CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)
Nationally Accredited with 'A' Grade by NAAC ISO 9001:2015 Certified

PG AND RESEARCH DEPARTMENT OF MATHEMATICS

B.Sc., MATHEMATICS
 AUTONOMOUS SYLLABUS
 (2023-2024 and ONWARDS)

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS

VISION

To strive for excellence in the mathematical sciences in addition to encourage people to undertake opportunities in transdisciplinary domains.

MISSION

- To enhance analytical and logical problem-solving capabilities.
- To provide excellent mathematical science knowledge for a suitable career and to groom students for national prominence.
- To teach students how to use data analytics.
- To prepare students for transdisciplinary research and applications.
- Value-based education and service-oriented training programmes are used to acquire life skills.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE To provide a conducive environment to unleash their hidden talents andto nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR B.Sc Mathematics, B.Sc Physics, B.Sc Chemistry PROGRAMME

After completing a B.Sc., programme, a learner will be able to

PO NO.	On completion of B.Sc Mathematics / B.Sc Physics / B.Sc Chemistry Programme, the students will be able to
$\mathbf{P O 1}$	DOMAIN KNOWLEDGE Analyse, design and develop solutions by applying from fundamental concepts of basic sciences and expertise in discipline.
$\mathbf{P O 2}$	PROBLEM SOLVING Ability to think abstractly, to evaluate and concentrates effectively on problem-solving, as well as knowledge of global challenges.
$\mathbf{P O 3}$	CREATIVE THINKING AND TEAM WORK Develop prudent decision-making skills and mobility to work in teams to solve multifaceted problems.
$\mathbf{P O 4}$	EMPLOYABILITY Self-study acclimatize them to observe effective interactive practices for practical learning enabling them to be a successful science graduate. PO5
LIFE LONG LEARNING Assure consistent improvement in the performance and arouse interest to pursue higher studies in premium institutions.	

PROGRAMME SPECIFIC OUTCOMES FOR B.Sc MATHEMATICS

$\begin{aligned} & \text { PSO } \\ & \text { NO. } \end{aligned}$	The Students of B.Sc Mathematics will be able to	POs Addressed
PSO1	Procure a precise understanding of the mathematical concepts.	PO1, PO3
PSO2	Excel by enhancing interpersonal skills, overcoming procedural challenges and intending career paths.	PO3, PO4
PSO3	Recognize, strengthen and analyse mathematical problems in order to acquire better conclusion.	PO4, PO5
PSO4	Manipulate numerical abilities across a variety of domains.	PO2, PO5
PSO5	Develop and desire to learn more about advanced mathematics and its applications.	PO5

$\begin{array}{\|l\|} \hline \stackrel{y y y y}{*} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\stackrel{\rightharpoonup}{\tilde{E}}$	Course	Course Title	Course Code			Exam			F
							$\dot{\underline{i}}$	Marks		
I	I	Language Course-I (LC)	பொதுத்தமிழ் - I	23ULT1	6	3	3	25	75	100
			Hindi ka Samanya Gyan our Nibandh	23ULH1						
			Poetry, Grammar and History of Sanskrit Literature	23ULS1						
			Foundation Course: Paper IFrench I	23ULF1						
	II	English Language Course - I (ELC)	General English-I	23UE1	6	3	3	25	75	100
	III	Core Course - I (CC)	Algebra and Trigonometry	23UMA1CC1	4	4	3	25	75	100
		Core Course - II (CC)	Differential Calculus	23UMA1CC2	5	4	3	25	75	100
		First Allied Course - I (AC)	Mathematical Statistics	23UMA1AC1	5	4	3	25	75	100
		First Allied Course - II (AP)	Programming Language using MATLAB (P)	23UMA1AC2P	2	2	3	40	60	100
	IV	Ability Enhancement Compulsory Course-I (AECC)	Value Education	23UGVE	2	2	-	100	-	100
	Total				30	22				700
II	I	Language Course-II (LC)	பொதுத்தமிழ் -II	23ULT2	6	3	3	25	75	100
			Hindi Literature and Grammar-II	22ULH2						
			Prose, Grammar and History of Sanskrit Literature	23ULS2						
			Basic French-II	22ULF2						
	II	English Language Course $-\mathrm{II} \text { (ELC) }$	General English-II	23UE2	6	3	3	25	75	100
	III	Core Course - III (CC)	Differential Equations and Laplace Transforms	23UMA2CC3	4	4	3	25	75	100
		Core Course - IV (CC)	Integral Calculus	23UMA2CC4	4	4	3	25	75	100
		Core Practical -I (CP)	Statistics with Excel (P)	23UMA2CC1P	2	2	3	40	60	100
		First Allied Course - III (AC)	Applied Statistics	23UMA2AC3	4	3	3	25	75	100
	IV	Ability Enhancement Compulsory Course-II (AECC)	Environmental Studies	22UGEVS	2	2	-	100	-	100
		Ability Enhancement Compulsory Course-III (AECC)	Innovation and Entrepreneurship	22UGIE	2	1	-	100	-	100
		Extra Credit Course	SWAYAM		As per UGC Recommendation					
	Total				30	22				800

