CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC TIRUCHIRAPPALLI

PG AND RESEARCH DEPARTMENT OF CHEMISTRY

B.Sc., Chemistry Syllabus 2023-2024 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG DEPARTMENT OF CHEMISTRY

VISION

 To progress into a centre of superiority in Chemistry that will blend state-of-the-art practices in professional teaching in a communally enriching way, with the holistic progress of the students as its prime emphasis.

MISSION

- To produce graduates committed to integrity, professionalism and lifelong learning by widening their knowledge horizons in range and depth.
- To awaken the young minds and discover talents to achieve personal academic potential by creating an environment that promotes frequent interactions, independent thought, innovations, modern technologies and increased opportunities.
- To enhance the quality through basic and applied research frameworks, and encourage the students to take part in entrance and competitive examinations for higher studies and career.
- To enhance services to the community and build partnerships with the industry.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR B.Sc., Mathematics, B.Sc., Physics, B.Sc., Chemistry PROGRAMME

	Programme Outcome
PO No.	On completion of B.Sc., Mathematics, B.Sc., Physics, B.Sc. Chemistry
	Programme, the students will be able to
PO1	Domain knowledge:
	Analyze, design and develop solutions by applying firm fundamental concepts
	of basic sciences and expertise in discipline.
PO2	Problem solving:
	Ability to think rationally, analyse and solve problems adequately with practical
	knowledge to assess the environmental issues
PO3	Creative thinking and Team Work:
	Develop prudent decision-making skills and mobility to work in teams to solve
	multifaceted problems.
PO4	Employability:
	Self-study acclimatize them to observe effective interactive practices for
	practical learning enabling them to be a successful science graduate.
PO5	Life Long Learning:
	Assure consistent improvement in the performance and arouse interest to pursue
	higher studies in premium institutions.

PROGRAMME SPECIFIC OUTCOMES FOR B.Sc., CHEMISTRY

PSO	Programme Specific Outcomes	POs
NO	Students of B.Sc., Chemistry will be able to	Addressed
PSO1	Afford a firm foundation in Chemistry that stresses scientific reasoning, analytical problem solving with a molecular perspective	PO1 PO2
PSO2	Acquire knowledge in theoretical and practical tools to exemplify entirely in the working environment.	PO4 PO5
PSO3	Inculcate scientific temperament and create an awareness of the impact of chemistry on the environment, society, and development outside the scientific community.	PO3 PO4
PSO4	Scale up of chemical process after designing, optimization and analysis for developing products required for society.	PO4
PSO5	Expand the knowledge available opportunities related to chemistry in the government services through public service commission particularly in the field of food safety, health inspector, pharmacist etc.	PO4 PO5

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF CHEMISTRY

B.Sc. CHEMISTRY

(For the Candidates admitted from the Academic year 2023 - 2024 and onwards)

ter	L				lrs. Jk	its	its F		Exam	
nes	Part	Course	Course Title	Course Code	t. H Vee	redi	s	Ma	rks	ota
Ser					Ins / V	C	ΗI	Int.	Ext.	L
		Language	Pothutamil-I	23ULT1	6	3	3	25	75	100
		Course - I (LC)	Hindi ka Samanya Gyan	23ULH1						
			aur Nibandh		-					
	I		Poetry, Grammar and	23ULS1						
			History of Sanskrit							
			Literature	02111 E1	-					
			I – French I	230LI 1						
		English	General English -I	23UE1	6	3	3	25	75	100
	11	Language					-			
	11	Course - I								
		(ELC)								
		Core Course - I	General Chemistry-I	23UCH1CC1	5	5	3	25	75	100
		(CC) Coro Prosticol	Quantitativa Inorgania		3	3	3	40	60	100
		L (CP)	Estimation (Titrimetry)	25001110011	5	5	5	40	00	100
			and Inorganic							
Ι			Preparations (P)							
		First Allied	Calculus and Fourier	22UCH1AC1A	4	3	3	25	75	100
	III	Course - I (AC)	Series							
			Biology – I	23UCH1AC1B						
		First Allied	Algebra, Analytical	22UCH1AC2A	4	3	3	25	75	100
		Course - II	Geometry of 3D &							
		(AC)	Trigonometry							
			Biology (P)	23UCH1AC2BP				40	60	
		Ability	Value Education	23UGVE	2	2	_	100		100
		Enhancement	Value Education	250011	2	2		100		100
	IV	Compulsory								
		Course - I								
-		(AECC)			•					-00
-		F		Total	30	22	2	25	75	700
		Language	Pothutamil -II Hindi Literatura &	23UL12	6	3	3	25	15	100
		(LC)	Grammar – II	220262						
	I		Prose, Grammar and	23ULS2	-					
			History of Sanskrit							
п			Literature							
		ļ	Basic French – II	22ULF2						
	II	English	General English– II	23UE2	6	3	3	25	75	100
1		Language			1				1	

		Course - II								
		Core Course - II (CC)	Inorganic and Physical Chemistry	23UCH2CC2	5	5	3	25	75	100
		Core Practical - II (CP)	Inorganic Materials of Industrial Importance (P)	23UCH2CC2P	3	3	3	40	60	100
		Core Course - III (CC)	Material Science	23UCH2CC3	2	2	3	25	75	100
	III	First Allied Course - III	ODE, Laplace Transforms and Statistics	22UCH2AC3A	4	3	3	25	75	100
		(AC)	Biology – II	23UCH2AC3B						
		Ability Enhancement Compulsory Course - II (AECC)	Environmental Studies	22UGEVS	2	2	_	100	-	100
	IV	Ability Enhancement Compulsory Course - III (AECC)	Innovation and Entrepreneurship	22UGIE	2	1	-	100	-	100
		Extra Credit Course	SWAYAM		As p	ber U	GC F	Recon	nmen	dation
		1		Total	30	22				800
		Language	Pothutamil-III	23ULT3	6	3	3	25	75	100
	Ι	(LC)	Hindi Literature & Grammar – III	22ULH3						
			Drama, Grammar and History of Sanskrit Literature	23ULS3						
			Intermediate French – I	22ULF3						
	II	English Language Course - III (ELC)	Learning Grammar through Literature – I	23UE3	6	3	3	25	75	100
		Core Course - IV (CC)	Organic and Analytical Chemistry	23UCH3CC4	5	5	3	25	75	100
		Core Practical - III(CP)	Analysis and Preparation of Organic Compounds (P)	22UCH3CC3P	3	3	3	40	60	100
III	III	Second Allied Course - I (AC)	Physics – I	22UCH3AC4	4	3	3	25	75	100
		Second Allied Course - II (AP)	Physics -I (P)	22UCH3AC5P	4	3	3	40	60	100
		Generic Elective	Chemistry in Everyday life	22UCH3GEC1	2	2	3	25	75	100
	IV	Course - I (GEC)	Basic Tamil-I Special Tamil-I	22ULC3BT1 22ULC3ST1						
		Extra Credit Course	SWAYAM		R	As] Recon	per U 1mer	JGC ndatio	on	
				Total	30	22				700
	15 Days INTERNSHIP during Semester Holidays									

		Language	Puthutamil- IV	23ULT4	6	3	3	25	75	100
		Course - IV	Hindi Literature and	22ULH4	U	C .	C			100
		(LC)	Functional Hindi	2202111						
	т		Alankara Didactic and	23111 \$4						
	I		Modern Literatures and	230154						
			Translation							
			Intermediate Erench II							
		F	Internediate French – II	22ULF4	(2	2	25	75	100
		English	Learning Grammar through	230E4	0	3	3	25	15	100
	II		Literature – II							
		Course - IV								
		(ELC)			-	-	2	27		100
		Core Course -	Inorganic and Organic	23UCH4CC5	6	5	3	25	75	100
		V(CC)	Chemistry							
		Core Practical -	Inorganic Qualitative	22UCH4CC4P	4	4	3	40	60	100
	ш	IV(CP)	Analysis (P)							
IV		Second Allied	Physics – II	22UCH4AC6	4	3	3	25	75	100
		Course - III								
		(AC)								
		Internship	Internship	22UCH4INT	-	2	-	-	-	100
			Food Adulterants and Health	22UCH4GEC2	2	2	3	25	75	100
		Generic	Care							
		Elective	Basic Tamil-II	22ULC4BT2						
		Course - II	Special Tamil-II	22ULC4ST2						
	IV	(GEC)								
		Skill	Chemistry of Consumer	22UCH4SEC1P	2	2	3	40	60	100
		Enhancement	Products (P)							
		Course - I								
		(SEC)								
		(SEC) Extra Credit	SWAYAM		As	per U	GC			
		(SEC) Extra Credit Course	SWAYAM	F	As j Recor	per U	GC datio	on		
		(SEC) Extra Credit Course	SWAYAM	F Total	As j Recort 30	per U nmen 24	GC datio	on		800
		(SEC) Extra Credit Course Core Course - VI(CC)	SWAYAM Inorganic Chemistry – I	F Total 22UCH5CC6	As j Recort 30 6	per U nmen 24 5	GC datio	on 25	75	800 100
		(SEC) Extra Credit Course Core Course - VI(CC) Core Practical -	SWAYAM Inorganic Chemistry – I Physical Chemistry (P)	F Total 22UCH5CC6 22UCH5CC5P	As j Recort 30 6	per U nmen 24 5 3	GC datio	on 25 40	75	800 100
		(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP)	SWAYAM Inorganic Chemistry – I Physical Chemistry (P)	F Total 22UCH5CC6 22UCH5CC5P	As p Recorr 30 6 3	per U nmen 24 5 3	GC datio	on 25 40	75 60	800 100 100
		(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course -	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I	F Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7	As j Recort 30 6 3	per U nmen 24 5 3	GC datio	on 25 40	75 60 75	800 100 100
		(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC)	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I	F Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7	As j Recor 30 6 3 6	per U nmen 24 5 3 5	GC datio	on 25 40 25	75 60 75	800 100 100
		(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course -	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I	F Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8	As p Record 30 6 3 6	per U nmen 24 5 3 5	GC datio	on 25 40 25 25	75 60 75 75	800 100 100 100
	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VIII(CC)	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I	F Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8	As p Recorr 30 6 3 6 6	per U nmen 24 5 3 5 5	GC datio 3 3 3 3	on 25 40 25 25	75 60 75 75	800 100 100 100
	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VIII(CC)	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial	F Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A	As p Recorr 30 6 3 6 6 5	per U nmen 24 5 3 5 5 3	GC datio 3 3 3 3 3	on 25 40 25 25 25	75 60 75 75 75	800 100 100 100 100
	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VIII(CC) Discipline	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry	F Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A	As presented as a constraint of the second s	per U nmen 24 5 3 5 5 3	GC datio 3 3 3 3 3	on 25 40 25 25 25	75 60 75 75 75	800 100 100 100 100
	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VIII(CC) Discipline Specific	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience	F Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B	As p Recorr 30 6 3 6 6 5	per U nmen 24 5 3 5 5 3	GC datio 3 3 3 3 3	on 25 40 25 25 25	75 60 75 75 75	800 100 100 100 100
	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VIII(CC) Discipline Specific Elective - I	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience and Nanotechnology	F Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B	As presented as a constraint of the second s	per U nmen 24 5 3 5 5 3	GC datio 3 3 3 3 3	on 25 40 25 25 25	75 60 75 75 75	800 100 100 100 100 100 100
V	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VIII(CC) Discipline Specific Elective - I (DSE)	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience and Nanotechnology Polymer Chemistry	F Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C	As p Record 30 6 3 6 6 5	per U nmen 24 5 3 5 5 3	GC datio 3 3 3 3 3	on 25 40 25 25 25	75 60 75 75 75	800 100 100 100 100
V	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VII(CC) Discipline Specific Elective - I (DSE)	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial <u>Chemistry</u> B. Basics of Nanoscience and Nanotechnology Polymer Chemistry	F Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C	As presented as a constraint of the second s	per U nmen 24 5 3 5 5 3	GC datio 3 3 3 3 3	on 25 40 25 25 25	75 60 75 75 75	800 100 100 100 100
v	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VIII(CC) Discipline Specific Elective - I (DSE) Ability	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience and Nanotechnology Polymer Chemistry UGC Jeevan Kaushal -	Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C	As presented as a constraint of the second s	per U nmen 24 5 3 5 3	GC datio 3 3 3 3 3	on 25 40 25 25 25	75 60 75 75 75	800 100 100 100 100 100 100
v	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VII(CC) Discipline Specific Elective - I (DSE) Ability Enhancement	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience and Nanotechnology Polymer Chemistry UGC Jeevan Kaushal - Professional Skills	Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C 22UCH5DSE1C	As p Recorr 30 6 3 6 5 5	per U nmen 24 5 3 5 5 3	GC datio 3 3 3 3 3	on 25 40 25 25 25 100	75 60 75 75 75	800 100 100 100 100
v	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VII(CC) Discipline Specific Elective - I (DSE) Ability Enhancement Compulsory	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience and Nanotechnology Polymer Chemistry UGC Jeevan Kaushal - Professional Skills	Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C 22UCH5DSE1C	As presented as a constraint of the second s	per U nmen 24 5 3 5 3 2	GC datio 3 3 3 3 -	on 25 40 25 25 25 100	75 60 75 75 75	800 100 100 100 100 100 100 100 100 100
V	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VIII(CC) Discipline Specific Elective - I (DSE) Ability Enhancement Compulsory Course -	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience and Nanotechnology Polymer Chemistry UGC Jeevan Kaushal - Professional Skills	Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C 22UCH5DSE1C	As presented as a second secon	per U nmen 24 5 3 5 3 2	GC datio 3 3 3 3 -	on 25 40 25 25 25 100	75 60 75 75 -	800 100 100 100 100 100 100 100 100
v	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VII(CC) Discipline Specific Elective - I (DSE) Ability Enhancement Compulsory Course - IV(AECC)	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience and Nanotechnology Polymer Chemistry UGC Jeevan Kaushal - Professional Skills	Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C 22UCH5DSE1C	As presented as a constraint of the second s	per U nmen 24 5 3 5 3 2	GC datio 3 3 3 3 -	on 25 40 25 25 25 100	75 60 75 75 75	800 100 100 100 100 100 100 100 100
v	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VII(CC) Discipline Specific Elective - I (DSE) Ability Enhancement Compulsory Course - IV(AECC) Skill	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience and Nanotechnology Polymer Chemistry UGC Jeevan Kaushal - Professional Skills	Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C 22UCH5DSE1C 22UCH5SE2P	As presented as a second secon	per U nmen 24 5 3 5 3 2 2	GC datio 3 3 3 3 -	on 25 40 25 25 25 100 40	75 60 75 75 -	800 100 100 100 100 100 100 100 100 100 100 100 100
V	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VII(CC) Discipline Specific Elective - I (DSE) Ability Enhancement Compulsory Course - IV(AECC) Skill Enhancement	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience and Nanotechnology Polymer Chemistry UGC Jeevan Kaushal - Professional Skills	Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C 22UCH5DSE1C 22UCH5SEC2P	As particular and the second s	per U nmen 24 5 3 5 3 2 2	GC datio 3 3 3 3 -	on 25 40 25 25 25 100 40	75 60 75 75 -	800 100 100 100 100 100 100 100 100 100 100 100 100 100 100
v	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VII(CC) Discipline Specific Elective - I (DSE) Ability Enhancement Compulsory Course - IV(AECC) Skill Enhancement Course - II	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial <u>Chemistry</u> B. Basics of Nanoscience and Nanotechnology Polymer Chemistry UGC Jeevan Kaushal - Professional Skills Water Analysis (P)	Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C 22UCH5SE2P 22UCH5DSE1C 22UCH5SE2P	As presented as a constraint of the second s	per U nmen 24 5 3 5 3 2 2	GC datio 3 3 3 3 -	on 25 40 25 25 25 100 40	75 60 75 75 75 -	800 100 100 100 100 100 100 100 100 100 100 100 100
V	III	(SEC) Extra Credit Course Core Course - VI(CC) Core Practical - V(CP) Core Course - VII(CC) Core Course - VII(CC) Discipline Specific Elective - I (DSE) Ability Enhancement Compulsory Course - IV(AECC) Skill Enhancement Course - II (SEC)	SWAYAM Inorganic Chemistry – I Physical Chemistry (P) Organic Chemistry – I Physical Chemistry – I A. Nuclear and Industrial Chemistry B. Basics of Nanoscience and Nanotechnology Polymer Chemistry UGC Jeevan Kaushal - Professional Skills Water Analysis (P)	Total 22UCH5CC6 22UCH5CC5P 22UCH5CC7 22UCH5CC8 22UCH5DSE1A 22UCH5DSE1B 22UCH5DSE1C 22UCH5DSE1C 22UCH5DSE1C 22UCH5SEC2P	As presented as a second secon	per U nmen 24 5 3 5 3 2 2	GC datio	on 25 40 25 25 25 100 40	75 60 75 75 75 60	800 100 100 100 100 100 100 100 100 100 100 100

