicals:

List of Exercises: (Not included for End Semester Examinations)

- 1. Platforms for reporting cyber crimes.
- 2. Checklist for reporting cyber crimes online
- 3. Setting privacy settings on social media platforms.
- 4. Do's and Don'ts for posting content on Social media platforms.
- 5. Registering complaints on a Social media platform.
- 6. Prepare password policy for computer and mobile device.
- 7. List out security controls for computer and implement technical security controls in the personal computer.
- 8. List out security controls for mobile phone and implement technical security controls in the personal mobile phone.
- 9. Log into computer system as an administrator and check the security policies in the system.

Web References

- 1. https://cybercrime.gov.in/
- 2. https://cybercrime.gov.in/webform/crime onlinesafetytips.aspx
- 3. https://www.digitalvidya.com/blog/social-media-dos-and-donts/
- 4. https://www.medianama.com/2023/02/223-platform-grievance-appellate-committees-social-media/
- 5. https://www.ibm.com/topics/security-controls
- 6. https://docs.oracle.com/cd/E19683-01/817-0365/concept-2/index.html

Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment.

Course Designer

From UGC SYLLABUS

Semester: III	Internal Ma	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS /WEEK	CREDITS
22PCS3CCC2B	ІоТ	CORE CHOICE	5	4

- To understand the technology behind Internet of Things
- To get familiar with the design principles of connected devices
- To know about IoT platforms and design methodologies

Prerequisites

Basic Knowledge in Communication Technologies

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Understand and Describe the basic concepts of IoT	K1,K2
CO2	Apply and Analyze the IoT based sensor systems	K3,K4
CO3	Illustrate and Analyze the various IoT enabling Technologies	K3,K4
CO4	Design and Evaluate portable IoT using Raspberry /equivalent boards	K4,K5
CO5	Create and Design real time applications	K5,K6

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	3	3	2	3	3	3	3	2
CO2	3	3	3	3	2	3	3	3	3	2
CO3	3	3	3	2	2	3	3	3	3	2
CO4	3	3	2	2	2	2	2	2	2	2
CO5	3	3	2	2	2	2	2	2	2	2

[&]quot;1"-Slight(Low) Correlation
"3"-Substantial(High) Correlation

[&]quot;2"-Moderate(Medium) Correlation

[&]quot;-" Indicates there is no Correlation

UNIT	CONTENT	HOURS	Cos	COGNITIVE LEVEL
I	Introduction to IoT: Physical Design of IoT – Logical Design of IoT – IoT Enabling Technologies –IoT Levels & Deployment Templates – Domain Specific IoTs: Home Automation—Cities—Environment—Energy—Logistics – Retail – Agriculture.	15	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
II	IoT and M2M: Introduction–M2M–Difference between IoT and M2M – SDN and NFV for IoT–IoT System Management with NETCONF- YANG: Need for IoT systems management -Simple Network Management Protocol (SNMP)-Network operator Requirement–NETCONF-YANG-NETOPEER-Developing IoT: IoT platforms design methodology—IoT Design Methodology.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	IoT Systems – Logical Design using Python: Introduction - Python Packages of interest for IoT – IoT physical Devices and Endpoints: What is an IoT Device – Exemplary Devices - Raspberry pi Interfaces – Programming Raspberry pi with Python –other IoT Devices.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Data Analytics for IOT: Apache Hadoop –Using Hadoop MapReduce for Batch Data Analysis–Apache oozie-Apache Spark– Apache Storm-Using Apache Storm for Real–time Data Analysis.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	IoT Physical Servers and Cloud Offerings: Introduction to Cloud Storage Models & Communication APIs—WAMP—AutoBahn for IoT- Xively c l oud for IoT- Designing a RESTful web API-Amazon Web Services for IoT-Tools for IoT: Chef — Chef Case studies-Puppet—Puppet Casestudy Multi Tier deployment - NETCONF-YANG Case Studies	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) APPLICATIONS: The Role of the Internet of Things for Increased Autonomy and Agility in Collaborative Production Environments - Resource Management in the Internet of Things: Clustering, Synchronisation and Software Agents. Applications - Smart Grid – Electrical Vehicle Charging.		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Book

1. Arshdeep Bahga, Vijay Madisetti, (2014), "Internet of Things – A hands on approach", Universities Press

Reference Books

- 1. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds),(2011)"*Architecting the Internet of Things*", Springer
- 2. Jan Holler, Vlasios Tsiatis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Aves and David Boyle, (2014), "From Machine-to Machine to the Internet of Things Introduction to a New Age of Intelligence", Elsevier
- 3. David Easley and Jon Kleinberg,(2010) "Networks, Crowds, and Markets: Reasoning About a Highly Connected World" Cambridge University Press
- 4. Olivier Hersent, David Boswarthick, Omar Elloumi ,(2012),"The Internet of Things Key applications and Protocols", Wiley

Web References

- 1. https://github.com/connectiot/iottoolkit
- 2. https://www.arduino.cc/
- 3. https://www.tutorialspoint.com/
- 4. https://www.guru99.com/
- 5. https://www.pythonforbeginners.com/

Pedagogy

Chalk and Talk, Seminar, e-Contents

Course Designer

Ms.K.Pradeepa

Semester : III	Internal Ma	rks:25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS /WEEK	CREDITS	
22PCS3CCC2C	NATURAL LANGUAGE PROCESSING	CORE CHOICE	5	4	

- To understand the Natural Language Processing (NLP) techniques
- To be familiarized with the data structures and algorithms used in NLP
- To understand the process of raw text and apply categorizing tagging words for classification
- To apply text analytics grammar approaches for real-time applications
- To know the basics of first order logic and propositional logic

Prerequisites

Basic understanding of mathematics concepts, statistics, machine learning, python programming and data structures

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Understand how key concepts from NLP and linguistics are used to describe and analyze language	K1, K2,K4
CO2	Identify the suitable data structures and algorithms used in NLP	К3
CO3	Analyze data stored in standard formats	K4
CO4	Analyze and compare the methods and algorithms used to process different types of textual data	K4, K5
CO5	Formulate how to extract grammatical features and to know the basics of first order logic and propositional logic	K6