I SEMESTER

CORE COURSE - I (CC)

ALGEBRA AND TRIGONOMETRY

(2023-2024 Onwards)

Semester I	Internal Marks: 25		External Marks:75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
23UMA1CC1	ALGEBRA AND TRIGONOMETRY	CORE	4	4

Course Objective

- Basic ideas on the Theory of Equations, Matrices and Number Theory.
- Knowledge to find expansions of trigonometry functions, solve theoretical and applied problems.
- Understanding of how Hyperbolic functions can be used as a powerful tool in solving problems in science.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Define and interpret on reciprocal equations	$\mathbf{K 1 , ~ K 2 ~}$
$\mathbf{C O 2}$	Illustrate the sum of binomial, exponential and logarithmic series	K3
$\mathbf{C O 3}$	Compute Eigen values, eigen vectors, verify Cayley - Hamilton theorem and diagonalize a given matrix.	K3
$\mathbf{C O 4}$	Determine the powers and multiples of trigonometric functions in terms of sine and cosine.	K4
$\mathbf{C O 5}$	Evaluate the relationship between circular and hyperbolic functions and the summation of trigonometric series.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	2	3	3	3	2	2
CO2	3	3	3	2	2	3	2	2	2	2
CO3	3	3	3	3	3	3	2	2	2	2
CO4	3	2	3	3	2	3	3	3	2	2
CO5	2	2	3	2	2	3	3	2	2	2
" $"$ Slight (Low) Correlation $\neg 2 "-$ Moderate (Medium) Correlation \neg										

" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Reciprocal Equations - Standard form - To increase or decrease the roots of a given equation by a given quantity- Removal of terms- Horner's method related problems.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
II	Binomial Series- The following are the deductions from the Binomial Series - Approximations using Binomial Series- The Exponential Series - The Logarithmic series- related problems.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5
III	Inverse matrix -Characteristic equation - Eigen values and Eigen Vectors-Similar matrices - Cayley Hamilton Theorem (Statement only) - Finding powers of square matrix, Inverse of a square matrix up to order 3, Diagonalization of square matrices - related problems.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
IV	Expansions of $\cos \mathrm{n} \theta$ and $\sin \mathrm{n} \theta-$ Expansion of $\tan n \theta$ in powers of $\tan \theta$ - Expansion of \tan ($\mathrm{A}+\mathrm{B}+\mathrm{C}+\ldots$) - Powers of sines and cosines of θ in terms of functions of multiples of θ, Expansions of $\cos ^{n} \theta$, $\sin ^{n} \theta, \sin ^{n} \theta \cos ^{n} \theta$ when n is a positive integer Expansions of $\sin \theta$ and $\cos \theta$ in a series of ascending powers of θ - related problems.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5
V	Hyperbolic functions - Relation between circular and hyperbolic functions - Inverse hyperbolic functions - Logarithm of complex quantities - related problems.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5
VI	Self Study for Enrichment: (Not included for End Semester Examination) Symmetric function of the roots - Partial Fractions- Rank of a matrix - To resolve into factors the expression $x^{n}-a^{n}, x^{n}+a^{n}$ - Summation of trigonometric series.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5

Text Books

1. Manicavachagom Pillay, T.K, Natarajan T, Ganapathy K S (2018). Algebra, Volume I. S.Viswanathan (Printers \&Publishers), Pvt. Ltd.
2. Sudha S (1998). Algebra, Analytical Geometry(2D) and Trigonometry. Emerald Publishers.
3. Manicavachagom Pillay, T.K, Natarajan T, Ganapathy K S (2015). Algebra, Volume II. S.Viswanathan (Printers \&Publishers), Pvt. Ltd.
4. Narayanan, S, Manicavachagom Pillay, T.K (2013). Trigonometry. S.Viswanathan (Printers \&Publishers), Pvt. Ltd.