		Course Extra Credit Course								
				Total	30	25				700
		Core Course -	Organic Chemistry – II	22UCH6CC9	5	5	3	25	75	100
		IX(CC)								
		Core Course -X	Physical Chemistry – II	22UCH6CC10	5	4	3	25	75	100
		(CC)								
		Core Course -	Cyber Security	22UGCS	5	4	3	25	75	100
		XI (CC)								
		Core Practical -	Gravimetric Analysis and	22UCH6CC6P	4	3	4	40	60	100
	III	VI (CP)	Physical Parameter (P)							
VI		Discipline	A. Analytical Techniques(P)	22UCH6DSE2A	5	3	3	40	60	100
		Specific		Р						
		Elective - II	B. Cosmetic Chemistry (P)	22UCH6DSE2B						
		(DSE)		Р						
			C. Analysis of Herbal	22UCH6DSE2C						
			Products (P)	Р						
		Project	Project Work	22UCH6PW	5	4	-	-	100	100
		Gender Studies	Gender Studies	22UGGS	1	1	-	100	-	100
	V	Extension		22UGEA	0	1	0	-	-	-
		activity								
				Total	30	25				700
				Grand Total	180	140				4400

Part	Course	No. of	Credits	Total Credita
Ι	Tamil/ Other Language	4	12	12
II	English	4	12	12
	Core (Theory & Practical)	17	69	
	Project Work	1	4	
	Internship	1	2	00
111	First Allied	3	9	99
	Second Allied	3	9	
	DSE	2	6	
	GEC	2	4	
	SEC	2	4	
IV	AECC-I -Universal Human	1	2	15
	Values			
	AECC-II-Environmental	1	2	
	Studies			
	AECC-III-Innovation and	1	1	
	Entrepreneurship			
	AECC-IV Professional Skills	1	2	
V	Gender Studies	1	1	02
	Extension Activities	_	1	
		44		140

Courses & Credits for UG Science Programmes

*For BSc Mathematics & BCA

The Internal and external marks for theory and practical papers are as follows:

Subject	Internal Marks	External Marks
Theory	25	75
Practical	40	60

For Theory:

- a) The passing minimum for CIA shall be40% out of 25 marks (i.e. 10marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e.30 marks)

For Practical:

- a) The passing minimum for CIA shall be 40% out of 40 marks (i.e. 16marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 60 marks (i.e. .24 marks)

Internal Component (Theory)

Component	Marks
Library	05
Assignment &	10
Seminar	
CIA -I	05
CIA-II	05
Total	25

Internal Component (Practical)

Component	Marks
Observation	05
Record	10
Continual performance	10
Model	15
Total	40

Question Paper Pattern

Answer all the questions PART A (20X1=20)

Answer all the questions PART B (5X5=25)

Answer any three questions PART C (3X10=30)

Semester I	Internal Marks: 25	External Marks: 75					
COURSE CODE	COURSE TITLE	CATEGORY	Hrs. / Week	CREDITS			
23UCH1CC1	GENERAL CHEMISTRY – I	CORE	5	5			

Course Objectives

- > The course reviews the structure of the atom, which is a necessary pre-requisite in understanding the nature of chemical bonding in compounds.
- It discusses the periodicity in properties with reference to the s and p block, which is necessary in understanding their group chemistry.
- It provides basic knowledge about ionic, covalent, metallic bonding and reactive intermediates.
- To understand the basics of organic chemistry and the theoretical aspects of volumetric and qualitative inorganic analysis.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive						
Number	On the successful completion of the course, students will be able to							
CO1	Recognize and report the fundamental principles of various field of	K1						
	chemistry.							
CO2	Explain the concepts of atomic structure, chemical bonding, reactive	K2						
	intermediates and different types of titrations.							
CO3	Illustrate the knowledge on atomic structure, bonding, MO theory,	K3						
	isomerism, reaction intermediates, solid state and analytical							
	techniques.							
CO4	Categorize the quantum numbers, elements, hybridization, stability of	K4						
	intermediates, titrations and acid radicals.							
CO5	Interpret the periodic properties, geometry of molecules, bond order	K5						
	and electronic displacement effects.							

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	1	2	3	2	3	3	2	1	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Atomic Structure and Periodic Properties:	17	CO1,	K1, K2, K3,
	Bohr's model of atom - Photoelectric effect -		CO2,	K4, K5
	Compton effect - Dual nature of Matter - De		CO3,	
	Broglie wavelength - Davisson and Germer's		CO4,	
	experiment - Heisenberg's Uncertainty		CO5	
	Principle - Schrodinger equation. Atomic			
	orbital - quantum numbers - Principal,			
	azimuthal, magnetic and spin quantum			
	numbers - significance. Principles governing			
	the occupancy of electrons in various			
	quantum levels - Pauli's exclusion - principle,			
	Hund's rule, Aufbau Principle, (n+l) rule,			
	stability of half -filled and fully filled orbitals.			
	Modern periodic table - classification of			
	elements - Trends of periodic properties along			
	the period and group - Electronegativity scale			
	-			
	applications.			
II	Chemical Bonding - I:	13	CO1,	K1, K2, K3,
	Introduction- types - ionic bond - Born Haber		CO2,	K4, K5
	cycle - lattice energy - Madelung constant -		CO3,	
	Fajan's rule - covalent bond - polar and non -		CO4,	
	polar covalent bonds partial ionic character of		CO5	
	covalent bond - percentage of ionic character			
	-coordinate bond - Bond parameters - Factors			
	influencing bond parameters - metallic bond			
	-Electron Sea model - Band theory - Van der			
	Waals force - Hydrogen bonding - types-			

	properties and effects.			
III	Chemical bonding - II:			
	VB theory - postulates - limitation - different	15	CO1,	K1, K2, K3,
	types of hybridization - VSEPR theory -		CO2,	K4, K5
	shapes of different types of molecules -		CO3,	
	limitation - MO theory - bonding, antibonding		CO4,	
	and non - bonding orbitals, bond		CO5	
	order, MO diagrams of H ₂ , He ₂ , C ₂ , O ₂ , O ²⁺ , O ²⁻ , O ²⁻ , N ₂ , NO, HF and CO - magnetic			
	characteristics - comparison of VB and MO			
	theories.			
IV	Basics of Organic Compounds:	15	CO1,	K1, K2, K3,
	IUPAC nomenclature of compounds -		CO2,	K4, K5
	classification - isomerism - types - structural		CO3,	
	and stereo isomerism - cleavage of bonds:		CO4,	
	homolytic and heterolytic cleavages reagents		CO5	
	and substrates; types of reagents -			
	electrophiles - nucleophiles. Reaction			
	intermediates - generation - properties -			
	structure and stability of carbocation,			
	carbanion, free radicals, carbenes and nitrenes			
	- Electronic effects: Inductive - electromeric -			
	mesomeric (resonance) - hyperconjugation			
	and steric effects - Dipole			
	moment.			
V	Analytical Methods - I:	15	CO1,	K1, K2, K3,
	Storage and handling of chemicals - handling		CO2,	K4
	of acids, ethers, toxic and poisonous		CO3	
	chemicals and first aid procedure. Volumetric		CO4	
	analysis - methods of expressing			
	concentration - Primary and Secondary			
	standards- Different types of titrations - Acid			
	- Base Titrations, Tritimetric method,			

	Iodimetry method - Iodometry Method,			
	Complexometric Titration and Precipitation			
	Titration. Qualitative Inorganic Analysis -			
	Dry Test - Flame Test - Interfering acid			
	radicals - Eliminating of Interfering acid			
	radicals.			
VI	Self-Study for Enrichment	-	CO1,	K1, K2, K3,
	(Not to be included for External		CO2,	K4
	Examination)		CO3,	
	Electronic configuration of polyelectronic		CO4	
	atoms, Calculation of screening constant and			
	effective nuclear charge - Lewis electron dot			
	structure - Oxidation State and valency of			
	element - Difference between ionic and			
	covalent compounds - Do and Don't in the			
	Science Lab			

Text Books

- Puri, B. R., Sharma, L. R., & Kalia, K. K. (2018). Principles of Inorganic Chemistry. 33rd edition. Shoban Lal Nagin Chand & Co., New Delhi.
- Madan, R.D.. & Sathya Prakash. (2003). Modern Inorganic Chemistry. 2nd ed.; S. Chand and Company. New Delhi.
- 3. Madan, R.D. (2019). Modern Inorganic Chemistry. 3rd edition. S. Chand & Company Ltd.
- Bahl, B. S., & Arun Bahl. (2021). Text book of Organic Chemistry. 22nd revised edition. Chand & Company Ltd.
- Puri, B. R., Sharma, L. R., & Pathania, M. S. (2022). Principles of Physical Chemistry. 48th edition. Shoban Lal Nagin Chand & Co, New Delhi.
- Gopalan, R., Subramanian, P. S., & Rengarajan, K. (2003). Elements of Analytical Chemistry. 2nd edition. Sultan Chand & Sons.

Reference Books

- Soni, P. L., & Mohan Katyal. (2017). Textbook of Inorganic Chemistry. 25th revised edition. Sultan Chand & Sons.
- Huheey, J. E. (1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed .; Addison, Wesley Publishing Company: India.
- 3. Vogel, A. I. (2000). Text Book of Quantitative Inorganic analysis including Elementary Instrumental Analysis. The English Language Book Society.

Web References

- 1. https://www.thoughtco.com/definition-of-quantum-number-604629.
- 2. https://www.chemie-biologie.uni-siegen.de/ac/lehre/part1_solid_state.pdf.
- 3. https://testbook.com/learn/chemistry-vsepr-theory/.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

- Dr. P. Pungayee Alias Amirtham
- > Dr. P. Thamizhini

Semester I	Internal Marks: 25	External Marks: 75		
COURSE	COURSE TITLE	CATEGORY	Hrs./	CREDITS
CODE			Week	
23UCH1CC1P	QUANTITATIVE INORGANIC	CORE	3	3
	ESTIMATION (TITRIMETRY)			
	AND INORGANIC			
	PREPARATIONS (P)			

Course Objectives

- > To learn the techniques of titrimetric analyses.
- To know the estimation of several cations and anions and to know the estimation of total hardness of water.
- > To learn the preparations of inorganic compounds.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statements	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Describe the basic principles involved in volumetric analysis	K1
	and inorganic preparations.	
CO2	Demonstrate the experimental methods of volumetric analysis	K2
	and estimate the chlorine content in bleaching powder and	
	copper in brass.	
CO3	Determine the hardness of water and saponification value of	K3
	oil.	
CO4	Apply volumetric analysis for the estimation of compounds.	K4
CO5	Predict the amount of chemical compounds in a given sample.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	-	2	3	3	2
CO2	2	2	2	3	2	3	3	3	3	2
CO3	2	3	3	1	2	2	3	3	2	1
CO4	2	3	2	1	2	2	3	2	2	1
CO5	2	2	2	3	2	2	2	3	2	2

"1"- Slight (Low) Correlation

"2"-Moderate (Medium) Correlation

"3"- Substantial (High) Correlation

"-" Indicates there is No Correlation.

SYLLABUS

I. Titrimetric Quantitative Analysis:

Calculation of equivalent weight and Preparation of standard solution.

- 1. Estimation of HCl using NaOH as link and standard oxalic acid solution.
- 2. Estimation of Na₂CO₃ using HCl as link and standard Na₂CO₃ solution.
- 3. Estimation of Iron (II) sulphate using KMnO₄ as link and standard Mohr's salt solution. (Permanganometric titration).
- 4. Estimation of oxalic acid using KMnO₄ as link and standard oxalic acid solution.
- 5. Estimation of KMnO₄ using thio as link and standard $K_2Cr_2O_7$ solution.
- 6. Estimation of copper (II) sulphate using K₂Cr₂O₇ solution. (Dichrometric titration)
- 7. Estimation of Mg (II) ions by EDTA solution. (Complexometric Titration)
- 8. Estimation of chloride ion in barium chloride solution using standard standard sodium chloride. (Argentometric titration)

II. Applied Experiments:

- 1. Estimation of total hardness of water.
- 2. Estimation of chlorine in bleaching powder.
- 3. Estimation of acid value of an oil.
- 4. Estimation of copper in brass.

III. Preparation of Inorganic Compounds:

- 1. Potash alum.
- 2. Tetraammine copper(II) sulphate.
- 3. Mohr's salt

Text Books

- 1. Venkateswaran, V., Veeraswamy R., and Kuandaivelu. (1997). Basic Principles of Practical Chemistry. 2nd edition. New Delhi, Sultan Chand & Sons.
- 2. Bassett, J. (1985). Text Book of Quantitative Inorganic Analysis. 4th edition. ELBS Longman.

Reference Book

Vogel A. I. (2000) Text book of quantitative inorganic analysis. The English language book society.