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	3	2	2	3	3	3	2	3	2
CO2	3	3	3	2	2	3	3	3	3	2
CO3	2	3	3	2	2	3	3	2	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction: Natural Language Processing and its Neighbors-Three themes in Natural Language Processing- Language Processing and Python: Computing with Language: Texts and Words - A Closer Look at Python: Texts as Lists of Words - Computing with Language: Simple Statistics - Back to Python: Making Decisions and Taking Control -Automatic Natural Language Understanding. Accessing Text Corpora and Lexical Resources: Accessing Text Corpora-Conditional Frequency Distributions -More Python: Reusing Code - Lexical Resources - WordNet.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
II	Processing Raw Text: Accessing Text from the Web and from Disk - Strings: Text Processing at the Lowest Level- Text Processing with Unicode- Regular Expressions for Detecting Word Patterns- Useful Applications of Regular Expressions - Normalizing Text - Regular Expressions for Tokenizing Text - Segmentation - Formatting: From Lists to Strings . Writing Structured Programs: Back to the Basics-Sequences- Questions of Style - Functions: The Foundation of Structured Programming - Doing More with Functions- Program Development-Algorithm Design-A Sample of Python Libraries.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	Categorizing and Tagging Words: Using a Tagger-Tagged Corpora- Mapping Words to Properties Using Python Dictionaries-Automatic Tagging- N-Gram Tagging-Transformation Based Tagging- Determine the Category of a Word. Learning to Classify Text: Supervised Classification- Examples of Supervised Classification-Evaluation-Decision Trees-Naive Bayes Classifiers- Maximum Entropy Classifiers-Modeling Linguistic Patterns.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	Extracting Information from Text: Information Extraction- Chunking-Developing and Evaluating Chunkers- Recursion in Linguistic Structure- Named Entity Recognition-Relation Extraction. Analyzing Sentence Structure: Some Grammatical Dilemmas-Use of Syntax - Context-Free Grammar-Parsing with Context-Free Grammar-Dependencies and Dependency Grammar- Grammar Development.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

V	Building Feature-Based Grammars: Grammatical Features-Processing Feature Structures-Extending a Feature-Based Grammar. Analyzing the Meaning of Sentences: Natural Language Understanding- Propositional Logic- First-Order Logic- The Semantics of English Sentences- Discourse Semantics. Applications and Case Studies: Question Answering and Machine Reading- Machine Translation- Text	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Generation Self Study for Enrichment: (Not included for End Semester Examinations) Life Cycle of a Corpus-Language Processing versus Symbol Processing- Contemporary Philosophical Divides-NLTK Roadmap-Envoi.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Books

- 1. Steven Bird, Ewan Klein and Edward Loper (2009). *Natural Language Processing with Python*. 1st Edition, O'Reilly Media. (Unit 1: Chapter 1, 2; Unit 2: Chapter 3,4; Unit 3: Chapter 5, 6; Unit 4: Chapter 7, 8; Unit 5: Chapter 9,10)
- 2. Jacob Eisenstein (2019). *Introduction to Natural Language Processing*. Kindle Edition, MIT Press.(Unit 1: Chapter 1; Unit 5: Chapter 17: (17.5), Chapter 18,19)

Reference Books

- 1. Daniel Jurafsky and James H.Martin(2013). *Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition.* 2nd Edition, Pearson Education.
- 2. Nitin Hardeniya, Jacob Perkins, Deepti Chopra, Nisheeth Joshi, Iti Mathur (2016). *Natural Language Processing: Python and NLTK*. 1st Edition, Packt Publishing.
- 3. Akshar Bharati, Vineet Chaitanya, Rajeev Sangal (1996). *Natural Language Processing A Paninian Perspective*. Prentice Hall of India.
- 4. Clark, A., Fox, C., & Lappin, S. (2013). *The handbook of computational linguistics and Natural Language Processing*. John Wiley & Sons.
- 5. Bender, E. M., & Lascarides, A. (2019). Linguistic fundamentals for Natural Language Processing II: 100 essentials from semantics and pragmatics. Synthesis Lectures on Human Language Technologies, 12(3), 1-268.
- 6. Hapke, H. M., Lane, H., & Howard, C. (2019). *Natural Language Processing in Action: Understanding, analyzing and generating text with Python*. Kindle Edition, Manning Publications Co.
- 7. Indurkhya, N., & Damerau, F. J. (2010). *Handbook of Natural Language Processing*. 2nd Edition, Chapman and Hall/CRC Press.
- 8. James Allen (2002). Natural Language Understanding, 2ndEdition, Pearson Education.

Web References

- 1. https://tjzhifei.github.io/resources/NLTK.pdf
- 2. https://www.google.co.in/books/edition/Introduction_to_Natural_Language_Process/72yuDwAA QBAJ?
- 3. https://towardsdatascience.com/data-to-text-generation-with-t5-building-a-simple-yet-advanced nlg-model-b5cce5a6df45
- 4. https://archive.nptel.ac.in/courses/106/101/106101007/
- 5. https://books.google.co.in/books/about/Introduction_to_Natural_Language_Process.ht ml?id=72yuDwAAQBAJ&;redir esc=y

Pedagogy

Chalk & Talk, PPT, Group Discussion, Seminar and Assignment

Course Designer

Dr.K.Reka

Semester : III	Internal Marl	ks:40	External Marks:60		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS /WEEK	CREDITS	
23PCS3CC3P	CLOUD COMPUTING (P)	CORE	5	4	

- To develop web applications in cloud
- To learn the design and development process involved in creating a cloud-based application
- To learn to implement and use parallel programming using Hadoop

Prerequisites

Java, Python, HTML and Linux

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	List and illustrate the usage of Python and HTML Tags in web applications	K1,K2
CO2	Demonstrate and make use of Google App Engine (GAE) in web applications	K2,K3
CO3	Apply and Compare python for cloud-based applications	K3,K4
CO4	Examine and Evaluate the web applications with CloudSim	K4,K5
CO5	Interpret and Develop web application using Hadoop	K5,K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	2	3	3	3	3	2
CO2	3	3	2	3	2	3	2	2	3	2
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	2
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" indicates there is no correlation

Exercises

- 1. Install Virtualbox/VMware Workstation with different flavours of linux or windows OS on top of windows 7 or 8.
- 2. Install a C compiler in the virtual machine created using virtual box and execute Simple Programs
- 3. Install GAE. Create hello world app and other simple web applications using python/java.
- 4. Use GAE launcher to launch the web applications.
- 5. Simulate a cloud scenario using CloudSim and run a scheduling algorithm that is not present in CloudSim.
- 6. Find a procedure to transfer the files from one virtual machine to another virtual machine.
- 7. Find a procedure to launch virtual machine using TryStack.
- 8. Install Hadoop single node cluster and run simple applications like wordcount.
- 9. i) Explore JustCloud, Amazon Drive file storage and sharing solutions.
 - ii) Work with YouTube, a cloud service to upload your own educational video(s) and use appropriate settings to make it public.