Chapters and Sections

UNIT-I Chapter VI: Sections 16-17,19, 30 [1]
UNIT-II Chapter I: Sections 1.1-1.5 [2]
UNIT-III Chapter II: Sections 8, 16 [3]
UNIT- IV Chapter III: Sections 1-5 [4]
UNIT- V Chapter IV: Fully [4]
Chapter V : Section 5 [4]

Reference Books

1. David C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education Asia, Indian Reprint, 2020.
2. Frank Ayres JR, Theory and Problems of Plane and Spherical Trigonometry, Schaum's Outline Series McGraw-Hill Book Company, 1954.
3. Vittal P.R, Malini V, Algebra, Analytical Geometry and Trigonometry, Margham Publications, 2010.

Web References

1. https://www.youtube.com/watch?v=0HwGGTdrBzg
2. https://www.youtube.com/watch? $v=$ BydVprh9NgQ
3. https://www.youtube.com/watch?v=r-b4m2-yCt0
4. https://www.youtube.com/watch?v=IcBXhQNx4fY
5. https://www.youtube.com/watch?v=ZjBemEeUWXg

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. R.Divya

CORE COURSE - II (CC)
DIFFERENTIAL CALCULUS
(2023-2024 Onwards)

Semester I	Internal Marks: 25	External Marks:75		
COURSE CODE	COURSETITLE	CATEGORY	Hrs /Week	CREDITS
23UMA1CC2	DIFFERENTIAL	CORE	5	4
	CALCULUS			

Course Objective

- Explore the basic skills of the students with mathematical methods formatted for their major concepts and train them in basic Differentiation.
- Analyze mathematical statements and expressions.
- Evaluate the fundamental concepts of differentiation, successive differentiation, and their applications.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Explain the concepts of Calculus.	K1, K2
$\mathbf{C O 2}$	Classify the problem models in the respective area.	K3
$\mathbf{C O 3}$	Solve various types of problems in the corresponding stream.	K3
$\mathbf{C O 4}$	Identify the properties of solutions in the core area.	K3
$\mathbf{C O 5}$	Discover the applications of Calculus.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
$\mathbf{C O 1}$	3	3	3	3	3	3	3	2	2	2
$\mathbf{C O 2}$	3	2	3	3	3	3	3	3	2	3
$\mathbf{C O 3}$	3	3	3	3	3	3	3	3	3	3
$\mathbf{C O 4}$	3	2	3	3	2	3	3	2	2	3
$\mathbf{C O 5}$	3	2	3	3	2	3	3	3	3	2

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Successive Differentiation: Introduction (Review of basic concepts) - The $n^{\text {th }}$ derivative - Standard results - Fractional expressions - Trigonometrical transformation - Formation of equations involving derivatives - Leibnitz formula for the $n^{\text {th }}$ derivative of a product -A complete formal proof by induction.	15	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
II	Partial Differentiation: Partial derivatives $-\quad$ Successive partial derivatives - Function of a function rule - Total differential coefficient - A special case - Implicit Functions.	15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
III	Partial Differentiation (Continued): Homogeneous functions - Partial derivatives of a function of two functions - Maxima and Minima of functions of two variables - Lagrange's method of undetermined multipliers.	15	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
IV	Envelope: Method of finding the envelope - Another definition of envelope - Envelope of family of curves which are quadratic in the parameter Family of curves will contain two parameters and the two parameters are connected by a relation.	15	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
V	Curvature: Definition of Curvature Circle, Radius and Centre of Curvature Cartesian formula for the radius of curvature - The coordinates of the centre of curvature - Evolutes and Involute Radius of Curvature when the curve is given in Polar Co-ordinates	15	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
VI	Self -Study for Enrichment: (Not included for End Semester Examination) Meaning of Derivative : Geometrical interpretation- Feynman's method of differentiation - Taylor's expansion of $f(x, y)$ - p-r equation : pedal equation of a curve.	-	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$