Web References

- 1. https://chemlab.truman.edu/files/2015/07/edta.pdf.
- 2. <u>https://www.youtube.com/watch?v=wh6-cYjNNiA</u>
- 3. <u>https://www.slideshare.net/mithilfaldesai/estimation-of-feii-ions-by-titrating-against-k2-cr2o7-using-internal-indicator.</u>
- 4. <u>https://www.youtube.com/watch?v=qmVQs6Q7tso.</u>
- 5. https://byjus.com/chemistry/titration-of-oxalic-acid-with-kmno4/.
- 6. <u>http://www.titrations.info/EDTA-titration-calcium.</u>

Pedagogy

Demonstration and Practical Sessions.

- > Dr. C. Rajarajeswari
- > Dr. S. Devi

FIRST ALLIED COURSE-I (AC)CALCULUS AND FOURIER SERIES

Semester I	Internal Marks: 25		Exte	ernalMarks:75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22UPH1AC1/	CALCULUS AND FOURIER	ALLIED	4	3
22UCHIACI	SERIES			

(For B.Sc Physics & Chemistry) (2022-2023 and Onwards)

Course Objective

- Explore the students with mathematical methods formatted for their major concepts and train themin basic Integrations.
- Analyze mathematical statements and expressions.
- Evaluate the fundamental concepts of Differentiation and Integration.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students	Cognitive Level
	will be able to	
CO1	Explain the concepts of Calculus and Fourier series	K1,K2
CO2	Classify the problem models in the respective area.	K3
CO3	Solve various types of problems in the corresponding stream.	К3
CO4	Identify the properties of solutions in the core area.	К3
CO5	Discover the applications of Calculus and Fourier series.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	3	2	2	2	2
CO2	3	2	2	2	2	3	2	2	2	2
CO3	3	2	2	2	2	3	2	2	2	2
CO4	3	2	2	2	2	3	2	2	2	2
CO5	3	2	2	2	2	3	2	2	2	2

"1" – Slight (Low) Correlation \Box "2" – Moderate (Medium) Correlation \Box

"3" – Substantial (High) Correlation \Box "-" indicates there is no correlation.

	Syllabus								
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL					
Ι	Successive Differentiation: The <i>n</i> th derivative – Standard results – Method of splitting the fractional expressions into partial fractions - Trigonometrical transformation – Formation of equations involving derivatives – Leibnitz formula for the <i>n</i> th derivative of a product(proof not needed) –A completeformal proof by induction (proof not needed) - Curvature- Circle, radius and center of curvature - Cartesian formula for the radius of curvature–Simple problems in all these.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4					
Π	Integration of Rational algebraic functions– Rule (a)– Rule (b) $\int \frac{lx+m}{ax^2+bx+c} dx$ Integration of the form $x - \text{Rule } ax2 + bx + c$ (c)- Integration of Irrational functions : Integration of the form $\int \frac{px+q}{\sqrt{1-\frac{px+q}{a^2-ax^2-bx+c^2}}} dx$ Integration of the form $\int \frac{dx}{(x+p)\sqrt{ax^2+bx+c^2}}$	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4					
III	Reduction Formula:Properties of definite integrals – Reduction formula(when n is a positive integer) for1] $\int e^{ax} x^n dx$ 2] $\int x^n \cos ax dx$ 3] $\int \sin^n x dx$ (without proof) and illustrations. $\sin^n x \cos^m dx$ Sinch be and Trainbe between the set of t	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4					
IV	Double and Triple Integrals: Definition of the double integral-Evaluation of Double integral(Problems Only)-Changeof order and evaluation of the double integral (Problems only).	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3,K4					
v	Fourier Series: Definition of Fourier Series – Finding the Fourier	10	CO1, CO2, CO3,	K1, K2, K3,					

	Coefficients for a given periodic function with period 2□ -Even and Odd functions–Half range Fourier series.		CO4, CO5	K4
VI	Self-Study for Enrichment : (Not to be included for External examination) Radius of curvature when the curve is in Polar co- ordinates - (i) $\int \frac{dx}{ax^2 + bx + c}$ (ii) $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$ (1) $\int \cos^n x dx$ (2) $\int \cos^n dx - \frac{1}{2}$ Integrals in simple cases(Problems Only)- Development in cosine series -Development in sine series.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Books

- 1. Narayanan, S & Manichavasagam Pillai, T.K. (2015). *Calculus Volume I.S.* Viswanathan PvtLimited.
- 2. Narayanan, S & Manichavasagam Pillai, T.K. (2015). *Calculus Volume II*. . Viswanathan PvtLimited.
- 3. Narayanan, S & Manichavasagam Pillai, T.K. (2015). Calculus Volume III.
 - S. Viswanathan PvtLimited.

UNIT-I Chapter 3:Sections 1.1 to 1.6,2.1,2.2[1]

Chapter 10:Sections 2.1 to 2.3 [1]

UNIT-II Chapter 1:Sections 7.1,7.3,7.4,8(CASE II, CASE V), 9 [2]

UNIT-III Chapter 1:Sections 11,13.1 to 13.5 [2]

UNIT-IV Chapter 5:Sections 2.1,2.2,4 [2]

UNIT-V Chapter 6:Sections 1to 4[3]

Reference Books

1. Sankarappan, S. Arulmozhi, G. (2006). Vector Calculus, Fourier series and Fourier Transforms. VijayNicole Imprints Private Limited.

2. Vittal, P.R.(2014). Allied Mathematics. Margham Publications.

3. Singaravelu, A.(2003). Differential Calculus and Trigonometry. R Publication.

b Links

- 1. <u>https://www.youtube.com/watch?v=tBtF3Lr-VLk&t=64s</u>
- 2. <u>https://www.youtube.com/watch?v=Z4oSGuAZrZM</u>
- 3. https://www.youtube.com/watch?v=w6llnAOX f8
- 4. <u>https://www.youtube.com/watch?v=LMcj8o0ERNE</u>
- 5. <u>https://www.youtube.com/watch?v= GAwQGCyWy0</u>
- 6. <u>https://www.youtube.com/watch?v=9X3gqehcFII</u>

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

- 1. Dr. P. Saranya
- 2. Ms. L. Mahalakshmi
- 3. Ms. P. Geethanjali

Semester – I	Internal Marks: 25 External Marks: 7				
COURSE CODE	COURSE TITLE CATEGORY		HOURS/ WEEK	CREDITS	
23UCH1AC1B	BIOLOGY - I (FOR CHEMISTRY STUDENTS)	ALLIED	4	3	

Course Objectives

- > To learn about the classification of plants and general characteristics of plants, fungi and algae.
- To acquire more knowledge about the general characters of bryophytes, gymnosperms and angiosperms with examples.
- > To understand the organ structure and function.
- > To gain basic knowledge about plant and animal biology

Course Outcome and Cognitive Level Mapping

Upon the successful completion of the course, students will be able to

CO Number	CO Statement	owledgeLevel
CO1	Recall and infer the factual and conceptual information required for understanding of Microbes, Plants and Animals.	K1, K2
CO2	Illustrate morphological, anatomical and reproduction of various organisms and appreciate their adaptive strategies.	К2
CO3	Identify and analyse the characteristics and basic needs of living organisms.	K3. K4
	Compare and interpret the relationship between organisms and	
CO4	environment.	K4, K5
	Explain the characteristics of major taxa and compare and contrast	
CO5	their anatomical and physiological characteristics	K4, K5

Mapping of CO with PO and PSOs

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	2	2	1
CO2	3	3	2	3	2	3	2	2	2	1
CO3	3	3	2	2	2	3	2	2	2	2
CO4	3	3	3	2	2	2	2	2	2	2
CO5	3	3	3	2	3	1	3	2	3	2

"1" - Slight (Low) Correlation, "2" - Moderate (Medium) Correlation,

"3" – Substantial (High) Correlation, "-" indicates there is no correlation.

	CONTENT	HOURS	COS	COGNITIVE
UNIT				LEVEL
Ι	Basis of Classification – Bentham and Artificial, Natural Classification of plants. Morphology, Structure and reproduction: Algae - <i>Sargassum</i> as an example and its economic importance; Fungi – Yeasts as an example and its economic importance.	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
Ш	Bryophytes – General characters – <i>Funaria</i> as an example- alternation of generation. Pteridophytes – General characters – <i>Selaginella</i> . Gymnosperm – General Characters – <i>Pinus</i> – Economic uses of gymnosperms. Angiosperms – Monocot flower – <i>Allium cepa</i> . Dicot flower – <i>Nerium</i> <i>oleander</i> .	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	Organization, movement and secretions of gastrointestinal tract, Respiration – respiratory organs in mammals – morphology –respiratory pigments. Blood and circulation – composition of blood– General organization of circulatory systems.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	Excretion – excretory organs – general organization in man – muscular system – ultra structure of voluntary muscle.	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	Nervous system – CNS – Autonomic nervous system – Endocrine glands in man	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self - Study for Enrichment(Not included for End SemesterExamination)Blue Green Algae, Penicillium, Lichens	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Books

- 1. Singh, V., Pande, P.C., Jain, D.K. (2021). A Text Book of Botany. Rastogi Publications. Meerut.
- 2. Veer, B. R. (2021). *Parker and Haswell Textbook of Zoology Vertebrates*. 8th edition. Medtech Science Press.
- 3. Agarwal, V. K. (2018). Zoology for Degree Students B. Sc. First Year. S. Chand Publishing.
- 4. Vashishta, P.C. (2014). *Botany for Degree Students Gymnosperms*. Chand & Company Ltd, Delhi.

- 5. Chatterjee, C.C. (2004), *Human Physiology Volume I. Medical Allied*. New Central Agency, Kolkata
- 6. Chatterjee C.C (2004), *Human Physiology Volume II, Medical Allied.* New Central Agency, Kolkata

Reference Books

- 1. Parihar, N.S. (2012). An introduction to Embryophyta Pteridophytes. Surject Publications, Delhi.
- 2. Alexopoulos, C.J. (2013). Introduction to Mycology. Willey Eastern Pvt. Ltd.
- 3. Coulter, M. J. (2014). Morphology of Gymnosperms. Surjeet Publications, Delhi.
- 4. Pandey, B.P. (1986), *Text Book of Botany (College Botany) Vol I &II*. S. Chand and Co. New Delhi.
- 5. Best and Taylor. (1992). The Physiological Basis for Medical Practice. Saunders Company.
- 6. Chaudhri, K. (1993). *Concise Medical Physiology*. New Central Book Agency (Parentral) Ltd., Calcutta.

Web References

- 1. https://www.kobo.com/us/en/ebook/the-algae-world
- 2. http://www.freebookcentre.net/biology-books-download/Fungi-(PDF-15P).html
- 3. http://scitec.uwichill.edu.bb/bcs/bl14apl/bryo1.htm
- 4. <u>https://www.toppr.com/guides/biology/plant-kingdom/pteridophytes/</u>
- 5. <u>https://arboretum.harvard.edu/wp-content/uploads/2013-70-4-beyond-pine-cones-an-introduction-to-gymnosperms.pdf</u>
- 6. <u>https://www.us.elsevierhealth.com/medicine/cell-biology</u>
- 7. <u>https://www.us.elsevierhealth.com/medicine/genetics</u>
- 8. https://www.kobo.com/us/en/ebook/plant-biotechnology-1

E-Books

- 1. https://www.pdfdrive.com/bsc-botany-d34484852.html
- 2. https://www.pdfdrive.com/pteridophytes-gymnosperms-palaeobotany-d56995666.html
- 3. https://www.pdfdrive.com/biology-botany-textbooks-online-e8895584.html
- 4. <u>https://www.pdfdrive.com/biology-botany-higher-secondary-first-year-text-books-online-e2009127.html</u>
- 5. <u>https://www.pdfdrive.com/a-text-book-of-botany-and-pharmacognosy-e158788414.html</u>
- 6. https://www.pdfdrive.com/a-text-book-of-botany-e57877390.html
- 7. https://www.pdfdrive.com/the-basics-of-biology-e107180613.html

Pedagogy

Power point presentation, Group Discussion, Seminar, Assignment, Animations

- 1. Dr. R. UMA MAHESWARI
- 2. Dr. M. KEERTHIGA

FIRST ALLIED COURSE-II (AC)

ALGEBRA, ANALYTICAL GEOMETRY OF 3D & TRIGONOMETRY

(For B.Sc Physics & Chemistry) (2022-2023 and Onwards)

Semester I	Internal Marks: 25	ExternalMarks:75			
COURSECODE	COURSETITLE	CATEGORY	Hrs / Week	CREDITS	
22UPH1AC2/ 22UCH1AC2	ALGEBRA, ANALYTICAL GEOMETRY OF 3D & TRIGONOMETRY	ALLIED	4	3	

Course Objective

- Analyze the mathematical methods formatted for their major concepts.
- Evaluate the problems in Algebra and Trigonometry.
- Explain the basics of Three-Dimensional geometry.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain various notions in Algebra, Analytical Geometry of 3D& Trigonometry.	K1,K2
CO2	Identify the problem models.	K3
CO3	Apply the concepts of Algebra, Analytical Geometry of 3D& Trigonometry.	К3
CO4	Solve the given problems in the respective stream.	K3
CO5	Analyze the applications of the core area.	K4

Mapping of CO withPO and PSO

Cos	PSO1	PSO2	PSO 3	PSO 4	PSO 5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2	3	2	3	2	2	2	2
CO2	2	2	2	3	2	3	2	2	2	2
CO3	2	2	2	3	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	3	2	3	2	2	2	2

"1" – Slight (Low) Correlation \square "2" – Moderate (Medium) Correlation \square "3" – Substantial (High) Correlation \square "-" indicates there is no correlation.

Syllabus

\square		

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Series Expansion: Application of Binomial Theorem to summation of series – Approximate values – Summation of series by Exponential series - Summation of series by Logarithmic series (Formulae only).	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.
Π	Matrices: \Box Matrix-Special typesof Matricesmultiplication of a matrix-Equality of matrices-Additionof matrices-Subtraction of matrices-Symmetric matrix-Hermitian and Skew Hermitianmatrix –Multiplication of matrix – Inverse matrix-Innerproduct-Solution of simultaneous equations-Rank of amatrix-Elementary transformation of a matrix-A systemof m homogeneous linear equations in n unknowns-Linear dependence and independence of vectors-Systemof non-homogeneous linear equations - Eigen valuesand Eigenvectors.(Applications only)	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.
Ш	Three Dimensional Geometry: The Sphere – Definition- The equation of a sphere when the center and radius are given-The equation of a sphere to find its center and radius- The length of the Tangent Plane from a point to the sphere – The Plane Section of a sphere – Equation of a circle on a sphere – Intersection of two spheres in a circle.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.
	Expansion of Trigonometric functions:			
IV	Expansions of $cos n$ and $sinn$ - Expansion of tan($A \ B \ C$) (omitting examples on formation of equations) –Powers of sines and cosines of θ in terms of functions of multiples of θ – Expansions of cos ⁿ when n is a positive integer – Expansions of sin ⁿ when n is a positive integer – Expansions of sin a series of ascending powers of - The expansions of <i>sin</i> and <i>cos</i> to find the limits of certain expressions.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.