Web References

- 1. https://www.iitk.ac.in/nt/faq/vbox.htm
- 2. https://www.javatpoint.com/virtualbox-installation
- 3. https://cloud.google.com/appengine/docs/flexible/python/create-app
- 4. https://edwardsamuel.wordpress.com/2014/10/25/tutorial-creating-openstack-instance-in-trystack/
- 5. https://www.geeksforgeeks.org/how-to-install-single-node-cluster-hadoop-on-windows/
- 6. https://www.edureka.co/blog/install-hadoop-single-node-hadoop-cluster

Pedagogy

Demonstration

Course Designer

Ms. S. Udhaya Priya

Semester: III	Internal Ma	arks: -	External Mars: 100		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS /WEEK	CREDITS	
22PCS3DSE3A	COMPUTER SCIENCE FOR COMPETITIVE EXAMINATIONS	DISCIPLINE SPECIFIC ELECTIVE	5	3	

- To understand the need for preparing competitive exams
- To study the basic concepts of core subjects in computer science
- To inculcate the knowledge of implementation of various concepts

Prerequisites

Basic concept of core computer science

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Explain concepts of computer science core subjects	K2
CO2	Apply the knowledge to solve various types of problems	K3
CO3	Examine various computer science concepts on real time applications	K4
CO4	Develop a scientific aptitude and sense of reasoning	K6
CO5	Develop students with professional and ethical attitude	K6

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	2	3	3	2	3	3	3	3	3
CO3	3	3	3	3	2	3	3	3	3	3
CO4	3	3	3	2	2	3	3	3	3	3
CO5	3	3	3	3	2	3	3	3	3	2

[&]quot;1" - Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" -indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Number Systems- Series Completion -Coding & Decoding- Problems on Ages - Blood Relation - Probability - Permutation & Combination - Data Interpretation - ICT (Information and Communications Technology-Logical Reasoning & Non - Verbal Reasoning. Programming Languages - Programming in C- Object Oriented Programming - Programming in C++/JAVA - Web Programming		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Mathematical Logic: Propositional and Predicate Logic - Predicates and Quantifiers-Rules of Inference-Sets and Relations: Set Operations, Representation and Properties of Relations, Equivalence Relations, Partially Ordering. Counting, Mathematical Induction and Discrete-Probability - Group Theory – Graph Theory – Minimum Spanning Tree – Graph Algorithms-Optimization- Digital Logic: Number systems-Boolean Algebra – Map Simplification - Combinational Circuits – Sequential Circuits. Memory Hierarchy: Main Memory - Auxilliary Memory - Associative Memory - Cache Memory - Virtual Memory	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Operating System: Threads – CPU Scheduling - Disk Scheduling – Deadlocks - Paging – Process Management – Memory Management – Storage Management – File and Input/output Systems – Security – Kernel modules - Linux – Data Structures and Algorithms: Time and Space Complexity, Linked Lists, Stacks and Queues – Trees-Search and Sorting Algorithms – Hashing – Algorithm design techniques: Greedy Approach, Dynamic Programming - Divide and Conquer – Graph Search, Minimum Spanning trees, Shortest paths – Complexity Theory(P and NP Class problem)		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Data Communication and Computer Networks: Concept of Layering – Network Types & Models – Functions of OSI & TCP/IP Layers - Flow and Error Control techniques, switching – IPV4/IPV6, routers and routing algorithms – TCP/UDP and sockets, congestion controls. Application Layer Protocols (WWW, DNS, SMTP, POP, FTP, and HTTP) -Network Security: authentication- basics of public key- cryptography- digital signatures and certificates- firewalls. Database Management Systems: Basic concepts – Data Modeling – SQL – Normalization- Data models.		CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

	Theory of Computation: Finite Automata and	15	CO1,	K1,
	_	1.5	CO1,	K2,
	Regular Languages—Context Free Languages and Push		CO3,	K3,
	down Automata–Recursive Enumerable sets and Turing		CO4,	K4,
V	Machines – Syntax & Semantic Analysis-Compiler		CO5	K5
	Design: Lexical Analysis and Parsing – Syntax			
	Directed Translation- Intermediate code generation -			
	Code optimization Approaches to AI: Turing Test and			
	Rational Agent Approaches- State			
	SpaceRepresentation of Problems - Heuristic			
	Search Techniques - Min-Max Search - Alpha Beta			
	Cutoff Procedures.			
	Self-Study for Enrichment:	-	CO1,	K1,
	(Not included for End Semester Examinations)		CO2,	K2,
	Estimation and Scheduling of Software Projects:		CO3,	K3,
	Software Sizing - LOC and FP based Estimations.		CO4,	K4,
	Estimating Cost and Effort- Estimation Models-		CO5	K5
	Constructive Cost Model (COCOMO).Computer			
	Organization and Architecture: Machine Instruction			
VI	and Addressing Modes – ALU & Data Path, CPU			
	Control Design – Memory & I/O Interface – Instruction			
	Pipeline – Secondary Storage – Microprocessor-			
	Computer Graphics: 2-DGeometrical Transforms and			
	Viewing- 3-D Object Representation, Geometric			
	Transformations and			
	Viewing			

Reference Books:

- 1. Dr.R.S.Aggarwal, (2017), Quantitative Aptitude for Competitive Examinations ,S.Chand Publishing
- 2. Dr.R.S.Aggarwal,(2020), A modern Approach to verbal & Non-verbal Reasoning, S.Chand Publishing
- 3. R.Gupta,(2015), UGC NET/SET Computer Science & Applications, R.Gupta
- 4. Surbhi Sharma, Kailasah Chandra Gurunani,(2018), *UGC NET Computer Science and Applications*, Arihant Publication
- 5. Trishna Knowledge Systems, (2019), GATE Computer Science and Information Technology- GATE 2020, Pearson