Text Book

1. Narayanan.S Manicavachagom Pillay.T.K. (2019). Calculus Volume-I. Ananda Book Depot.

Chapters and Sections

UNIT-I Chapter III Sections 1.1-1.6, 2.1,2.2
UNIT-II Chapter VIII Sections 1.1-1.5
UNIT-III Chapter VIII Sections $1.6,1.7,4,5$
UNIT-IV Chapter $\mathrm{X} \quad$ Sections 1.1-1.4
UNIT-V Chapter X Sections 2.1-2.6

Reference Books

1. Rawat.K.S.(2006). An Differential Calculus. $1^{\text {st }}$ Edition, Daryaganj, Newdelhi2:AdhyayanPulishers and distributors, j m d House,Murarlal stre.
2. Arumugam. S and Issac. (2014). Calculus. New Gamma Publishing House.
3. Bali. N.P. (2010). Differential Calculus. Laxmi Publications (P) Ltd. New Delhi.

Web References

1. https://www.youtube.com/watch?v=s8hVridQ5IA
2. https://freevideolectures.com/course/4224/nptel-integral-vectorcalculus/34
3. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{IQJOUiM91Z4}$
4. https://www.youtube.com/watch?v=AXqhWeUEtQU
5. https://www.youtube.com/watch?v=j5VGo1n8KBY\&list=PLpklqhIbn1jirI bgS6UckW39WE04bAFjOS
6. $\mathrm{https}: / / a r c h i v e . n p t e l . a c . i n / c o u r s e s / 111 / 104 / 111104095 /$

Pedagogy

Chalk and Talk, Power point presentation, Group Discussion, Seminar, Assignment and Quiz.

Course Designer

Dr.L.Mahalakshmi

FIRST ALLIED COURSE -I (AC)

MATHEMATICAL STATISTICS

(2023-2024 Onwards)

Semester I	Internal Marks:25		External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS	
23UMA1AC1	MATHEMATICAL STATISTICS	ALLIED	5	4	

Course Objectives

- Enable in-depth knowledge of probability.
- Explore the concepts of some statistical data.
- Analyse the properties of discrete and continuous distributions.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Define the basic concepts in probability, some special distributions, and sampling distributions.	K1
$\mathbf{C O 2}$	Explain the properties of probability and the theory of sampling distributions to find solutions of real-life problems.	K2
$\mathbf{C O 3}$	Solve problems in probability, some special distributions and sampling distributions.	$\mathbf{K 3}$
$\mathbf{C O 4}$	Examine the given data and interpret the results	$\mathbf{K 4}$
$\mathbf{C O 5}$	Analyze probability, and various distributions in the case of solid conclusions about the values of the population parameter.	$\mathbf{K 4}$

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	2
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2

" 1 "-Slight (Low) Correlation" 2 " - Moderate (Medium) Correlation
" 3 "- Substantial (High) Correlation"-"indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	$\begin{gathered} \text { COGNITIVE } \\ \text { LEVEL } \end{gathered}$
I	Theory of Probability: Introduction - Short History - Definitions of Various Terms - Mathematical or Classical or 'a Priori' Probability -Statistical or Empirical Probability -Mathematical Tools: Preliminary Notion of sets-Sets and Elements of Sets - Operations on Sets Algebra of Sets-Axiomatic approach to Probability-Random Experiment (Sample Space) - Event-Some Illustrations-Algebra of Events-Probability: Mathematical Notion - Probability Function - Laws of Addition of Probabilities-Extension of General Law of Addition of Probabilities-Law of Multiplication or Theorem of Compound Probability-Independent Events-Pair wise Independent Events-Mutually Independent Events- Baye's theorem.	15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K } \end{aligned}$
II	Random Variables and Distribution Functions: Random Variable-Distribution Functions Properties of Distribution Function-Discrete Random Variable -Probability Mass Function - Discrete Distribution FunctionContinuous Random Variable -Probability Density Function-Various Measures of Central Tendency, Dispersion, Skewness and Kurtosis for Continuous Probability Distribution - Continuous Distribution Function - Joint Probability Mass Function and Marginal and Conditional Probability Function-Joint Probability Distribution Function-Joint Density Function, Marginal Density Function -The Conditional Distribution Function and Conditional Probability Density Function.	15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K } \end{aligned}$