	Hyperbolic functions:		G A A	
	Hyperbolic functions – Relation between		CO1, CO2.	K1,
V	hyperbolic functions – Relations between hyperbolic	12	CO3,	K2, K3
	functions and circular functions - Inverse hyperbolic		CO4, CO5	K3, K4.
	functions.			
VI	 Self-Study for Enrichment : (Not to be included for External examination) Series which can be summed up by the Logarithmic series - Simple applications of Matrices- The equation of the tangent plane to the sphere at apoint. (Only problems) - Expansion of tan□ in terms of powers of □ - Separation of real and imaginary parts of tanh(x+iy). 	_	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.

Text Books

1. Manichavasagam Pillai, T.K. Natarajan, T.& Ganapathy, K.S. (2015).

Algebra, Volume I.S.Viswanathan Pvt Limited.

2. Manichavasagam Pillai, T.K. (2015). Algebra, Volume II. S.Viswanathan Pvt Limited.

3. Manichavasagam Pillai, T.K. & Natarajan, T. (2016). *A Text book of Analytical Geometry Part-II 3D*. New Gamma Publishers.

4. Manichavasagam Pillai, T.K. & Narayanan, S. (2013). Trigonometry. S.

Viswanathan Pvt Limited.

 UNIT-I
 Chapter 3:Sections 10,14[1]

 Chapter 4:Sections 3,7,9 [1]

 UNIT-II
 Chapter 2:Sections 1 to 16 [2]

 UNIT-III
 Chapter 4:Sections 1-5,6,6.1,7,8 [3]

 UNIT-IV
 Chapter 3:Sections 1 to 4, 4.1,5,5.1[4]

 UNIT-V
 Chapter 4:Sections 1,2,2.1 to 2.3[4]

Reference Books

1. Arumugam, S. Issac, A. (2017). Analytical Geometry 3D and Vector calculus. New GammaPublishing house.

2. Pandey, H.D. Khan, M.Q. & Gupta, B.N.(2011). A Text Book of Analytical

Geometry and VectorAnalysis. Wisdom Press.

3. Singaravelu, A. (2003). Differential Calculus and Trigonometry. R Publication. Web Links

- 1. <u>https://www.voutube.com/watch?v=JayFh5EJHcU</u>
- 2. <u>https://www.youtube.com/watch?v=h5urBuE4Xhg</u>
- 3. <u>https://www.voutube.com/watch?v=59z6eBynJuw</u>
- 4. <u>https://www.youtube.com/watch?v=9DyPyJb2N9g</u>
- 5. <u>https://www.youtube.com/watch?v=HOk2XLeFPDk</u>
- 6. <u>https://www.voutube.com/watch?v=G1C1Z5aTZSO</u>

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

- 1. Dr. P. Saranya
- 2. Dr. L. Mahalakshmi
- 3. Ms. P. Geethanjali

Semester – I	Internal Marks: 25	E	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/ WEEK	CREDITS	
23UCH1AC2BP	BIOLOGY (P) (FOR CHEMISTRY STUDENTS)	ALLIED	4	3	

Course Objectives

- > To perform experiments using microscope.
- > To study about cells and their morphology by appropriate technique.
- > To gain knowledge in morphological identification of plant parts.
- > To perform experiments on human blood cells.

Course Outcome and Cognitive Level Mapping

Upon the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO 1	Define and outline the basic instruments involved in Biology	K1, K2
CO 2	Identify and explain the morphology of various parts of plants and animals.	K2, K3
CO 3	Dissect and list the different types of vascular tissues.	K4
CO 4	Compare and contrast the monocot and dicot flower based of T.S section.	K4, K5
CO 5	Determine the various types of cells in living organisms.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	2	3	3	1
CO2	3	3	3	3	2	3	2	3	3	1
CO3	3	2	3	3	2	3	2	3	3	1
CO4	3	3	3	3	2	3	2	3	3	3
CO5	3	3	3	3	2	3	3	3	3	2

"1" – Slight (Low) Correlation, "2" – Moderate (Medium) Correlation, "3"– Substantial (High) Correlation, "-" indicates there is no Correlation.

Syllabus

- 1. Epidermal peel of onion.
- 2. Squamous epithelium from human cheek cells.
- 3. Epidermal peel of leaf to observe stomata
- 4. Xylem and phloem from Cucurbita stem.
- 5. Identification of Striated muscle fibers (Cockroach).
- 6. Study of morphological modification of plant parts Root, stem and leaf.
- 7. To dissect a dicot flower, construct floral diagram and write floral formula.
- 8. To dissect a dicot flower, construct floral diagram and write floral formula.
- 9. Observation of human blood cells.

Reference Books

1. Christopher, G., Krista, C., Delores, B. (2021). *General Biology Laboratory Manual*. 2nd edition. Kendall/Hunt Publishing Co, U.S.

2. Chiyedza, S. (2018). *General Biology Laboratory Manual*. 3rd edition. Kendall/Hunt Publishing Co, U.S.

3. Leslie, A. K. (2018). *Integrating Lecture and Lab: A General Biology Laboratory Manual.* 3rd edition. Cognella, Inc.

4. David, M., James, P., Joy, B. P. (2006). *Laboratory Manual-General Biology*. 5th edition. Brooks/Cole;

5. Subramaniam, N.S. (1996). *Laboratory Manual of Plant Taxonomy*. Vikas Publishing House Pvt. Ltd., New Delhi.

6. Noggle, G.R., Fritz, G.J. (2002). *Introductory Plant Physiology*. Prentice Hall of India, New Delhi.

E-Books

- 1. https://www.pdfdrive.com/a-textbook-of-practical-botany-d57965065.html
- 2. https://www.pdfdrive.com/a-text-book-of-practical-botany-2-d156822597.html
- 3. https://www.pdfdrive.com/practical-botany-ii-d46799996.html
- 4. https://www.pdfdrive.com/practical-botany-d158065762.html

5. https://www.pdfdrive.com/botanical-illustration-d176078869.html

6. https://www.pdfdrive.com/practical-botany-for-advanced-level-and-intermediate-studentsd157593255.html

Web References

- 1. <u>https://www.amazon.in/Practical-Manual-Pteridophyta-Rajan-Sundara/dp/8126106883</u>
- 2. <u>https://www.google.co.in/books/edition/Gymnosperms/3YrT5E3Erm8C?hl=en&gbpv=1&dq</u> =gy mnosperms&printsec=frontcover
- 3. <u>https://www.amazon.in/Computational-Phytochemistry-Satyajit-Dey-Sarker-ebook/dp/B07CV96NZJ</u>
- 4. https://medlineplus.gov/genetocs/understanding/basics/cell/
- 5. https://apan.net/meetings/apan45/files/17/17-01-01-01.pdf
- 6. <u>http://www.cuteri.eu/microbiologia/manuale_microbiologia_pratica.pdf</u>
- 7. https://www.amazon.in/Manual-Practical-Bryophyta-Suresh-Kumar/dp/B0072GNFX4

Pedagogy

Practical Observation and Demo

- 1. Dr. R. UMA MAHESWARI
- 2. Dr. M. KEERTHIGA

Semester II	Internal Marks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
23UCH2CC2	INORGANIC AND PHYSICAL CHEMISTRY	CORE	5	5

Course Objectives

- > This course stretches the knowledge about the different techniques involved in metallurgy.
- Discusses about the sand p block elements.
- > Provides basic knowledge about solid state and colloidal state of matter.
- > Deliberates the basic concepts of gaseous state.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recognize the fundamental ideas of metallurgy, s &p block elements, solid, colloidal and gaseous state.	K1
CO2	Summarize the knowledge on symmetry operations, metals, colloids, molecular velocities and refining process.	K2
CO3	Demonstrate the purification process, structure and applications of compounds.	К3
CO4	Categorize the crystals, periodic elements, colloidal state of compounds	K4
CO5	Interpret the metallurgytechniques, properties of periodic elements and colloids, crystal planes and laws of gaseous state.	К5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	2	3	1	2	3	3	2	3	3

"1" – Slight (Low) Correlation "2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation "-" indicates there is no correlation.

Svl	പ	hue
Oyı	la	Jus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Metallurgy	15	CO1,	K1,
	Introduction to transition metals-metallurgy-various steps		CO2,	K2,
	in metallurgy – grinding -pulverizing - concentration (ore		CO3	K3
	dressing)-hand picking - gravity separation - froth		005,	N 3,
	floatation - electromagnetic separation		CO4	K4,
	- chemical separation - calcinations and roasting -		CO5	K5
	smelting -alumino thermic process- purification of metals			
	- zone refining- vapour phase and electrolytic			
	refining.			
II	s and p- Block Elements	15	CO1,	K1,
	s- Block elements: General characteristics - comparative		CO2,	K2,
	study of alkali and alkaline earth metals oxides. Diagonal		CO3	K3
	relationship between Li and Mg, Be and Al.		005,	N 3,
	p- Block Elements: General characteristic of groups 13-		CO4	K4,
	17- boron and its compounds-boric acid- borax - boron		CO5	К5
	nitride - boron trihalide – diborane - compounds of			
	silicon - silicates, silicones and SiCl ₄ .			
III	Solid State	15	CO1,	K1,
	Crystalline and amorphous solids - isotropy and		CO2,	K2,
	anisotropy - interfacial angle- symmetry in crystal systems		CO3	К3
	- elements of symmetry - space lattice and unit cell -			
	Bravias lattices - seven crystal systems. Law of rational		CO4,	K4,
	indices - Miller indices - x-ray diffraction – Bragg's law -		CO5	K5
	derivation of Bragg's equation - representation of planes -			
	space lattice - reciprocal lattice. Bragg's equation -			
	experimental technique-			
	powder method and rotating crystal method.			
IV	Colloids	12	CO1,	K1,
	Colloids – types of colloids –preparation –purification –		CO2,	K2,
	dialysis – optical properties – kinetic properties –		CO3	K3.
	electrical properties of colloids – gold number – stability		,	
	of sols – associated colloids – cleansing action of soaps		CO4,	К4,
	and detergents - emulsions - gels - applications of			

	colloids.		CO5	K5
V	Gaseous State	18	CO1,	K1,
	Kinetic theory of gases - derivation of kinetic gas equation		CO2,	К2,
	- gaseous laws - type of molecular velocities - average		CO3	К3
	velocity - most probable velocity - RMS velocity-		005,	щ,
	Maxwell's distribution of molecular velocities - effect of		CO4,	K4,
	temperature on distribution of molecular velocities -		CO5	K5
	Maxwell's distribution of molecular energies – collision			
	diameter- collision number - mean free path - viscosity of			
	gases - calculation of collision diameter -			
	mean free path from viscosity measurement.			
VI	Self-Study for Enrichment	-	CO1,	K1,
	(Not to be included for External Examination)		СО2,	К2,
	Minerals and ores - periodic table- states of matter– vanderwaals equation.		CO3	К3

TextBooks

- Puri, B.R., Sharma, L. R.& Kalia,K.K. (2018).Principles of Inorganic Chemistry. Shoban Lal Nagin Chand & Co., 33rd edition, New Delhi,.
- 2. Madan, R.D. (2019). Modern Inorganic Chemistry. 3rd edition, S. Chand & Company Ltd,
- 3. J. D. Lee, (2014). New Concise Inorganic Chemistry ,5th edition, Oxford Publishers.
- Puri, B.R., Sharma, L.R. &Pathania, M.S. (2022). Principles of Physical Chemistry. ShobanLal 48th edition. Nagin Chand & Co, New Delhi.

Reference Books

- Soni, P.L.& Mohan Katyal. (2017). Text book of Inorganic Chemistry. 25th revised edition, Sultan Chand & Sons.
- 2. Peter Atkins, Julio de Paula, and James Keeler, (2017). Atkins' Physical Chemistry^{II}, 11th Edition, Oxford University Press, UK.
Web Reference

- 1. <u>https://classnotes.org.in/class12/chemistry12/general-principles-processes-isolation-elements/purification-refining-metal/</u>
- 2. https://www.askiitians.com/iit-jee-s-and-p-block-elements/
- 3. https://byjus.com/jee/solid-state/
- 4. https://byjus.com/jee/colloids
- 5. https://www.embibe.com/exams/gaseous-state/

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

Dr. A.Sharmila

Semester II	Internal Marks: 40	External Marks:60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
23UCH2CC2P	INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE (P)	CORE PRACTICAL	3	3

> Enable the students to develop the preparative skills in inorganic preparations.

> Enable the students to check the purity of organic compounds by determining the melting or boiling points.

 \succ At the end of the course, the students should be able to plan the experimental projects and execute them.

Course Outcome

Course Outcome and Cognitive Level Mapping

СО	COStatement	Cognitive
Number	Onthesuccessful completion of the course, students will be able to	Level
CO1	Recall the skills required to carry out professional researchand production activities in the field of chemistry.	K1
CO2	Define the various terms such as normality, molality, molarity, equivalent weight and molecular weight.	K1
CO3	Select the specific titric method to estimate the amount of analyte present in the given solution.	K1
CO4	Describe the principles and procedures of various titrimetric methods.	K2
CO5	Prepare solutions of desired concentrations.	K3

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	2	3	3	3	3
CO2	2	2	2	2	2	2	2	3	2	2
CO3	3	2	2	2	2	2	2	2	2	2
CO4	3	2	3	2	2	3	2	2	2	3
CO5	2	3	2	3	3	3	2	2	3	3

"1" – Slight (Low) Correlation \neg "3" – Substantial (High) Correlation \neg "2" – Moderate (Medium) Correlation \neg

"-" indicates there is no correlation.

I. Preparation of Solutions

Molarity, Molality, Normality solutions and Buffers.

II. Volumetric Analysis

- 1. Complexometric titrations
 - a. Estimation of Zinc
 - b. Estimation of Magnesium
 - c. Estimation of Calcium
- 2. Estimation of Barium Chloride by Mohr's method.
- 3. Estimation of Chloride ions by Volhard's method.

III. Preparation of Inorganic Compounds.

- 1. Cuprous Chloride
- 2. Borax
- 3. Prussian Blue
- 4. Potassium trioxalatoferrate (III)
- 5. Tristhioureacopper(II)sulphatedihydrate

Text Books

- 1. Ramanujam, V.V. (1995) Inorganic Semi-micro Qualitative Analysis. Chennai: National,.
- 2. Vogel, A. I. (1996). Vogel's Qualitative Inorganic Analysis, Revised by Svehla, G. Logman Scientific.

Reference Books

- 1. V.Venkateswaran, R.veeraswamy&A.R.Kulandaivelu, (1992). Basic Principles of practical chemistry, 3rd Edn,.
- 2. Gopalan, R., Venkappayya, D., Nagarajan, S. (2004). Engineering Chemistry: VikasPublications.