Web References

- 1. https://www.careerbless.com/aptitude/qa/home.php
- 2. https://www.sawaal.com/aptitude-reasoning/quantitative-aptitude-arithmetic-ability-questions-and-answers.html
- 3. https://www.indiabix.com/non-verbal-reasoning/questions-and-answers/
- 4. https://www.geeksforgeeks.org/ugc-net-cs-preparation/
- 5. http://www.netugc.com/ugc-net-solved-question-papers-in-computer-science-and-applications
- 6. https://gatecse.in/
- 7. https://gateoverflow.in/

Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Quiz and Seminar

Course Designer

Ms.Rita Jenifer, Ms.S.Saranya and Ms.R.Ramya

Semester III	Internal Marks:40		Internal Marks:40		External M	arks:60
COURSE CODE	COURSE TITLE	CATEGORY	HOURS /WEEK	CREDITS		
22PCS3DSE3BP	IoT (P)	DISCIPLINE SPECIFIC ELECTIVE	5	3		

- To create IoT program to turn ON/OFF LED
- To implement IoT program for object detection
- To develop IoT programs for agricultural purpose
- To create web server program for local hosting
- To design IoT application for health monitoring

Prerequisites

Java , C,C++

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Understand the basic concepts of IoT	K2
CO2	Design Embedded platforms in IoT using Microprocessor	K3
CO3	Apply wireless peripherals for exchange of data.	K4
CO4	Apply Cloud Platform to Upload and Analyze the Sensor Data	K5
CO5	Deploy simple application of IoT for Realtime	K6

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO5
CO1	3	3	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	2	3
CO4	3	3	3	3	2	3	3	3	3	2
CO5	3	3	3	3	3	3	3	3	2	2

[&]quot;1"-Slight (Low) Correlation
"3"-Substantial(High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-"indicates there is no Correlation.

Exercises

- 1. To develop an IoT program to turn ON/OFF LED light (3.3V)
- 2. To develop an IoT program using IR sensor (Smart Garbage Monitoring, Detecting Parking Availability, etc.)
- 3. To develop an IoT program using Humidity and Temperature Monitoring (Forest fire Detection, Weather Monitoring)
- 4. To develop an IoT web server program for local hosting
- 5. To develop an IoT program using Soil Moisture Sensor
- 6. To develop an IoT program using Ultrasonic Sensor (Distance Measurement, etc.)
- 7. To develop a real-time IoT program using Relay Module (Smart Home Automation with 230V)
- 8. To develop an IoT program for Fire Detection (Home, Industry, etc.)
- 9. To develop an IoT program for Gas Leakage detection (Home, Industry, etc.)
- 10. To develop an IoT program using Heartbeat Sensor

Web References

- 1.https://www.comsoc.org/publications/best-readings/internet-things
- 2.https://mitpress.mit.edu/books/internet-things
- 3.https://circuitdigest.com/internet-of-things-iot-projects

Pedagogy

Live Demonstration, You Tube Videos, Tutorials

Course Designer

Ms.K.Pradeepa

Semester : III	Internal Ma	External Marks:60		
COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY		
22PCS3DSE3CP	NATURAL LANGUAGE PROCESSING (P)	DISCIPLINE SPECIFIC ELECTIVE	5	3

- To learn the fundamentals of Natural Language Processing (NLP)
- To understand the use of Context Free Grammar (CFG)
- To gain practical experience in the Natural Language Toolkit (NLTK)
- To design and implement applications based on NLP

Prerequisites

Basic knowledge on python and different types of parsing techniques

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Understand NLP pipeline	K2
CO2	Apply different Machine translation techniques for translating a source to target language(s)	К3
CO3	Analyze and compare the methods and algorithms used to process different types of textual data	K4, K5
CO4	Determine the concepts of morphology, syntactic analysis, semantic interpretation and pragmatics of the language, and understanding them to apply in different research areas	K5
CO5	Design an innovative application using NLP components	K6

CO _s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO3	PO4	PO5
CO ₁	3	3	3	2	2	3	3	2	3	2
CO ₂	3	3	3	3	3	3	3	3	3	2
CO ₃	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

Exercises

Using Python

- 1. Installation
- 2. Frequency Distribution Histogram Plotting using WordNet
- 3. NLP preprocessing such as tokenization, stemming, lemmatization
- 4. Perform Morphological Analysis
- 5. POS Tagging
- 6. Bigrams and N-Gram Tagging
- 7. Text Classification using Naive Bayes Classifier
- 8. Named Entity Recognition
- 9. Context Free Grammars
- 10. Large Context Free Grammars and Parsing

Web References

- 1. https://www.coursehero.com/file/87991863/18CS3167-NLP-LAB-MANUAL-pdf/
- 2. http://www.nltk.org/install.html
- 3. https://www.scribd.com/document/570254598/NLP-Lab-Manual#

Pedagogy

Demonstration

Course Designer

Dr.K.Reka

Semester : III	Internal Marl	xs:40	External l	Marks:60
COURSE CODE	COURSE TITLE	CATEGORY	HOURS /WEEK	CREDITS
22PCS3GEC1P	DATA ANALYSIS (P)	GENERIC ELECTIVE	3	2

- To provide fundamental concepts of data analysis
- To interpret, summarize and present numerical data using Excel
- To explore, analyse, and visualise data in Python

Prerequisites

Basic Computer Knowledge

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Recall and understand the different types of data analysis and their use cases	K1, K2
CO2	Apply Exploratory Data Analysis on a real-world dataset	К3
CO3	Analyze the various methods and functions in Excel	K4
CO4	Compare and recommend external libraries in Python for analysing the data	K4, K5
CO5	Create powerful and dynamic Excel dashboard	K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO 1	PO 2	PO 3	PO 4	PO 5
CO1	3	2	3	3	2	3	3	2	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	2	2	3	3	2	2	3	2	3	2
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