III	Mathematical Expectation Mathematical Expectation - Addition Theorem of Expectation - Multiplication Theorem of Expectation - Co-variance Expectation of a Linear Combination of Random Variables -Variance of a Linear Combination of Random Variables Expectation of a Continuous random variable - Conditional Expectation \& Conditional Variance.	15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} \end{aligned}$	K1, K2, K3, K4
IV		15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} \end{aligned}$	K1, K2, K3, K4
V		15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} \end{aligned}$	K1, K2, K3, K4
VI	Self-Study for Enrichment: (Not included for End Semester Examinations) Extension of Multiplication Law of Probability- Independent Random Variables -Generating Functions- Poisson distribution -Exponential Distribution.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} \end{aligned}$	$\begin{aligned} & \mathrm{K} 1, \\ & \mathrm{~K} 2, \\ & \mathrm{~K} 3, \\ & \mathrm{~K} 4 \end{aligned}$

Text Books

1. Gupta.S.C. \& Kapoor.V.K (2018), Elements of Mathematical Statistics, Sultan Chand \& Sons, New Delhi.
2. Gupta. S.C \& Kapoor.V.K (2014), Fundamentals of Mathematical Statistics, Sultan Chand \& Sons, New Delhi.

Chapters and Sections

UNIT-I Chapter 4: Section 4.1 to 4.8 (omit 4.7.1) [1]
UNIT-II Chapter 5: Sections 5.1 to 5.5.3, 5.5.5 [1]
UNIT-III Chapter 6: Sections 6.1 to 6.8 [1]
UNIT-IV Chapter 8: Sections 8.1 to 8.3, 8.4 (8.4.1 to 8.4.7) [2]
UNIT-V Chapter 9: Sections 9.1 and 9.2 (9.2.1 to 9.2.8, 9.2.14) [2]

Reference Books

1. Pillai.R.S.N \& Bhagavathi (2008) Statistics, Theory and Practice, S.Chand \& Sons.
2. Bhishma Rao.G.S.S (2011), Probability and Statistics, Scitech Publications (India) Pvt Ltd.
3. Veerarajan.T (2010), Probability, Statistics and Random Processes, Tata McGraw Hill Education Private Limited.

Web References

1. https://www.youtube.com/watch?v=ZKkiCC6uCaU\&list=PLpEFfNAthorfHz VYKNRFgtW.Jp2R1vTZfi
2. https://www.youtube.com/watch?v=imgZG6roVgU
3. https://www. voutube.com/watch? $\mathrm{v}=\mathrm{gHBL5Zau} 3 \mathrm{NE}$
4. https://www.youtube.com/watch? $\mathrm{v}=3$ PWKOiLK41M
5. https://www.voutube.com/watch? v=dOr0NKyD310
6. https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/uniform-distribution/

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz and Assignment.

Course Designers

1. Dr. S. Sasikala
2. Dr. R. Radha

FIRST ALLIED COURSE -II (AP)
PROGRAMMING LANGUAGE USING MATLAB (P)
(2023-2024 Onwards)

Semester I	Internal Marks: 40		External Marks: 60	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
23UMA1AC2P	Programming Language Using MATLAB (P)	ALLIED PRACTICAL	$\mathbf{2}$	$\mathbf{2}$

Course Objective

- Apply MATLAB as a simulation tool.
- Compute mathematical solutions using MATLAB and develop interdisciplinary skills.
- Determine syntax, semantics, data-types and library functions of numerical computing.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Explain fundamental concepts of MATLAB.	K2
$\mathbf{C O 2}$	Illustrate a great numbers of MATLAB commands and how to use them in programming and in many applications of Mathematics.	K2
$\mathbf{C O 3}$	Compute simple program for a given problem in MATLAB coding.	$\mathbf{K 3}$
$\mathbf{C O 4}$	Determine the result and the outcome of any command or script.	$\mathbf{K 4}$
$\mathbf{C O 5}$	Deduce Mathematical solutions using MATLAB tools.	$\mathbf{K 5}$

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	2	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	2	3
1 " - Slight (Low) Correlation $\neg 2 "-$ Moderate (Medium) Correlation \neg										

" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Listings:

1. Operations using Matrices (Addition, Subtraction, Multiplication, Transpose and Inverse)
2. Basic plotting of variables (Simple and multiple data set).
3. Sorting of given data.
4. Finding the sum of ' n ' numbers, sum of square of ' n ' numbers, sum of ' n ' odd numbers.
5. Finding the roots of a polynomial equation.
6. Solving system of equations using matrices.
7. Finding the Eigen vectors and Eigen values.
8. Generating Fibonacci series.
9. Vector operations.
10. Evaluation of integrals.
11. Finding the derivatives of given order.
12. Operations on sets.
13. Finding rank of a matrix.
14. Solving ordinary differential equations.