Web References

- 1. https://davjalandhar.com/dbt/chemistry/SOP%20LabManuals/B.Sc.%20SEM%20I.pdf
- 2.<u>https://www.youtube.com/watch?v=fv6LJ0KAG1U</u>
- 3.<u>https://www.youtube.com/watch?v=S2RZ_KyUI9E</u>

Pedagogy

Hands on training, E-Content, Demo

CourseDesigner

Dr. A.Sharmila

Semester II	Internal Marks: 25		External	Marks: 75
COURSECODE	COURSETITLE	CATEGORY	Hrs/Week	CREDITS
23UCH2CC3	MATERIAL SCIENCE	CORE	2	2

- > To describe the structure of ceramics and magnetic materials.
- > To understand the importance of polymer materials.
- > To gain knowledge about composites.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recall conductors, magnetic, polymer, LCD and composite materials.	K1
CO2	Describe the classification of different materials.	K2
CO3	Illustrate the role of energy in various materials.	K3
CO4	Analyze the materials using theoretical concepts.	K4
CO5	Evaluate semiconductors, hysteresis curve, perovskite structure, reinforced composites.	K5

Mapping of COwithPO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	2	3	3
CO5	3	3	2	2	3	3	3	2	3	3

"2" – Moderate (Medium) Correlation

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Conductors and Insulators	06	CO1,	K1,
	Introduction - semiconductors - classification of		CO2,	K2,
	semiconductors - intrinsic and extrinsic - n-type and p-		СОЗ,	КЗ,
	type - crystal structure and bonding in Si and Ge -		CO4,	K4,
	elemental and compound semiconductors -		CO5	K5
	applications - Insulators.			
II	Magnetic Materials	06	CO1,	K1,
	Magnetic dipole - dipole moment - magnetic field		CO2,	K2,
	strength - magnetic susceptibility - diamagnetic -		СОЗ,	КЗ,
	paramagnetic - ferromagnetic - curie temperature -		CO4,	K4,
	hysteresis curve - antiferromagnetic - ferrimagnetic -		CO5	K5
	hard and soft magnetic materials - properties -			
	examples - applications.			
III	Ceramics and Display Devices	06	CO1,	K1,
	Classification of ceramics - structure of the ceramics-		CO2,	K2,
	compounds with Fluorite - Perovskite structure -		СОЗ,	КЗ,
	properties of ceramics- applications - active display		CO4,	K4,
	devices- Light Emitting Diode (LED) - passive display		CO5	K5
	devices - Liquid Crystal Display (LCD)- applications.			
IV	Polymer Materials	06	CO1,	K1,
	Introduction - polymerization mechanism - degree of		CO2,	K2,
	polymerization - classification of polymers - structure of		СОЗ,	КЗ,
	polymer - fabrication process - properties – applications.		CO4,	K4,
			CO5	K5
V	Composite Materials	06	CO1,	K1,
	Introduction - constitution - classification - particle		CO2,	K2,
	reinforced - fibre reinforced - fiber glass reinforced -		СОЗ,	КЗ,
	other fiber reinforced - metal matrix fiber - hybrid		CO4,	K4,

	composites processing of fiber reinforced -composites -		CO5	K5
	applications of composite materials.			
VI	Self Study for Enrichment	-	CO1	K1, K2
	(Not to be included for External Examination)			
	Composite interfaces - bonding mechanisms - other			
	interfacial properties - polymer matrix composites -			
	ceramic matrix composites - composite strengths -			
	fibers as reinforcements.			

Text Books

- 1. Rajendran, V.&Marikani, A. (2009). Materials Science. (9th ed.). Tata McGraw-Hill Publishing Company Limited.
- 2. VanVlack, L. H., (1975). Elements of materials science and engineering. (6th ed.). Addison-Wesley.

3. Jain, P.C., & Jain, M., (2013). Engineering Chemistry. (6th ed.). Dhanpat Rai & Sons. **ReferenceBooks**

- 1. Callister, W.D., & Rethwisch, G.D., (2018). Materials Science and Engineering: An Introduction. (10th ed.). Wiley.
- 2. Kingery, W.D., Bowen, & H.K., Ulhmann, D.R., (1976). Introduction to Ceramics. (2nded.). Wiley.
- 3. Sharma, B.K., (1997). Industrial Chemistry. (8th ed.). Goel Publishing.

WebReferences

- 1. https://www.uniweimar.de/kunstundgestaltung/wiki/images/Conductors,insulators, semiconductors.pdf
- 2. https://slideplayer.com/slide/13949334/
- 3. <u>https://www.youtube.com/watch?v=WHYfDVxi-Qw</u>
- 4. https://irimee.indianrailways.gov.in/instt/uploads/files/1435551295008-POLYMER-%20L-1.pdf

Pedagogy

Chalkandtalk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

Dr. P. Thamizhini

ALLIED COURSE – III

(For Chemistry)

ODE, LAPLACE TRANSFORMS AND STATISTICS

(2022-2023 Onwards)

Semester II	Internal Marks: 25	ExternalMarks:75			
COURSE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
CODE					
22UCH2AC3A	ODE,LAPLACE	ALLIED	4	3	
	TRANSFORMS AND				
	STATISTICS				

Course Objective

- **Explain** the basics of Ordinary Differential Equations.
- **Explore** the mathematical methods formatted for major concepts.
- **Emphasize** them in the field of Statistics.

CourseOutcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Knowledge Level
CO1	Explain various notions in ODE, Laplace transforms & Statistics.	K1,K2
CO2	Classify the problem models in the respective area.	K3
CO3	Identify the properties of solutions in the core area.	K3
CO4	Solve various types of problems in the corresponding stream.	K3
CO5	Analyze the applications of the core area.	K4

Mapping of COwithPO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	3	2	3	3
CO2	3	2	2	2	2	2	3	2	3	3
CO3	3	2	2	2	2	2	3	2	3	3
CO4	3	2	2	2	2	2	3	2	3	3
CO5	3	2	2	2	2	2	3	2	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNI TIVE LEVEL
I	Ordinary Differential Equations: Equations of the first order but of higher degree – TypeA:Equations solvable for $\frac{dy}{dx}$ - Type B:Equations solvable for y - Equations solvable for x -Clairaut's Form (simple cases only).Linear equations with constant coefficients: Definitions – The operator D- Complementary function of a linear equation with constant co-efficients - Particular integral: General method of finding P.I- Special methods for finding P.I.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
Π	Laplace Transforms: Laplace Transforms – Definition -Sufficient conditions for the existence of Laplace transform-Basic results-Laplace transform of periodic functions-Some general theorems-Evaluation of integrals using Laplace transform.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Inverse Laplace Transform: The Inverse Transform –Modification of results obtained in finding Laplace transforms to get the inverse transforms of functions- Laplace Transforms to solve ordinary differential equations with constant co-efficients.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Measures of Central Tendency: Arithmetic Mean — Median — Mode — Geometric Mean — Harmonic Mean. (Simple Problems Only) Measures of Dispersion: Standard Deviation (Simple Problems Only)	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Correlation: Introduction-Meaning of Correlation-Scatter Diagram Karl Pearson's Co-efficient of Correlation – Rank Correlation (Derivations not needed and Simple Problems Only). Linear Regression: Introduction-Linear Regression-Regression Coefficients-Properties of Regression Coefficients(Derivations not needed and Simple Problems Only)	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

	Self -Study for Enrichment:			
	(Not included for End Semester Examination)		CO1	K 1
	Equations that do not contain x and y for explicitly-		CO2.	K1, K2.
VI	Piecewise continuity- Laplace Transforms to solve ordinary	-	CO3,	K3.
	differential equations with variable co-efficients - Range-Quartile		CO4,	K4
	Deviation –Rank Correlation (Repeated Ranks)		CO5	

Text Book

- 1. Narayanan. S, Manicavachagam Pillai. T. K. (2016). *Differential Equations and its applications*. S. Viswanathan Pvt Limited.
- Gupta. S. C, Kapoor. V. K. (2014). Fundamentals of Mathematical Statistics. Sultan Chand & Sons, New Delhi.

Chapters and Sections

UNIT-I	Chapter 4: Sections 1-3 [1]
	Chapter 5: Sections 1-4 [1]
UNIT-II	Chapter 9: Sections 1-5 [1]
UNIT-III	Chapter 9: Sections 6-8 [1]
UNIT- IV	Chapter 2:Sections 2.5-2.9,2.13(2.13.4 Only) [2]
UNIT- V	Chapter 10: Sections 10.1 to 10.4 and 10.7.1[2]
	Chapter 11: Sections 11.1 to 11.2(11.2.1 and 11.2.2 only)[2]

Reference Books

- Narayanan. S, Manicavachagam Pillai. T. K. (2003). *Calculus, Vol. III*. S.Viswanathan Pvt Limited.
- 2. Pillai Bagavathi. R. S. N. (2019). *Statistics Theory and Practice*. S Chand and Company Limited.
- 3. Gupta. S.C. &Kapoor. V.K.(2004). *Elements of Mathematical Statistics*. Sultan Chand & Sons, New Delhi.

Web References

- 1. <u>https://www.youtube.com/watch?v=OM01KTc0_9w</u>
- 2. https://www.youtube.com/watch?v=dCVBZbebl8Y
- 3. <u>https://www.youtube.com/watch?v=Y8GXpS31CGI</u>
- 4. https://www.youtube.com/watch?v=IVJjm5FE4x8
- 5. <u>https://www.youtube.com/watch?v=YGObRCEZiC8</u>

- 6. <u>https://www.youtube.com/watch?v=dLJp6DrPArk</u>
- 7. https://www.youtube.com/watch?v=nk2CQITm_eo
- 8. <u>https://rcub.ac.in/econtent/ug/bcom/sem4/Business%20Statistics%20Unit%204%20Correlation%20and%20Regression.pdf</u>

Pedagogy

Power point presentation, Group Discussion, Seminar, Assignment. Course Designer

1. Dr. P. Geethanjali

Semester-II	InternalMarks:25	External Marks: 75				
COURSE CODE	COURSE TITLE	CATEGORY	HOURS/WEEK	CREDITS		
23UCH2AC3B	BIOLOGY - II	ALLIED	4	3		

- > To gain knowledge about the bacterial and viral structure and diseases
- > To understand the structure and function of various cellorganelles.
- > To acquire knowledge on sex linked inheritance in man.
- > To understand the basic concepts of molecular biology.
- > To study the biotech applications.

Course Outcome and Cognitive Level Mapping

Upon the successful completion of the course, students will be able to

CONo.	CO Statement	Knowledge Level
CO1	Recall and infer the factual and conceptual information required for understanding of microbiology, cell biology, genetics and biotechnology.	K1, K2
CO2	Illustrate basic concepts of various branches of applied biology for sustainable development of mankind.	K2
CO3	Develop and compare the structure and function of cells and explain the Development of various cells.	K3. K4
CO4	Classify the beneficial and harmful effects of organisms and explain the role of organisms in various field of human welfare.	K4, K5
CO5	Elaborate the core concepts and fundamental so fgeneticengineering for the human welfare.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	2	2	1
CO2	3	3	2	3	2	3	2	2	2	1
CO3	3	3	2	2	2	3	2	2	2	2
CO4	3	3	3	2	2	2	2	2	2	2
CO5	3	3	3	2	3	1	3	2	3	2

"1" - Slight (Low) Correlation,

"3" – Substantial (High) Correlation,

"2"-Moderate(Medium)Correlation, "-" indicates there is no correlation.

ALLIED BIOLOGY-II

UNIT	CONTENT	HOURS	COS	COGNITIVE
				LEVEL
I	Microbiology: General structure of prokaryotic cell (E. Coli), Morphology of Bacteria: Coccus type: - Micrococcus and Staphylococcus, Bacillus type: - Micro bacillus and Streptobacillus, Spirochetes, and Comma shaped. Bacterial and Viral disease: Pathogenesis, Symptoms, Prevention, And Control-Gonorrhea and AIDS.	12	CO1, CO2, CO4	K1,K2,K3, K4,K5,K6
П	Cell Biology: Structure and functions of the following cell components: Cell membrane, Cell organelles - ultra structure and function of chloroplast, mitochondria and nucleus. Cell division - mitosis and meiosis.	11	CO1, CO2, CO3	K1,K2,K3, K4,K5,K6
ш	Genetics: Mendelism – Law of dominance, Law of segregation, Incomplete dominance. Law of independent assortment. Monohybrid and dihybrid cross - Test cross - Back cross.	13	CO3, CO5	K1,K2,K3, K4,K5,K6
IV	Molecular biology Structure and functions of DNA, Structure and functions of RNAs (t RNA, mRNA, and rRNA),DNA Replication and Protein synthesis.	11	CO2, CO5	K1,K2,K3, K4,K5,K6
V	Biotechnology Recombinant DNA -Construction and applications, Stem Cell Culture- Methods and applications, Transgenic animals-Methods and applications and DNA finger printing-Methods and applications	13	CO2, CO3, CO5	K1,K2,K3, K4,K5,K6
VI	Self-Study for Enrichment(Not included for End SemesterExamination)Viral disease: COVID, Ultra structure of cell wall, <i>in vitro</i> animal cell culture, DNA as genetic material, Genetically modified organism.	-	CO4, CO5	K1,K2,K3, K4,K5,K6

TextBooks

- 1. BenjaminA.P.2020. Genetics: A Conceptual Approach. 7th Edition, WHFreeman publisher,
- 2. Verma, P.S&Agarwal, V.K. (2022). *CellBiology, Genetics, MolecularBiology, Evolution and Ecology*. S Chand and Company Ltd.
- 3. VishnuShankar, S. (2021). *FundamentalsofGeneticsandMolecularBiology*. Red'shine Publication Pvt. Ltd.
- 4. Pragya, K. (2020). Essentials of Genetics. Dreamtech Press.
- 5. Rao, K., Krishnamurthy, K.V and Rao, G.S. (1979). *Ancillary Botany*. S. Viswanathan Pvt. Ltd., Madras.