Exercises

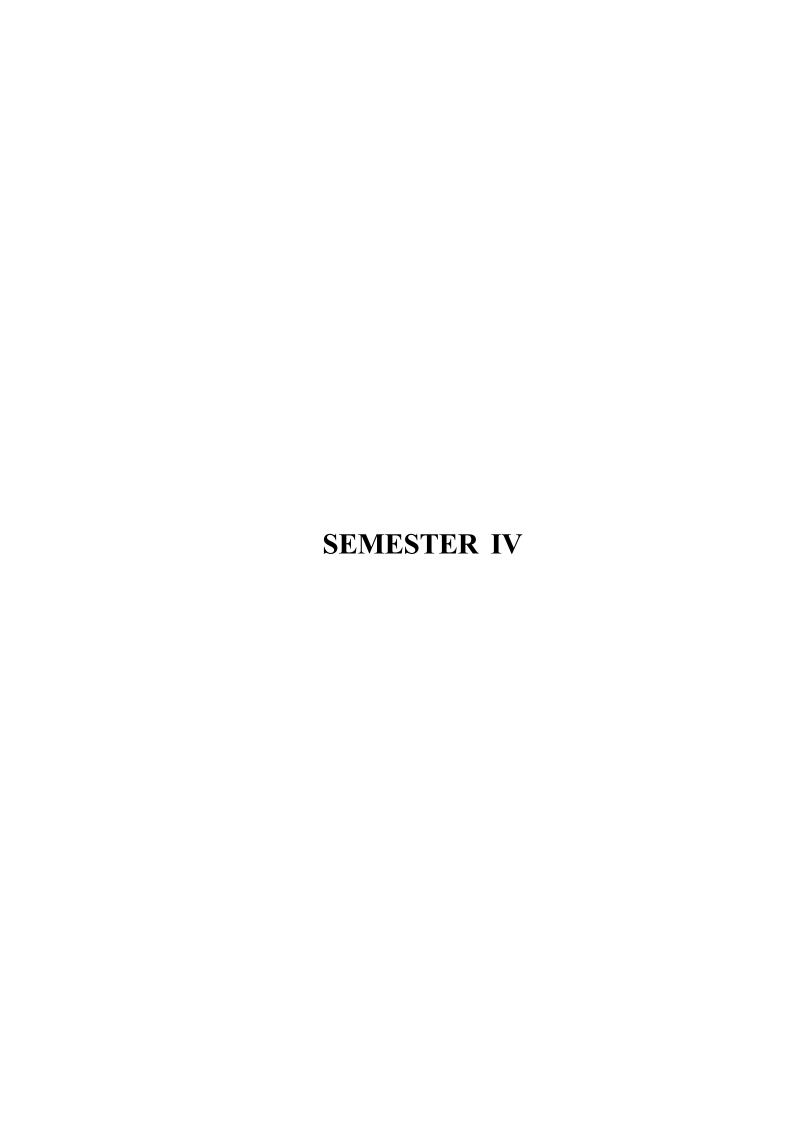
Using MS-Excel

- 1. Importing data
- 2. Demonstrate the usage of essential Functions and methods
- 3. Publish worksheet as web page with interactivity
- 4. Using PivotTables and Charts to create dashboards
- 5. Connect multiple slicers to the pivot tables

Using Python

- 1. Working with libraries
- 2. Importing and exporting data
- 3. Cleaning and preparing data
- 4. Replacing strings with numbers
- 5. Exploratory Data Analysis

Web References


- 1. https://www.analyticsvidhya.com/blog/2021/11/a-comprehensive-guide-on-microsoft-excel-for-data-analysis/
- 2. https://www.academia.edu/34282340/Excel_data_analysis_tutorial
- 3. https://www.datacamp.com/courses/data-analysis-in-excel?
- 4. https://www.myexcelonline.com/blog/connect-slicers-to-multiple-excel-pivot-tables/
- 5. https://www.geeksforgeeks.org/data-analysis-with-python/
- 6. https://www.geeksforgeeks.org/data-analysis-with-scipy/?ref=rp

Pedagogy

Demonstration

Course Designer

Dr.K.Reka

Semester: IV	Intern	nal Marks: 25	External	Marks:75
COURSECODE	COURSE TITLE	URSE TITLE CATEGORY		CREDITS
22PCS4CC8	BIG DATA ANALYTICS	CORE	6	5

- To provide knowledge about Big data Analytics
- To study the basic concepts on Data Science & Analytical Technologies
- To understand about Hadoop & MAPREDUCE fundamentals
- To inculcate knowledge about MongoDB & Analytics with R Machine

Prerequisites

Basic knowledge in Analytics, Data Mining, Database and Machine learning concepts

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CONumber	CO Statement	Cognitive Level
CO1	CO1 Understand the fundamentals of Big data analytics	
CO2	Describe the Hadoop architecture and Filesystem	K2
CO3	Apply the MapReduce Programming model for real-world problems	К3
CO4	Explore the concepts of NoSQL databases	K4
CO5	Design and assess a complete business data analytics solution	K5,K6

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO5
CO1	3	3	3	2	2	3	1	3	2	2
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	2	3	3	3	2	3	3	3	2	3
CO5	3	3	3	3	3	3	2	3	3	3

[&]quot;1"-Slight (Low) Correlation
"3"-Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation "-" - indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Types of Digital Data: Classification of Digital Data – Introduction to Big Data: Characteristics of Data-Evolution of Big Data – Definition of Big Data – Challenges with Big Data – Other characteristics of data - Need for Big Data - Traditional Business Intelligence versus Big Data - Data Warehouse and Hadoop Environment.	16	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5,
II	Understanding Analytics and Big Data: Comparing reporting and analysis - Types of Analytics - Points to consider during analysis - Developing an analytic team - Understanding text analytics.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	Big data Technology : Hadoop. Introduction to Hadoop: Introducing Hadoop – Need for Hadoop-Limitations of RDBMS – RDBMS versus HADOOP-History of Hadoop – Hadoop overview - Interacting with Hadoop ecosystem – HDFS - Processing Data with Hadoop MapReduce – Managing resources and applications with Hadoop YARN - Introduction to MAPREDUCE programming.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	Introduction to MongoDB: Need for MongoDB - Terms used in RDBMS and MongoDB - Data types in MongoDB - MongoDB Query Language.	20	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5,
V	Reading Datasets and Exporting Data from R: Using the c() Command - Using scan() Command - Reading multiple data values from large files - Reading data from R Studio - Exporting data from R. Working with Functions and Packages in R: Using functions instead of scripts - Using arguments in Functions - Built-in Functions in R - Introducing Packages - Working with Packages.	20	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self Study for Enrichment (Not included for End Semester Examinations) Exploring R .Manipulating and Processing Data in R - Introduction to Cassandra.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Books

- 1. Seema Acharya, Subhashini Chellappan, (2015). *Bigdata and Analytics*, Wiley India Pvt. Ltd (Unit I, III-IV)
- 2. DT Editorial Services, (2017), Big Data Black Book, Dream Tech Press. (Unit-II, V)

Reference Books

- 1. V. Bhuvaneswari, T. Devi (2016). *Bigdata Analytics A Practioner's Approach*, Bharathiyar University, Coimbatore
- 2. Michael Minelli, Michele Chambers, Ambiga Dhiraj (2013). Big data Big Analytics, Wiley
- 3. Bart Baesens (2014). Analytics in a BigdataWorld, Wiley

Web References

- 1. https://webopedia.com/TERM/B/big data analytics.html
- 2. https://www.coursera.org/learn/big-data-introduction
- 3. https://hadoop.apache.org/
- 4. https://www.tutorialspoint.com/cassandra/index.htm
- 5. https://www.edureka.co/blog/mapreduce-tutorial/

Pedagogy

Chalk and Talk, Group discussion, Seminar, Quiz & Assignment.