Web References

1. https://www.youtube.com/watch?v=EF4wmV5xBM0
2. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{XsrhAO3r3VY}$
3. https://www.youtube.com/watch? $v=a E j e u j 5 j f L U$
4. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{ZBafH5fss} 1 \mathrm{E}$
5. https://www.youtube.com/watch? $v=X t i A C 4 a d o z Q$
6. https://www.youtube.com/watch? $v=k t 8 Q S k t-M 6 c$
7. https://www.youtube.com/watch?v=pi6Dkvs6rP4
8. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{YzEp} 0 \mathrm{jiVyYs}$
9. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{LFoutvnfP6A}$
10. https://youtu.be/rqWPw21E90A
11. https://youtu.be/CUdL4-tJy58

Pedagogy

Power point presentations, Live Demo, Hands on Training.

Course Designer

Dr. C. Saranya

II SEMESTER

CORE COURSE - III (CC)
DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS
(2023-2024 Onwards)

Semester II	Internal Marks: 25		External Marks:75	
COURSE CODE	COURSETITLE	CATEGORY	Hrs / Week	CREDITS
23UMA2CC3	DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS	CORE	$\mathbf{4}$	4

Course Objective

- Explain the basics of Ordinary Differential Equations.
- Evaluate in the field of Partial Differential Equations.
- Explore the mathematical methods formatted for major concepts.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Explain various notions in ODE, PDE, Laplace transforms.	K1, K2
$\mathbf{C O 2}$	Classify the problem models in the respective area.	$\mathbf{K 3}$
$\mathbf{C O 3}$	Identify the properties of solutions in the field of mathematics.	$\mathbf{K 3}$
$\mathbf{C O 4}$	Solve various types of problems involving differential equations.	$\mathbf{K 3}$
$\mathbf{C O 5}$	Analyze the applications of the Differential equations in practical life.	$\mathbf{K 4}$

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	2	2	3
CO2	3	2	3	3	3	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	2	3	3	2	2	3
CO5	3	2	3	3	2	3	3	3	3	2
1 " - Slight (Low) Correlation $\neg 2 "-$ Moderate (Medium) Correlation \neg										

" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	$\begin{gathered} \text { COGNITIVE } \\ \text { LEVEL } \end{gathered}$
I	Equations of the first order but of higher degree: Equations solvable for dy/dx - Equations solvable for y - Equations solvable for x Clairaut's form - Extended form of Clairaut's form - Exact differential equations - Conditions of integrability of $\mathrm{Mdx}+\mathrm{Ndy}=0$ - Practical rule for solving an exact differential equation - Rules for finding integrating factors - simple problems.	15	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
II	Linear equations with constant coefficients: Definition - The operator D Complementary function of a linear equation with constant coefficients - Particular integral - General method of finding P.I. - Special methods for finding P.I. of the forms $\mathrm{e}^{\mathrm{ax}}, \cos \mathrm{ax}$ or $\sin \mathrm{ax}, \mathrm{e}^{\mathrm{ax}} \mathrm{V}, \mathrm{x}^{\mathrm{m}}-$ Linear equations with variable coefficients Methods of finding particular integrals - Method of Variation of Parameters.	15	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
III	Partial differential equations of the first order: Classification of Integrals - Derivation of partial differential equations - By elimination of constants - By elimination of an arbitrary function Lagrange's method of solving the linear equation Special methods for some standard forms $F(p, q)=0, F(x, p, q)=0, F(y, p, q)=0, F(z, p, q)=0$, $\mathrm{f}_{1}(\mathrm{x}, \mathrm{p})=\mathrm{f}_{2}(\mathrm{y}, \mathrm{q})$ Clairant's form - Equations reducible to the standard forms - Charpit's method .	15	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
IV	Laplace transforms: Definition - Piecewise continuity - Sufficient conditions for the existence of the Laplace Transforms - Basic results - Laplace Transform of periodic functions - Some general theorems \& simple applications - Evaluation of certain integrals using Laplace Transform.	15	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
V	Inverse laplace transforms: The Inverse Transforms -Modification of results in Laplace Transform to get the inverse Laplace Transform - Use of Laplace Transforms in solving ODE with constant coefficients - The Laplace transform can also be used to solve systems of differentiable equations- Laplace transforms can be used to solve differential equations with variable coefficients.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