ReferenceBooks

- 1. Poonam, A. (2022). *LippincottIllustratedReviews: CellandMolecularBiology*. Wolters Kluwer India Pvt Ltd.
- 2. Harvey, L., Arnold B., Chris, A.K & Monty, K. (2021). *Molecular Cell Biology* Ninth edition. W. H. Freeman
- 3. Nancy,L.C.,Rachel,R.G.,Carol,C.G.,Gisela,G.S&Cynthia,W.(2020).*Molecular Biology: Principles of Genome Function* 3rd Edition. Oxford University Press.
- 4. Lieberman. (2020). *BRS Biochemistry, Molecular Biology, and Genetics*. 7th edition.Wolters Kluwer India Pvt Ltd.
- 5. Jocelyn, E.K., Elliott, S.G & Stephen, T.K. (2017). *Lewin's GENES XII* 12th edition. Jonesand Bartlett Publishers, Inc

E-Books

- 1. https://www.pdfdrive.com/lewins-genes-xii-e185848559.html
- 2. https://www.pdfdrive.com/introduction-to-genetics-a-molecular-approach-e187102063.html
- 3. https://www.pdfdrive.com/the-cell-a-molecular-approach-e186369576.html
- 4. https://www.pdfdrive.com/genetics-a-conceptual-approach-e186741220.html
- 5. <u>https://www.pdfdrive.com/cell-biology-genetics-molecular-biology-evolution-and-ecologye157248372.htm</u>

WebLinks

- 1. https://microbenotes.com/category/molecular-biology/
- 2. https://www.easybiologyclass.com/topic-genetics/
- 3. https://ocw.mit.edu/courses/7-03-genetics-fall-2004/pages/lecture-notes/
- 4. <u>http://ndl.iitkgp.ac.in/document/bnZnR2hPaUVqRU9TbFc2Rmp1MVJzN0dyTCs3OGxyRzdaUWpPTzdRV2pBTT0</u>

 $5. \underline{http://ndl.iitkgp.ac.in/document/Qkh4R2FGUkRNZjFicFUvWmpzQ2loU1NPaEl6eWpVaXpnNGUwc21iQzZKbUdaczdobHlyeWNpditXM2hpaFNOS1F6dVc4NGltYWZEQ09YbEV1WjJtelE9PQ$

Pedagogy

Powerpoint presentation, Group Discussion, Seminar, Assignment, Animations

Course Designer

Dr. M. KEERTHIGA

Semester III	Internal Marks: 25		External	Marks: 75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs. / Week	CREDITS
23UCH3CC4	ORGANIC AND ANALYTICAL CHEMISTRY	CORE	5	5

- > To understand the basics of alkanes and cycloalkanes.
- > To learn about the chemistry of alkenes and alkynes.
- > To learn about concept of aromaticity and reactivity of benzene.
- > To understand the aspects of data analyses.
- > To Familiarize themselves with chromatography.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive			
Number	On the successful completion of the course, students will be able to	Level			
CO1	Recall and understand the fundamental concepts of organic compounds and analytical techniques.	K1			
CO2	Describe the nature of hydrocarbons, errors and different analytical methods.				
CO3	Interpret the chemical reactions of hydrocarbons.	K3			
CO4	Analysis different reactions of organic molecules.	K4			
CO5	Explain the stability of organic molecules and application of Chromatography.	K5			

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	2	2	2	3	3	2	2	2
CO3	3	2	1	2	2	3	3	1	1	2
CO4	3	2	2	3	3	3	3	2	2	3
CO5	3	1	2	3	2	3	3	2	1	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
	Alkanes and cycloalkanes:	15	CO1,	K1,
	Introduction - preparation - catalytic hydrogenation		CO2,	K2,
	of alkenes and alkynes from haloalkanes, carbonyl		CO3,	КЗ,
	compounds and sodium salts of carboxylic acids -		CO4,	K4,
Ι	halogenation, nitration, sulfonation,		CO5	К5
	chlorosulfonation, oxidation reaction. Cycloalkanes			
	- strain in ring compounds: Baeyer's Strain theory -			
	preparation of cycloalkanes - chemical properties of cycloalkanes			
	Alkenes and Alkynes:	17	CO1,	K1,
	Introduction - preparation of alkenes - reduction of		CO2,	K2,
	alkynes - elimination reaction - physical properties -		CO3,	КЗ,
	electrophilic addition reactions free radical addition		CO4,	K4,
II	reactions - oxidation reactions, allylic substitution		CO5	К5
	reactions, polymerization reactions. Alkynes -			
	Introduction - preparation of alkynes - physical			
	nucleophilic addition reactions - oxidation reactions			
	- isomerization - polymerization reactions.			
	Concept of aromaticity and benzene:	15	CO1,	K1,
	Introduction - structure of benzene - Kekule structure		CO2,	K2,
	resonance energy, stability of benzene - Huckels		CO3,	КЗ,
	rule and aromaticity - aromaticity in benzene-		CO4,	K4,
III	preparation and chemical properties of benzene -		CO5	K5
	halogenation nitration alkylation acylation and			
	sulfonation.			

IV	Data Analysis:	15	CO1,	K1,
	Definition for analytical chemistry and chemical		CO2,	K2,
	analysis - qualitative and quantitative analysis -		СОЗ,	K3,
	classification of chemical analysis - error - definition		CO4,	K4,
	- classification of errors - accuracy and precision -		CO5	K5
	minimization of errors - limiting of reduction -			
	significant figure - mean - median - standard			
	deviation - distribution of random errors - reliability			
	of results (Q-test) - confidence interval limit -			
	comparison of results - students t-test - F- test.			
V	Basics of Chromatography:	13	CO1	K1,
	Chromatography – theory and practice:		CO2,	K2,
	chromatograph (elution time and volume) - capacity		CO3,	КЗ,
	factor- column efficiency - resolution - sample		CO4,	K4,
	preparation - principle and applications of Thin layer		CO5	K5
	chromatography and Column chromatography.			
N 7 T			GO1	17.1
VI	Self-Study for Enrichment:	-	COI,	К1,
	(Not to be included for External Examination)		CO2,	K2,
	IUPAC name of organic molecules, distinguish		CO3	КЗ,
	electrophile and nucleophile - types of cleavages -			K4
	types of hybridization - resonance - exothermic and			
	endothermic reaction - sample preparation in			
	chromatography.			

Text Books

- Bhupinder, M., & Manju, M. (2015). Organic chemistry. (2nd edition), Delhi, PHI Learning Private Limited.
- Bahl, B.S., & Bahl, A. (2010) Advanced Organic Chemistry. (12th edition), New Delhi, Sultan Chand & Co.
- Soni, P.L., & Chawla, H. M. (1983) Textbook of Organic chemistry. Sultan Chand & Sons.

- Gopalan, R., Subramanian, P. S., & Rengarajan, K. (2003). Elements of Analytical Chemistry. 2nd edition, Sultan Chand & Sons.
- Chatwal, G. R., & Anand, S. K. (2005). Instrumental methods of chemical analysis. Himalaya publishing house.

Reference Books

- Finar, I. L. (1996) Organic Chemistry. Vol 1 & 2, (6th edition) England, Addison Wesley Longman Ltd.
- Morrison, R.T., Boyd, R. N., & Bhattacharjee, S. K. (2011) Organic Chemistry (7th edition), Pearson India.
- Vogel A. I. (1978). Text Book of Quantitative Inorganic analysis, The English Language Book Society, Fourth edition.
- 4. Skoog, D. A., West, D. M., & Holler, F. J. (1995). Fundamentals of Analytical chemistry, 7th edition, Harcourt College Publishers.

Web References

- 1. <u>https://www.khanacademy.org/science/organic-chemistry/bond-line-structures.</u>
- 2. <u>https://kpu.pressbooks.pub/organicchemistry/chapter/1-3-resonance-structures.</u>
- 3. <u>https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules.</u>
- 4. https://chemistryhall.com/basic-organic-chemistry-.
- 5. <u>https://ams.uokerbala.edu.iq/wp/wp-content/uploads/2017/11/analytical-chemistry-2.pdf.</u>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designers

- Dr. G. Sivasankari
- Dr. C. Rajarajeswari

Semester III	Internal Marks: 40	Externa	al Marks: 6	50
COURSE	COURSETITLE	CATEGORY	Hrs./	CREDITS
CODE			Week	
22UCH3CC3P	ANALYSIS AND	CORE	3	3
	PREPARATION OF ORGANIC			
	COMPOUNDS (P)			

- > To learn the techniques of methods of different organic compounds through functional group identification with elemental analysis.
- > To exhibit the derivative for functional group.
- > To prepare organic compounds using various reactions.

Course outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level				
CO1	Observe the physical state, odour, colour and solubility of the given organic compounds.					
CO2	Detect the presence of special elements in an unknown organic compound performing a systematic analysis.					
CO3	Identify the presence of various functional groups in the given organic compounds.					
CO4	Exhibit the solid derivative with respect to the identified functional group.	K4				
CO5	Prepare organic compounds and exhibit their crude and recrystallized sample.	К5				

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	2	2	2	2	2	2
CO5	3	2	1	1	2	3	2	2	1	2

"1" – Slight (Low) Correlation "2"–Moderate(Medium)Correlation

"1" - Substantial (High) Correlation "-"-Indicates there is No Correlation

SYLLABUS

I. ANALYSIS OF SIMPLE ORGANIC COMPOUNDS

- > Identification of acidic, basic, phenolic and neutral organic compounds.
- > Test for aliphatic/aromatic nature of the compound.
- > Test for saturation / unsaturation.
- Detection of element present.
- Identification of functional groups.
- > Confirmation by preparation of solid derivatives / characteristic color reactions,

Note: Mono –functional compounds are given for analysis. (Carboxylic acid, phenols, carbohydrates, amides, amines, aldehydes, ketones and esters).

II. PREPARATION OF ORGANIC COMPOUNDS (SINGLE STAGE)

- 1. Salicylic acid from methyl salicylate (Hydrolysis).
- 2. Acetanilide from aniline (acetylation).
- 3. m-Dinitrobenzene from Nitrobenzene (Nitration).
- 4. Benzoic acid from Benzaldehyde (Oxidation).
- 5. 2, 4, 6, tribromoaniline from aniline (Bromination)

Text Books

- 1. Venkateswaran, V., Veerasamy, R., & Kulandaivelu, A. R. (1997). Basic principles of Practical Chemistry. 2nd edition, New Delhi, Sultan Chand & Sons.
- 2. Ganapragasam, N.S., & Ramamurthy, G. (1998). Organic Chemistry Lab Manual. Viswanathan Co. Pvt. Ltd.

Reference Books

1. Gurtur, J. R., & Kapoor, R. (1997). Advanced Experimental Chemistry. S. Chand and Co. Ltd. New Delhi.

Web References

- 1. https://iscnagpur.ac.in/study_material/dept_chemistry/3.1_MIS_and_NJS_Manual_for_Qrganic_Qualitative_Analysis.pdf.
- 2. https://www.vedantu.com/iit-jee/qualitative-analysis-of-organic-compounds.
- 3. http://amrita.olabs.edu.in/?sub=73&brch=8&sim=116&cnt=2.
- 4. http://home.miracosta.edu/dlr/211exp3.htm#:~:text=Methyl%20salicylate%20(an%20 ester)%20can,which%20is%20released%20by%20hydrolysis.
- 5. https://www.youtube.com/watch?v=wsXFYgCWzvg.

Pedagogy

Demonstration and Practical Sessions.

Course Designer

Dr. C. Rajarajeswari

Semester- III	Internal Marks: 25		Exte	ernal Marks: 75
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UCH3AC4	PHYSICS-I	SECOND ALLIED	4	3
		COURSE-I (AC)		

- To understand the behavior of matter in everyday life.
- To know the basic concepts of properties of matter.
- To acquire the knowledge in thermodynamics and heat conduction.
- To impart the ideas of semiconductors.

Pre-Requisites

- Get depth knowledge of physics in day today life
- Understand the fundamentals of elasticity and elastic nature of materials.
- Knowledge about the concepts of viscosity.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the Course, the Student will be able to,	Cognitive Level
CO 1	Recall the basic concepts of elasticity, viscosity and surface tension to solve problems encountered in everyday life.	K1
CO 2	Understand the concepts of the centre of gravity, states of equilibrium of rigid bodies and also stability of floating bodies.	K2
CO 3	Apply the behavior of the laws of thermodynamics, thermal conductivity and black body radiation.	K3
CO 4	Analyse the theories and experiments on interference and diffraction using air wedge, Newton's ring.	K4
CO 5	Evaluate the formation, characteristics and applications of diodes and transistor.	K5, K6

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	3	3	3	3	3	3	3	2	3
CO 2	2	3	3	3	3	3	3	2	2	3
CO 3	2	3	3	3	3	3	3	3	2	3
CO 4	2	3	3	2	3	3	3	3	3	3
CO 5	2	3	3	2	3	3	3	3	3	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" – indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	PROPERTIES OF MATTER	15	CO1,	K1,
	Introduction - Stress - Strain - Young's		CO2,	K2,
	modulus- Rigidity modulus - Bulk modulus -		CO3,	K3,
	Relations between elastic constants and		CO4,	K4,
	Poisson's Ratio (definition alone).		CO5	K5,
	Viscosity: Viscous force – Co-efficient of			K6
	Viscosity – Streamline flow and Turbulent			
	flow – critical velocity - Poiseuille's formula			
	for co-efficient of viscosity of a liquid			
	(Stoke's Method)			
II	MECHANICS	12	CO1,	K1,
	Basic concepts– Centre of Gravity- solid		CO2,	K2,
	hemisphere – Hollow hemisphere.		CO3,	K3,
	States of Equilibrium: Equilibrium of a rigid		CO4,	K4,
	body –Stable, unstable, and neutral		CO5	K5,
	equilibrium – Example Stability of Floating			K6
	bodies – Metacentre – Determination of			
TTT	Metacentric neight of a ship.	10	CO1	V 1
111	THERMAL PHYSICS	12	COI,	KI, K2
	and limitations of thermodynamic Drossess		CO2,	K2, V2
	and minitations of mermodynamic Processes		CO3,	KJ, VA
	isothermal isobaric isochoric and cyclic		CO4, CO5	N4, K5
	process - Laws of thermodynamics - enthalpy		COS	KJ, K6
	entropy and heat capacity Relationship			K 0
	between Cn and Cy - Joule - Thomson effect			
IV	OPTICS	12	CO1	K1
	Interference: Introduction – Superposition of		CO2.	K2.
	waves –Principle of interference-Air wedge –		CO3.	K3.
	Newton's rings.		CO4,	K4,
	Polarization: Nicol Prism – Nicol Prism as		CO5	K5,
	Polarizer and Analyzer – Laurent's half Shade			K6
	Polari meter.			
V	ELECTRONICS	11	CO1,	K1,
	Semiconductors: Classification of materials		CO2,	K2,
	based on energy band (Conductors,		CO3,	КЗ,
	semiconductors and insulators) - Intrinsic and		CO4,	K4,
	extrinsic semiconductor.		CO5	K5,
	Diodes : PN Junction diode – Biasing of PN			K6
	junction-V-I characteristics of junction diode			
	-Zener diode - Characteristics of Zener diode.		a a.:	*** 4
VI	SELF STUDY FOR ENRICHMENT	-	CO1,	K1,
	(Not to be included for External		CO2,	K2,

Examination)	CO3,	КЗ,
Applications of Elasticity-Low Viscous	CO4,	K4,
silicon liquid immersed transformers- Rigid	CO5	K5,
body of solid systems - Kinetic theory of		K6
matter-Properties of optical materials-		
Characteristics, Working and Applications of		
LED.		