Course Designer

Ms. A. Sahaya Jenitha

Semester: IV	Internal N	Marks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY		CREDITS	
22PCS4CCC3A	ROBOTIC PROCESS AUTOMATION	CORE CHOICE	6	4	

- Understand the RPA and differentiate from other types of automation
- Outline the benefits of RPA and its various platforms
- Summarize the Risks and Challenges of RPA

Prerequisites

Knowledge in Programming languages and algorithmic way of understanding and thinking capability

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Cognitive Level
CO1	List and Interpret RPA, where it can be applied	K1, K2
CO2	Explain and Identify the usage of AI	K2, K3
CO3	Make use of and distinguish the process and its automation	K3, K4
CO4	CompareandEvaluate the bots	K4, K5
CO5	Assess the RPA and its use cases in various domains	K5

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO5
CO1	3	3	2	3	2	3	3	2	2	3
CO2	2	2	3	3	3	3	3	2	3	3
CO3	3	3	2	3	1	3	3	3	2	1
CO4	2	2	3	2	3	3	2	1	3	3
CO5	3	3	2	2	1	3	3	2	1	1

[&]quot;1"-Slight (Low) Correlation

[&]quot;3"-Substantial (High) Correlation

[&]quot;2"-Moderate (Medium) Correlation

[&]quot;-" indicates there is no Correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	INTRODUCTION TO ROBOTIC PROCESS AUTOMATION: Definition-Benefits of RPA, Types of RPA, RPA tools-Automation Anywhere-CRM Automation-Extracting the customer list from CRM-Looking up customer information	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
II	MODERATING SOCIAL MEDIA USING AI: Reading parameters from the configuration file- passing the configuration parameters to the main workflow-reading image files from input and create a list-setting up the google cloud vision API services-looping through images and invoking google cloud vision API-updating the image sheet with API results-passing the parameters and invoking safesearch -Testing the automation- PURCHASE ORDER PROCESSING WITH UIPATH REFRAMEWORK: Purchase order performer-init state changes-process state changes-	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	SALES ORDER PROCESSING: Creating the parent bot-creating the child bot for SO processing-invoking the child bot and updating excel sheet-ERP USER ADMINISTRATION: creating the child bot for new user creation-EMPLOYEE EMERGENCY NOTIFICATIONS:-create a child bot to send messages-create the parent bot-testing the automation	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	INTELLIGENT DOCUMENT PROCESSING- Uipath Document understanding-creating the IQ Bot learning instance-uploading invoices to IQ Bot-Downloading Structured data from IQ bot	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
V	RPA IN ENTERPRISE: Security and Error Handling-robot platform security-cognitive automation technology and smart process automation-BRINGING YOUR ROBOTS TO LIFE-THE DEVELOPMENT PROCESS: Scoping an RPA project-robotic validations-becoming an automation consultant	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not included for End Semester Examinations) RPA Use cases: Retail -Healthcare-Finance and Accounting-BPO-Web application Automation	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text Books

- 1. Nandan Mullakara and Arun Kumar Asokan(2020). *Robotic Process Automation Projects*. Packt Publishing.(UNITS I-IV)
- 2. Richard Murdoch (2018). Robotic Process Automation. RPA Ultra.(UNIT V)

Reference Books

- 1. Frank Casale, Rebecca Dilla, Heidi Jaynes, Lauren Livingston (2015). *Introduction to Robotic Process Automation: a Primer*. 1stEdition, Institute of Robotic Process Automation.
- 2. Richard Murdoch (2018). Robotic Process Automation: Guide to Building Software Robots, Automate Repetitive Tasks and become an RPA Consultant.1st Edition, Independently Published.
- 3. Srikanth Merianda (2018). Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation.1st Edition, Consulting Opportunity Holdings LLC.
- 4. Lim Mei Ying (2018). Robotic Process Automation with Blue Prism Quick Start Guide: Create software robots and automate business processes. 1st Edition, Packt Publishing.

Web References

- 1. https://www.uipath.com/rpa/robotic-process-automation
- 2. https://www.academy.uipath.com
- 3. https://www.edureka.co/blog/rpa-tutorial/
- 4. https://www.udemy.com/course/robotic-process-automation/
- 5. https://www.guru99.com/robotic-process-automation-tutorial.html
- 6. https://www.automationanywhere.com/in/robotic-process-automation
- 7. https://www.uipath.com/blog/learning-robotic-process-automation-through-video tutorials
- 8. https://onlinecourses.nptel.ac.in/noc21 me32/preview

Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Quiz and Seminar

Course Designer

Dr. D. Radhika

Semester: IV	Internal M	arks: 25	External M	arks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PCS4CCC3B	VIRTUAL AND AUGMENTED REALITY	CORE CHOICE	6	4

- Learn the fundamental Computer Vision, Computer Graphics and Human-Computer interaction Techniques related to Virtual Reality (VR)/Augmented Reality (AR)
- To review the Virtual Environment and the various types of Hardware and Software in Virtual Reality systems
- To Simulate and Apply Virtual/Augmented Reality to varieties of Applications

Prerequisites

Numerical & Statistical Methods, Artificial Intelligence & Machine Learning and Computer Aided Engineering

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Understand and Identify the fundamental Computer Vision, Computer Graphics and Human - Computer Interaction Techniques related to VR/AR	K1,K2
CO2	Interpret and Analyze various Geometric Modeling Techniques	K2,K3
CO3	Apply and Analyze the Virtual Environment	K3,K4
CO4	Analyze the VR/AR Technologies	K4
CO5	Examine the VR/AR Technologies on real time applications	K5

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO5
CO1	3	3	3	2	2	3	3	3	2	2
CO2	3	3	3	2	3	3	3	3	3	3
CO ₃	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1"- Slight (Low) Correlation

[&]quot;3"- Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-"- indicates there is no Correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Introduction: Defining Virtual and Augmented	16	CO1,	K1,
	Reality: Introducing Virtual Reality and Augmented		CO2,	K2,
I	Reality – Other types of Virtual and Augmented Reality		CO3,	K3,
1	-History - Father of Virtual Reality - Early Virtual		CO4,	K4,
	Reality failures-Virtual Reality breaks through –		CO5	K5,
	Augmented reality hits the mainstream – Evaluating the Technology Hype Cycle.			K6
	Exploring the Current State of Virtual Reality &	16	CO1,	K1,
	Augmented Reality: Looking at Available forms		CO2,	K2,
II	factors – Focusing on features – Considering controllers		CO3,	K3,
	- Recognizing the current issues with VR - Assessing		CO4,	K4,
	adoption rates		CO5	K5
	Consuming Content in Virtual Reality : Exploring	18	CO1,	K1,
	Consumers-Grade Virtual Reality – Identifying Near-		CO2,	K2,
III	Future Hardware – Comparing Current and Future		CO3,	K3,
1111	options. Consuming Content in Augmented Reality:		CO4,	K4,
	Exploring Consumers-Grade Augmented Reality –		CO5	K5
	Identifying Near-Future Hardware – Comparing			
	Current and Future options.			
	Evaluating Your Project : Choosing Virtual Reality –	20	CO1,	K1,
	Choosing Augmented Reality. Planning Virtual		CO2,	K2,
IV	Reality Project – Defining your Virtual Reality		CO3,	K3,
'	Project-Exploring Design Principles in Virtual Reality.		CO4,	K4,
	Planning Augmented Reality Project – Defining your		CO5	K5
	Augmented Reality Project – Exploring Design			
	Principles in Augmented Reality – Defining your			
	Social Experience.	•		***
	Industries Transformed by Virtual and Augmented		CO1,	K1,
	Reality: Travel – Museums – Aerospace – Retail –		CO2,	K2,
V	Military – Education – Entertainment - Real estate –		CO3,	K3,
,	Advertising and Marketing. – Mobile Apps for		CO4,	K4,
	Experiencing Augmented Reality: Google translate –		CO5	K5
	Amazon AR view – AR city – Ingress and Pokemon Go –			
	Sketch AR – Find your car & Car finder AR Solf Study for Englishment		CO1	I/ 1
	Self Study for Enrichment (Not included for End Semester Examinations)	-	CO1,	K1,
	Exploring Virtual Reality use cases – Exploring		CO2,	K2,
	Augmented Reality use cases – Exploring		CO3,	K3,
VI	Augmented reality		CO4,	K4,
	<i>S</i> ,		CO5	K5
	I .			

Text Book

1. Paul Mealy (2018), Virtual & Augmented Reality For Dummies, John Wiley & Sons,

Reference Books

1. Bruno Arnaldi, Guillaume Moreau, Pascal Guitton, (2018), Virtual Reality and Augmented Reality: Myths and Realities, Wiley

Web References

- 1. https://nptel.ac.in/courses/121106013
- 2. https://www.youtube.com/watch?v=zLMgdYI82IE
- 3. https://www.youtube.com/watch?v=MGuSTAqlZ9Q

Pedagogy

Chalk and Talk, Group discussion, Seminar & Assignment

Course Designer

Ms. K. Pradeepa

Semester: IV	Internal N	Marks: 25	Ex	ternal Mars: 75
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PCS4CCC3C	DIGITAL IMAGE PROCESSING	CORE CHOICE	6	4

- To impart the knowledge of image fundamentals and mathematical transforms necessary for image processing
- To understand the image enhancement techniques
- To study image compression procedures
- To study the image segmentation and representation techniques

Prerequisites

Basic Programming Skills, Linear Algebra, Differential Equations & Basics of Digital Electronics

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Recall and understand the algorithmic approach to illustrate the concepts of image processing	K1, K2
CO2	Understand the fundamental to the processing of digital images for specific tasks	K2
CO3	Solve real world problems by using digital image processing	К3
CO4	Analyze the images by using fundamental and advanced aspects of image processing	K4
CO5	Develop and evaluate the simplified tools for image processing	K5, K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	2	3	3	2	3
CO2	3	2	2	2	2	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" - Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" -indicates there is no Correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Introduction to Image Processing: Overview of Image Processing - Nature of Image Processing - Nature of Image Processing - Image Processing and Related Fields - Digital Image Representation - Types of Images - Digital Image Processing Operations - Fundamental Steps in Image Processing - Image Processing Applications - Colour Image Processing: Colour Models - Colour Quantization.	14	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	Digital Imaging System: Overview of Digital Imaging System - Physical Aspects of Image Acquisition - Digital Image Transforms: Need for Image Transforms - Properties of Fourier Transform - Discrete Cosine Transform - Discrete Sine Transform - Walsh Transform - Hadamard Transform - Haar Transform - Slant Transform - SVD and KL Transforms.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	Image Enhancement: Image Quality and Need for Image Enhancement – Image Enhancement Operations - Spatial Filtering Concepts – Image Smoothing in Frequency Domain Filtering. Image Restoration Image Degradation Model –Image Restoration in Presence of Noise only – Image Restoration Techniques	19	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
IV	Image Segmentation: Introduction – Classification of Image Segmentation Algorithms - Detection of Discontinuities - Edge Detection: Stages in Edge Detection, Types of Edge Detectors, First-order Edge Detection Operators, Second – order Derivative Filters, Edge Operator Performance-Hough Transforms and Shape Detection - CornerDetection - Principles of Thresholding – Principles of Region-growing – Active Contour Models	19	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	Image Compression: Image Compression Model-Compression Algorithms and its types— Types of Redundancy – Lossless Compression Algorithms – Lossy Compression Algorithms – Image and Video Compression Standards	20	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5, K6
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) Case study: Face Recognition - Iris Recognition- Finger print Recognition - Signature Verification	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Book

1. Dr. S. Sridhar.(2016). Digital Image Processing. 2nd Edition, Oxford University Press

Reference Books

- 1. Anil Jain K. (2011). Fundamentals of Digital Image Processing. PHILearningPvt.Ltd
- 2. Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins.(2011). *Digital Image Processing Using MATLAB*. 3rd Edition, TataMcGrawHillPvt. Ltd.
- 3. MalayK. Pakhira (2011). *Digital Image Processing And Pattern Recognition*, 1st Edition PHI Learning Pvt. Ltd.