Text Books

- 1. Murugeshan R, (2017), Properties of matter, S. Chand & Co. Pvt. Ltd., Revised Edition
- 2. Narayanamoorthy and Nagarathinam N, (2005), *Mechanics Part II*, The National Publishing Company, Chennai.
- 3. BrijLal, Subrahmanyam N, Hemne P S, (2021), *Heat and Thermodynamics and Statistical Physics*, S. Chand & Co. Pvt. Ltd., Revised edition
- 4. Dr. Subramaniyam N, Brijlal and Dr. Avathanulu M N, (2015), *Optics*, S. Chand & Co. Pvt. Ltd. 5th Edition, New Delhi.
- 5. Mehta V K and Rohit Mehta, (2015), Principles of Electronics, S. Chand and company Ltd

Reference Books

- 1. Brijlal and Subramaniyan, (2005), Properties of Matter, S. Chand & Co. Pvt. Ltd.
- 2. Mathur D S, (2006), *Mechanics*, S. Chand & Co. Reprint Edition.
- 3. Brijlal and Subramaniyan, (2001), *Thermal Physics*, S. Chand & Co.
- Murugeshan R and Kiruthiga Sivaprasath, (2014), A Text Book of Optics, S. Chand & Co. Pvt. Ltd.- 9th revised edition Ramnagar, New Delhi.
- 5. Vijayendran V, Viswanathan S, (2004), *Digital Fundamentals*, Printers & Publishers Private Ltd, Chennai.

Web References

- 1. https://byjus.com
- 2. https://digitalcommons.unl.edu/cgi/viewcontent
- 3. <u>https://sciencing.com</u>
- 4. https://nptel.ac.in/courses/122106025

Pedagogy

Chalk and Talk, Seminars, Power Point Presentation, Quiz, Assignment and Group discussion.

Course Designer

Dr.R.Mekala

Semester III	Internal Marks: 40	External Marks: 60			
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22UCH3AC5P	PHYSICS -I (P)	SECOND ALLIED	4	3	
		COURSE- II (AP)			

- To acquire a general foundational knowledge of physics experiments.
- To identify and solve problems at the frontier of physics knowledge.
- To get hands-on experience with practical skills.

Pre-requisites

• Basic knowledge on usage of scientific apparatus.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Student will be able to	Level
CO 1	Find applications of physics experiments in real world appliances	K1
CO 2	Construct the experiment by arranging and assembling the equipment.	K2
CO 3	Build practical hands-on experience by various techniques.	K3
CO 4	Compare the experimental values with standard values.	K3
CO 5	Apply the physics theory to design basic electrical circuits and develop	K4
	practical understanding	

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	1	1	1	2	1	3	2	1	2	1
CO 2	2	2	2	2	2	3	3	1	2	1
CO 3	1	3	2	3	1	3	2	1	3	1
CO 4	2	1	3	3	2	1	3	1	3	2
CO 5	3	2	3	3	3	1	3	2	3	2

"1" - Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation

LIST OF EXPERIMENTS (Any 8)

- 1. Young's modulus Uniform bending (Pin and Microscope).
- 2. Acceleration due to gravity- Compound Pendulum.
- 3. Viscosity of liquid Stoke's method.
- 4. Surface Tension and Interfacial Surface Tension Drop weight method.
- 5. Specific Heat Capacity of liquid Newton's law of Cooling.
- 6. Air wedge thickness of thin wire.
- 7. Meter Bridge Specific Resistance of a coil.
- 8. Carey Foster's Bridge Specific Resistance of a coil.
- 9. Post office Box- Determination of Temperature Coefficient.
- 10. Potentiometer Low range voltmeter Calibration.
- 11. Characteristics of Junction diode.
- 12. Characteristics of Zener diode.
- 13. Basic Logic gates
- 14. Comparison of EMF between Leclanche and Daniel cells.
- 15. Internal resistance of the Leclanche using Potentiometer.

Text Books

- 1. Somasundaram. S, (2012). Practical Physics, Apsara Publications, Tiruchirappalli.
- 2. Sasikumar. R, (2011), A Book for Practical Physics. PHI LearningPvt. Ltd, NewDelhi

Reference Books

- 1. Srinivasan.S, (2011) A Text Book of Practical physics, Sultans and publications, New Delhi.
- Prof. Namboodiri pad, M.N., Prof.Daniel, P.A., (1982). B.Sc., Practical Physics. G.B.C. Publications, Cochin.

Web References

- 1. https://vlab.amrita.edu/?sub=1&brch=280&sim=550&cnt=1
- 2. https://vlab.amrita.edu/index.php?sub=1&brch=280&sim=1518&cnt=4
- 3. http://amrita.olabs.edu.in/?sub=1&brch=5&sim=225&cnt=4

Pedagogy

Demonstration, practical sessions, and viva voce

Course Designer

Dr. K. Kannagi

Semester III	Internal Marks: 25	External Marks: 75			
COURSECODE	COURSE TITLE	CATEGORY	Hrs./	CREDITS	
			Week		
22UCH3GEC1	CHEMISTRY IN	GENERICELECTIVE	2	2	
	EVERYDAY LIFE	COURSE			

- > To know about the importance of Chemistry in everyday life.
- > To gain knowledge in food and nutrition.
- > To learn the Chemistry of building materials and plastics.
- > To learn about the role of chemicals in cosmetics.
- > To gain knowledge about dyeing processes.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recognize and account the importance of role of chemistry in industry and pollution control.	K1 &K2
CO2	Exemplify the chemistry of materials used in everyday life.	K3
CO3	Categorize the chemistry of materials used in everyday life.	K4
CO4	Interpret the uses of chemicals in day to daylife and its impact.	K5
CO5	Illustrate and classify the importance of chemistry used in commercial and daily life.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
C05	3	1	2	3	2	3	3	2	1	2

"1" – Slight (Low) Correlation

"2"-Moderate(Medium)Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Chemistry of Air and Water:	15	CO1,	K1,K2,K3, K4,
	Air - components and their importance;		CO2,	K5
	photosynthetic reaction, air pollution, green - house		CO3,	
	effect, ozone layer depletion and the impact on our		CO4	
	lifestyle. Water-sources of water, qualities of potable			
	water, soft and hard water, methods of			
	Removal of hardness-water pollution.			
II	Food and Nutrition:	15	CO1,	K1,K2,K3, K4,
	Carbohydrates, proteins, fats -definition and their		CO2,	K5
	importance as food constituents - balanced diet -		CO3,	
	calories minerals and vitamins (sources and their		CO4	
	physiological importance). Chemicals in food			
	production-fertilizers-need, natural sources;			
	urea-NPK fertilizers and superphosphate.			
III	Building materials:	15	CO1,	K1,K2,K3, K4
	Cement, ceramics, glass and refractories - definition-		CO2,	
	composition and application-plastics		CO3	
	- polythene - PVC - bakelite - polyesters - melamine-			
	formaldehyde resins -preparation and uses - merits			
	and demerits of plastics - environmental impact and			
	awareness.			
	Biodegradable polymers.			
IV	Chemistry of Cosmetics:	15	CO1,	K1,K2,K3, K4,
	Cosmetics-toothpaste-face powder-face cream		CO2,	K5
	- lip stick - hair dye - soaps (natural soaps, baby soap,		CO3,	
	and transparent soap) and detergents - shampoos, nail		CO4	
	polish - perfumes - general formulation and			
	preparations-possible hazards of			
	Cosmetic use.			

V	Dye Chemistry:	15	CO1,	K1,K2,K3,
	Dyes - classification of dyes - based on mode		CO2,	K4
	of application - acid - basic - direct - mordant		CO3	
	- vat - sulphur. Pigment-solvent and food dye-			
	based on chemical constitution-nitroso dye-			
	nitrodye-azo dye - thiazole dye - methods of			
	dyeing - direct dyeing-vat dyeing-			
	mordantdyeinganddisperse			
	dyeing.			
VI	Self-Study for Enrichment	-	CO1,	K1,K2,K3,
	(Not to be included for External Examination)		CO2,	K4
	Reverse osmosis- desalination of water-		CO3	
	refining and bleaching agents-types of dyes			
	and pigments -importance of pollution control.			

Text Books

- 1. Vaithyanathan, S. (2006). Text book of Ancillary Chemistry; Priya Publications, Karur.
- 2. Sharma, B.K. (2014). Industrial Chemistry; GOEL publishing house, Meerut, 16th edition.
- 3. Jayashree Ghosh.(2006). Fundamental Concepts Applied Chemistry, S. Chand& Co. Publishers,

2ndedition.

Reference Books

- 1. Billmeyer, F.N.(1971). Text book of Polymer Science, Wiley Inter science.
- 2. Prakash.(2011).ComprehensiveIndustrialChemistry,PragatiPrakashan,Meerut.
- 3. Poucher, W.A., Joseph, A., & Brink. (2000). Jr. Perfumes, Cosmetics and Soaps, Springer.
- 4. De, A.K. (1990). Environmental Chemistry, New Age International Public Co.

Web References

- 1. <u>https://www.educationusingpowerpoint.co.uk/preview-278-Chemistry_1_Air_and_Water.html.</u>
- 2. https://www.slideshare.net/harikafle944/food-and-nutrition-general-concept.
- 3. https://slideplayer.com/slide/261357/.
- 4. https://www.slideshare.net/amirhamza1234/presentation-on-dye.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

Dr. K. Uma Sivakami

Semester IV	Internal Marks:25	External Marks: 75					
COURSECODE	COURSETITLE	CATEGORY	Hrs/Week	CREDITS			
23UCH4CC5	INORGANIC AND ORGANIC CHEMISTRY	CORE	6	5			

- 1. To learn the general characteristics of d and f block elements.
- 2. To understand the reactions of organometallic compounds.
- 3. To study about the preparation and properties of alcohols, phenols and ethers.
- 4. To understand the arrangement of atoms in space, isomers and the nomenclature.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Outline the synthesis of organometallics and oxygen containing functional groups and symmetry elements.	K1, K2
CO2	Describe the general characteristics of d and f block elements, organic compounds and stereoisomers.	K3
CO3	Analyze the trends of the periodic properties, reactions and types of stereoisomers.	K4
CO4	Distinguish between 3d, 4d and 5d elements, functional isomers and	K5
CO5	Predict the properties of transition, inner transition elements and configuration of organic compounds	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	2	3	3	3	3	3	2	2	2

"1"–Slight (Low) Correlation

"2"–Moderate (Medium) Correlation

"3"-Substantial(High) Correlation

"-"indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	CONGNITIVE
т		10	001	LEVEL
1	Chemistry of d-Block Elements: Position of d-block	18	CO1,	K1, K2.
	elements in the periodic table-electronic configuration-		CO3,	K3,
	classification-general characteristics -atomic radii-		CO4,	K4,
	ionic radii-metallic character-melting point and boiling		005	КЭ
	point-atomic volume and densities-ionization energies-			
	standard oxidation potential and reducing properties-			
	variable oxidation state-catalytic properties-color of			
	transition metal complexes-Magnetic properties-			
	formation of complex compounds-formation of			
	interstitial compounds-alloy formation. comparison			
	between elements of 3d series with 4d and 5d series.			
II	Chemistry off Block Elements: General characteristics	18	CO1,	K1,
	of f block elements- comparative account of lanthanides		CO2, CO3	K2, K3
	and actinides-occurrence- oxidation state-magnetic		CO4,	K4,
	properties-color and spectra-lanthanides and actinides-		CO5	K5
	separation by ion exchange and solvent exchange			
	methods- lanthanide and actinide contraction -chemistry			
	of thorium and uranium-occurrence-ores- extraction and			
	uses-compounds of uranium and thorium-preparation-			
	properties-uses			
III	Chemistry of Organometallic compounds:	18	CO1,	K1,
	Introduction-classification-preparation-properties and		CO2, CO3	K2, K3
	uses of organomagnesium compounds, organozinc		CO3, CO4,	K3, K4,
	compounds, organolithium, organocopper, organolead,		CO5	K5
	organophosphorus and organoboron compounds			
IV	Chemistry of Alcohols, phenols and Ethers:	18	CO1,	K1,
	Nomenclature-laboratory preparation of alcohols-		CO2, CO3,	K2, K3,

	industrial source of alcohols-physical properties -		CO4,	K4,
	chemical properties-uses-chemistry of glycols and		CO5	К5,
	glycerols-uses-preparation of phenols including di and			
	tri hydric phenols-physical and chemical properties-			
	uses-aromatic electrophilic substitution mechanism-			
	theory of orientation and reactivity, laboratory			
	preparation of ether, epoxides-physical properties-			
	chemical properties-uses.			
V	Stereo Chemistry: Stereoisomers - types-concept of	15	C01,	K1,
	chirality- elements of symmetry - enantiomers -		CO2, CO3.	K2, K3.
	diastereomers -fisher projection representation -R, S		CO4,	K4,
	configuration-sequence rule-D and L- nomenclature-		CO5	K5, K6
	erythro and threo nomenclature. Compounds with two			-
	stereogenic centre-optical isomers of lactic acid,			
	tartaric acid. geometrical isomers -cis-trans system-E-			
	Z system. Racemic mixture-resolution of racemic			
	mixture – Walden Inversion –conformational analysis			
	of ethane and n-butane and cyclohexane.			
X 7 X	Self-Study for Enrichment:		001	17.1
VI	(Not to be included for end semester Examination)		CO1, CO2	K1, K2,
	Periodic table, classification of elements-periodic		CO3	K3,
	properties along the period and column. Different			K 4
	types of organic reaction. Different functional groups			
	and their nature. Basics of symmetry and isomers.			

Text books

- 1. PuriB. R, Sharma L. R, Kalia K. K. Principles of Inorganic Chemistry, 23rd edition, New Delhi, ShobanLalNagin Chand & Co., (1993).
- 2. Madan R. D.Modern Inorganic Chemistry, 2nd edition, S. Chand & Company Ltd., 2000.
- 3. Bhupinder M. Manju M., Organic chemistry, (2 nd edition), Delhi, PHI Learning Private Limited.
- 4. Bahl, B.S. and Bahl, A., Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (2010).
- 5. Soni P.L. Chawla H.M., Text book of Organic chemistry, Sultan Chand & Sons.

Reference books

- 1. Malik W.U, Tuli G.D, Madan R.D, selected topics in Inorganic chemistry, S Chand and Company limited, New Delhi.
- 2. Lee J. D.ConciseInorganicChemistry,20threvisededition,SultanChand& Sons,2000.
- 3. Finar I.L., Organic Chemistry, Vol 1&2, (6th edition) England, Addison Wesley Longman Ltd. (1996).
- 4. Morrison R.T. and Boyd R.N., Bhattacharjee S. K. Organic Chemistry (7th edition), Pearson India, (2011)

Web resources

- 1. https://unacademy.com/content/cbse-class-12/study-material/chemistry/d-block-elements/
- 2.https://study.com/learn/lesson/d-block-elements-properties-electron-configuration.html
- 3. https://www.aakash.ac.in/important-concepts/chemistry/actinides
- 4. https://www.usb.ac.ir/FileStaff/2896_2019-4-18-0-9-32.pdf
- 5. https://colapret.cm.utexas.edu/courses/Chapter%2015.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. C. Rajarajeswari

Semester IV	Internal Mark	s: 40	External Marks: 60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/ Week	CREDITS	
22UCH4CC4P	INORGANIC QUALITATIVE ANALYSIS (P)	CORE	4	4	

Objectives

- To learn the techniques of semi micro qualitative analysis.
- To know the nature of acidic and basic radicals.
- To learn the separation of groups.

Course outcomes

CO	CO Statement	Knowledge
Number	On the successful completion of the course, students will be	Level
	able to	
CO1	Recall the nature of acidic and basic radicals	K1
CO2	Identify the cations and anions present in the mixture	K2
CO3	Analyse the principles of inorganic qualitative analysis.	К3
CO4	Demonstrate the experimental methods of group separation	K4
CO5	Plan, execute and record all the experimental results.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	2	2	2	3	1	2	2	2	1	1
CO5	1	3	3	1	3	2	3	3	3	1

"1"- Slight(Low) Correlation

"3"-Substantial(High) Correlation

"2"-Moderate(Medium)Correlation

"-"indicatesthereisno correlation.

SYLLABUS INORGANIC QUALITATIVE ANALYSIS (P)

Analysis of a mixture containing two cations and two anions of which one will be an interfering acid radical. Semi micro methods using the conventional method with sodium sulphide may be adopted.

Cations to be studied:

Lead, copper, bismuth, iron, aluminium, zinc, manganese, cobalt, nickel, barium, calcium, strontium, magnesium and ammonium.

Anions to be studied:

Carbonate, Sulphate, Nitrate, Chloride, Fluoride, Borate, Oxalate and Phosphate.

Text Books

1. Venkateswaran V. Veerasamy R. Kulandaivelu A.R., Basic principles of Practical Chemistry,

2nd edition, New Delhi, Sultan Chand & sons (1997)

Reference book

1. Svehla G. Sivasankar B. Vogels Qualitative Inorganic Analysis, 7th Edition, Pearson Education

Web References

1. <u>http://rbmcollege.ac.in/sites/default/files/files/reading%20material/inorganic-qualitative-analysis.pdf</u>

- 2. <u>https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules</u>
- 3. https://byjus.com/chemistry/salt-analysis/
- 4. https://ncert.nic.in/pdf/publication/sciencelaboratorymanuals/classXII/chemistry/lelm107.pdf
- 5. https://chemlab.truman.edu/files/2015/07/Inorganic-Qualitative-Analysis.pdf
- 6. https://www.teachmint.com/tfile/studymaterial/b-

sc/inorganicchemistry/qualitativeanalysis/a9301386-a267-44c7-886a-09c64f439dcb

Pedagogy

Demonstration and practical sessions

Course Designer

* Dr. C. RAJARAJESWARI

Semester IV	Internal Marks: 25	25 External Marks: 75					
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS			
22UCH4AC6	PHYSICS - II	SECOND ALLIED COURSE – III	4	3			

- To provide the basic knowledge about the concepts of current electricity.
- To introduce the basic concepts of magnetostatics.
- To understand modern wave mechanics, which are basic for modern physics.
- To apply the principles of electronics in day to life.
- To understand the modern lasers and digitization of computers.

Pre-Requisites

- Basic laws of electricity.
- Fundamental knowledge in modern physics.
- Get in-depth knowledge about the concepts of digital electronics.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the Course, the Students will be able	Level
	to,	
CO 1	Acquire knowledge on elementary ideas of electricity, magnetism, modern	K1, K2
	and laser physics, digital electronics.	
CO 2	Able to understand the knowledge on basic laws of current electricity,	K2
	different types of magnetism, wave mechanics and modern laser, electronics.	
CO 3	Recall the of elementary ideas of electricity and magnetism, modern wave	K3
	mechanics and digitization of computers.	
CO 4	Analyze the behavior of laser physics and modern physics in our day-to-day	K4
	life.	
CO 5	Discuss the characteristics of Kirchoff's law and Specific resistance,	K5
	photoelectric effect, types of lasers and modern electronics.	

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	3	3	3	3	3	3	3	3	3
CO 2	2	3	3	3	3	3	3	2	2	3
CO 3	2	3	3	3	3	3	3	3	3	3
CO 4	2	3	3	2	3	3	3	3	2	3
CO 5	2	3	3	2	3	3	3	3	2	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

``2"-Moderate (Medium) Correlation

"-" - indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	CURRENT ELECTRICITY Ohm's law–Law of resistance in series and parallel– Specific resistance–capacitor–capacitors in serial and parallel–Kirchoff's laws–Wheatstone's network – condition for balance. Carey Foster's bridge – measurement of resistance– measurement of specific resistance–determination of temperature coefficient of resistance–Potentiometer– calibration of Voltmeter.	14	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
П	MAGNETISM Intensity of magnetization-Susceptibility-Types of magnetic materials-Properties of para, dia and ferromagnetic materials-ferrimagnets and their applications-Hysteresis-Experiment to draw M-H curve (Horizontal Method)-energy loss in hysteresis.	10	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
Π	MODERN PHYSICS Photo electric effect–Laws of photo electric effect – Einstein's photo electric equation–verification of Einstein's photo electric equation by Millikan's experiment–photo electric cells–applications. Wave mechanics: De Broglie concept of matter waves – characteristics and calculation of De Broglie wave length -Study of De Broglie matter wave by G. P. Thomson Experiment.	14	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	LASER PHYSICS Laser: Basics of Lasers-Principle of Laser-Stimulated Absorption-Stimulated Emission-Spontaneous Emission- population inversion-meta stable state – conditions for laser actions-Types-Ruby laser-He-Ne laser-applications of lasers-Raman effect-Raman shift -stokes and anti stokes lines.	10	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

V	DIGITAL ELECTRONICS Number systems-conversion of binary into decimal– conversion of decimal to Binary–binary addition and subtraction-Basic logic gates-AND, OR, NOT gates- NAND and NOR as an universal logic gates-Boolean Algebra–Laws of Boolean Algebra-De Morgan's theorems- verifications using truth tables.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
VI	SELF STUDY FOR ENRICHMENT (Not to be included for External Examination) Meter bridge-B-H Curve-Atomic & Nuclear Physics- Fiber optics-Artificial intelligence–Electronic School books.	-	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

Text Books

- 1. Murugeshan R (2001), Electricity and Magnetism, S. Chand & Co. Pvt. Ltd, Thirdedition.
- 2. Murugeshan R, Kiruthiga Sivaprasath (2017), *Modern Physics*, S. Chand & Co. Pvt.Ltd, Sixteenth Revised color edition.
- 3. Brijlal & Subramanian, (1995), Electricity and Magnetism, Ratan Prakashan Mandir.
- 4. Sedha R. S. (2004), A text book of Digital Electronics, S. Chand & Co. Pvt. Ltd, Firstedition.

Reference Books

- 1. Murugesan R, (2010), Allied Physics Paper I and II, S.Chand & Co, New Delhi, Revised Edition.
- 2. Narayanamurthi R, (1988), *Electricity and Magnetism*, The National Publishing Co,First Edition.
- 3. Arthur Beiser, Mahajan, Choudhury, (2015), *Concepts of Modern Physics*, Pustakkosh Pubications, India.
- 4. Donald P.Leach, Albert Paul Malvino, Goutam Saha, (2008), *Digital principle and Applications*, Mc Graw-Hill Publishing Company, 6th Editions, New York.
- 5. Vijayendran V, Viswanathan S, (2004), *Digital Fundamentals*, S. Viswanathan Printers Pvt. Ltd, Revised edition.

Web References

- 1. <u>https://wepdf.com/al/allied-physics</u>
- 2. https://archive.nptel.ac.in/courses
- 3. <u>https://nptel.ac.in/courses</u>
- 4. https://www.askiitians.com/revision-notes/physics/atomic-physics/

Pedagogy

Chalk and talk, PPT, Quiz, Assignment and Group discussion

Course Designer

Dr. R. Mekala
Semester IV	Internal Marks: 25	al Marks: 25 ExternalMarks:75							
COURSECODE	COURSETITLE	CATEGORY	Hrs/ Week	CREDITS					
22UCH4GEC2	FOODADULTERANTS AND HEALTH CARE	GENERIC ELECTIVE COURSE-II	2	2					

Course Objective

- > To provide an understanding of food and nutrition
- To provide an understanding of thechemical basis of food preservation and the effects of processing and storage on food quality
- To familiarize the student with common experimental methods used in the study of the major food adulterant
- > To know various types of healthcare, balanced diet and role of water balance in health.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Know the outline about the importance of health, sources of food, hazards of food additives and food poisoning.	K1&K2
CO2	Classify and identify common adulterants in different foods, food poisoning and impacts on health.	К3
CO3	Understand the common Food additives in food products, its prevention laws and importance of water balance in health care.	K4
CO4	Recognize the significance of nutrients, balanced diet and types of health care.	K5
CO5	Predict the nutrient, functions, sources of non-adulterants food and water for health care.	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	1	2	3	2	3	3	2	1	2

"1" – Slight (Low) Correlation "2" – Moderate (Medium) Correlation "3" – Substantial (High) Correlation "-"indicatesthereisnocorrelation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Food and food poisoning: Sources of food - types - advantages and disadvantages - constituents of food - carbohydrate - protein -fats and oils - vitamins and minerals - natural toxicants - food Poisoning: sources-causes and remedy-causes and remedies for acidity- gastritis- indigestion and constipation.	06	CO1, CO2, CO3, CO4, CO5	K1,K2,K3,K4, K5,K6
Π	Food adulterants: Adulterants-common adulterants in different foods –milk and dairy products - vegetable oils – fats - spices – condiments - cereals pulses - sweetening agents and beverages- contamination with toxic chemicals - pesticides and insecticides - Laws of prevention of food adulteration - Methods for detection of common adulterants in milk- milk products- oils and fats -sweetening agents - grains - spices - coriander powder - turmeric powder - coffee powder - tea dust and asafoetida.	06	CO1, CO2, CO3, CO4, CO5	K1,K2,K3,K4, K5,K6
Ш	Food additives: Food additives: artificial sweeteners -saccharin-cyclamate and aspartame- food flavors: esters - aldehydes and heterocyclic compounds- antioxidants: permitted - non- permitted food colors- stabilizers - thickeners and emulsifiers -other functional additives- soft drinks- formulation health drinks- preservatives- baking powder - yeast.	06	CO1, CO2, CO3, CO4, CO5	K1,K2,K3,K4, K5,K6

IV	Health: Definition of Health- WHO standard - balanced diet- Primary health care - secondary and tertiary health care- Primitivehealthcare:preventive-curative-rehabilitative health care - spiritual health care- concepts of social medicine -preventive medicine and community medicine.	06	CO1,CO2, CO3,CO4, CO5	K1,K2,K3,K4, K5,K6
V	Water Balance in health: As a nutrient- functions- sources- requirements- distribution of water in the body-exchange of water in the body- composition of body fluids- water exchange between plasma and interstitial fluid –Water imbalance– dehydration- water in toxication.	06	CO1,CO2, CO3,CO4, CO5	K1,K2,K3,K4, K5,K6
VI	Self-Study for Enrichment (Not to be included for External Examination) Preservation of food by use of chemicals –Preservation by use of sugar-pickling-principles of Food Preservation- diet for children and adults-role of water in health.	-	CO1,CO2, CO3,CO4, CO5	K1,K2,K3,K4, K5,K6

Text Books:

- 1. SeemaYadav, FoodChemistry, Anmolpublishing (P)Ltd., NewDelhi, 2006.
- 2. AlexRamani,FoodChemistry,MJPpublishers,Chennai.,2009.
- 3. JayashreeGhosh, Textbook of Pharmaceutical Chemistry S. Chand & Co. Publishers, New Delhi, 2003.
- 4. S.Lakshmi, Pharmaceutical Chemistry, S.Chand & Sons, New Delhi, 2004.

Reference Books:

- 1. ThomasM.Devlin,TextbookofBiochemistrywithClinicalCorrelations,JohnWiley&Sons;7th edition, 2010.
- 2. AshutoshKar, Medicinal Chemistry, NewAgeInternational, 2007.
- 3. JoshiA.S., Nutrition & Dietetics, TataMcgrawhill, New Delhi, 1998.

WebReference

https://www.slideshare.net/HiwrHastear/food-poisoning-60301801. https://www.slideshare.net/swatishikha10/food-adulteration-96507428. https://www.slideshare.net/bhambieannmalacas/food-additives-ppt. https://www.slideshare.net/sivanandareddy52/definition-concept-of-health. https://www.slideshare.net/rajud521/balance-water.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

Dr.K.Uma Sivakami.

Semester IV	Internal Marks:40	External Marks:60		
COURSECODE	COURSETITLE	CATERGORY	HRS./	CREDITS
			WEEK	
22UCH4SEC1P	CHEMISTRY OF	SKILL	2	2
	CONSUMER PRODUCTS(P)	ENHANCEMENT		
		COURSE		

Course Objectives

- To know the basic knowledge in chemistry of consumer products and modern trends in the industry.
- > To provide the practical training to the students in consumer product analysis

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statements On the successful completion of the course, students will be able to	Cognitive Level
CO 1	Outline the various adulterants in food products.	K1
CO 2	Explain the procedures for detecting the adulterants.	K2
CO 3	Identify the nature of adulterants added to consumer products.	K2
CO 4	Differentiate the pure and impure food samples.	K2
CO 5	Calculate the percentage composition of food colorant in food and beverages.	К3

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	2	2	2	2	2	2
CO5	3	2	1	1	2	3	2	2	1	2

"1" – Slight (Low) Correlation

"2"–Moderate (Medium)Correlation "-"–Indicates there is No Correlation

"4" – Substantial (High) Correlation

Syllabus

- 1. Detection of adulterants in milk and milk products.
- 2. Detection of adulterants in oil.
- 3. Detection of adulterants in spices and condiments.
- 4. Detection of adulterants in food products.
- 5. Estimation of food colors. (Colorimetric analysis)

Text Books

1. SallyA.Henrie,(2015),Green Chemistry Laboratory Manual for Green Chemistry, Press Taylor &Francis Group and Informa Business.

Reference Books

1. GajananShrike, (2022), Food & Beverage Adulteration and its Implications theory and Practice, Notion Press.

Web References

 https://dfda.goa.gov.in/images/PDF-DOCUMENTS/quciktestforsomeadullterantsinfoodfssaiinitiative.pdf
https://www.hansshodhsudha.com/first-second-issues/New%20Hansraj%20College%20Book-1-20-26.pdf

3. <u>https://www.fssai.gov.in/book-details.php?bkid=201</u>

Pedagogy

Demonstration and Practical Sessions

Course Designer

Dr.A.Sharmila