Web References

- 1. https://www.cs.nmt.edu/~ip/lectures.html
- 2. https://archive.nptel.ac.in/courses/117/105/117105135/
- 3. https://www.geeksforgeeks.org/digital-image-processing-basics/
- 4. https://www.javatpoint.com/digital-image-processing-tutorial
- 5. https://github.com/FlagArihant2000/dip-notes

Pedagogy

Chalk and Talk, PPT, Discussion, Assignment, Quiz, Seminar

Course Designer

Ms. R. Sangeetha

Semester: IV	Internal Mar	ks: 40	External	Marks: 60
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PCS4CC4P	FOSS (P)	CORE	6	5

- To expose students to FOSS environment
- To use and modify existing programs using open source packages/Technologies
- To inculcate knowledge in developing new software

Prerequisites

Knowledge in Programming Languages

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Cognitive Level
CO 1	Ability to install and run open-source operating systems	K1
CO 2	Explain open source project structure and how to successfully setup a project	K2
CO 3	Use Github for Software development projects	К3
CO 4	Analyze various FOSS options for any software requirement	K4
CO 5	Develop and testing an applications using open source code	K5, K6

CO s	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	3	3	2	3	2	3	3	2	3	3
CO 2	3	3	3	3	3	3	3	3	3	3
CO 3	3	3	3	3	3	3	3	2	3	3
CO 4	3	3	3	3	3	3	3	3	3	3
CO 5	3	3	3	3	3	3	3	3	3	3

[&]quot;1" - Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" - indicates there is no Correlation

- 1. Linux
- 2. GIMP: GNU Image Manipulation Program
- 3. Shotcut
- 4. Apache Struts
- 5. Perl
- 6. Ruby
- 7. Mongo DB
- 8. PHP
- 9. Selenium

Web References

- 1. https://www.vmware.com/
- 2. https://www.cyberciti.biz/tips/linux-unix-bsd-documentations.html
- 3. https://developer.gimp.org/api/2.0/
- 4. https://struts.apache.org/
- 5. https://www.tutorialspoint.com/perl/perl references.html
- 6. https://www.ruby-lang.org/en/documentation/
- 7. https://docs.mongodb.com/manual/reference/database-references/
- 8. https://shotcut.org/tutorials/
- 9. https://www.nptelvideos.com/php/php video tutorials.php
- 10. https://www.coursera.org/learn/selenium-webdriver-python

Pedagogy

Demonstration

Course Designer

Dr.K.Reka

Semester: IV	: IV Internal Marks: 40 External Marks: 60			Marks: 60
COURSE CODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
22PCS4GEC2P	ANIMATION (P)	GENERIC ELECTIVE COURSE	3	2

- To give an overall view of animation tools
- To learn the basic concepts of animation as an art.
- Explore the various photo editing features and animation techniques
- To create different types of animation using Flash

Prerequisites

Basic Computer Skills

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, the students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Understand the basic concepts behind animation	K2
CO2	Develop an animated movie	K3
CO3	Analyze the tools and techniques to create 2D and 3D animation	K4
CO4	Recommend the suitable methods available to create, render, and present images with professional quality	K5
CO5	Create simple shapes and videos using animation editing software	K6

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	2	3	3	3	3	2
CO2	3	3	3	3	2	3	3	2	3	2
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	2	3	2	3	3	3	3	3

[&]quot;1" - Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" -indicates there is no Correlation.

List of Exercises

USING PHOTOSHOP

- 1. Create a logo using shapes, texture and filling colors.
- 2. Develop a banner of recent activity in your college or any festival.
- 3. Perform an animation on still photo.
- 4. Develop a collage and apply Morphing, Merging and Overlapping on the images.
- 5. Design a visiting card containing at least one graphic and text information.
- 6. Create a dancing doll using Frame by Frame Animation.
- 7. Develop a Webpage.

USING FLASH

- 16.Create an application using shapes, colors, text and images.
- 17.Design a Virtual Drumbeat using audio and video.

(Draw a circle to represent a drum and edit as required on one layer. Insert another layer, draw suitable drum sticks and position them appropriately. Give visual effects. Also provide audio effect by selecting the sound item from Flash library Sounds.fla, so as to integrate audio and video clips)

18.Design a Sunset

(Create a suitable background with clouds and mountains on one layer. Draw the Sun on another layer. On the third layer draw birds. Provide animation to show the birds flying across the Sun that keeps fading)

- 19. Create a Stickman Walk using MotionTweening
- 20. Design an animation using Shape Tweening.
- 21. Create Morphing and Masking effects in images
- 22. Create a Bouncing Ball using Frame by Frame animation

Web References

- 1. https://www.adorama.com/alc/how-to-edit-your-photos-5-photoshop-editing-steps-for-beginners/
- 2. https://www.youtube.com/watch?v=ceAGVMn-syQ
- 3. https://www.geeksforgeeks.org/types-of-animations-in-flash/
- 4. https://www.photoshopessentials.com/basics/
- 5. https://www.guru99.com/photoshop-tutorials.html
- 6. https://www.instructables.com/Basics-of-Photoshop/

Pedagogy

Power Point Presentation, Live Demonstration

Course Designer

Ms. R. Sangeetha

Semester: IV	Inte	External	Marks:100	
COURSECODE	COURSE TITLE	CATEGORY	HOURS / WEEK	CREDITS
23PCS4PW	PROJECT WORK	PROJECT	9	4

- To understand the problem identification from the real world requirements
- To inculcate technical skills through the suitable application development environment for modeling real-world problems
- To expose the students to analyze various software testing tools and techniques before deploying the product

Course Outcome and Cognitive Level Mapping

On completion of the course, the students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Identify the problem	K2
CO2	Discover the relevant literature and frame the hypotheses	К3
CO3	Select appropriate design and utilize time management	K4
CO4	Test the hypotheses wherever applicable	K5
CO5	Develop project accustomed to professional environment	K6

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

[&]quot;1"-Slight (Low) Correlation
3"-Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" - indicates there is no Correlation

Project Evaluation

The project work shall be done by an individual student. Two components will be considered in assessing the project work:

- Dissertation
- Viva Voce

The Dissertation / Project work submitted will be evaluated based on the following components:

- Problem Identification
- Domain Knowledge
- Documentation
- Presentation