VI	Self Study for Enrichment: (Not included for End Semester Examination) Equations that do not contain x explicitlyEquations that do not contain y explicitly - Special method of evaluating the P.I. when X is of the form x^{m}-Solving of few standard forms from Charpit's method - Certain equations involving integrals can also be solved by Laplace transform.		$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$

Text Books

1. Narayanan, S and Manicavachagom Pillay, T.K (2016). Differential Equations And Its Applications. S.Viswanathan Publishers Pvt. Ltd.

Chapters and Sections

UNIT-I Chapter IV: Sections $1-3$. Chapter II: Section 6.

UNIT-II Chapter V: Sections 1-5 (Omit 5.5). Chapter VIII: Section 4.

UNIT-III Chapter XII: Sections 1-6.
UNIT- IV Chapter IX: Sections 1-5.
UNIT- V Chapter IX: Sections 6-10.

Web References

1. Raisinghania M.D. (2008). Ordinary and Partial Differential Equations.S.Chand \& Company.
2. Zafar Ahsan.(2006). Differential Equation and Their Applications (Second Edition). Prentice Hall of India Private Limited.
3. Dr.S.Arumugam, A Thangapandi Isaac (2014). Differential Equations and Applications. New Gamma Publishing House.

Web References

1. https://youtu.be/aYrsPeE7NLQ
2. https://youtu.be/913LV_0QDO0
3. https://youtu.be/JEyzOtRPnjk
4. https://youtu.be/2LyY4t0Gfvs?si=Bq9dFIA4dHSQdSRg
5. https://youtu.be/UzaBAA3VJOY?si=MUQxwUqrykVZzkSt

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. R.Divya

CORE COURSE - IV (CC)
INTEGRAL CALCULUS
(2023-2024 Onwards)

Semester II	Internal Marks: 25		External Marks:75	
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDIT S
23UMA2CC4	INTEGRAL	CORE	$\mathbf{4}$	$\mathbf{4}$
	CALCULUS			

Course Objective

- Analyze the properties of definite integral and Reduction formulae.
- Explore the order of Integration, Triple Integrals, Beta and Gamma functions.
- Apply Geometrical Applications of Integration of area under plane curve.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Identify the integrals of algebraic, trigonometric and logarithmic functions and to find the reduction formulae.	K1, K2
$\mathbf{C O 2}$	Solve multiple integrals and to find the areas of curved surfaces and volumes of solids of revolution.	$\mathbf{K 3}$
$\mathbf{C O 3}$	Evaluate double and triple integrals and problems using change of order of integration.	$\mathbf{K 4}$
$\mathbf{C O 4}$	Explain beta and gamma functions and to use them in solving problems of integration.	$\mathbf{K 5}$
$\mathbf{C O 5}$	Discover the applications of Integral Calculus.	$\mathbf{K 5}$

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	2	3	2
CO2	3	2	3	3	2	2	2	3	3	3
CO3	3	3	3	3	3	2	3	2	2	2
CO4	3	2	3	3	2	3	3	3	2	2
CO5	3	3	3	3	3	2	2	2	3	3

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Integration: Integration of rational algebraic functions - Rule(a), Rule(b), Rule(c) - Integration of irrational functions - Case(i), Case(ii) only.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
II	Integration: Integration by parts - Reduction formulae - Bernoulli's formula.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
III	Multiple Integrals: Definition of the double integral Evaluation of the double integral Double integrals in polar co-ordinates Triple integrals.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
IV	Improper integrals: Beta and Gamma functions: Definitions - Convergence to $\Gamma(n)$ Recurrence formula of Gamma functions - Properties of Beta functions - Relation between Beta and Gamma functions.	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
V	Geometrical Applications of Integration: Areas under plane curves: Cartesian co- ordinates - Area of a closed curve - Areas in polar co-ordinates.	12	$\begin{aligned} & \text { CO1, } \\ & \text { CO2, } \\ & \text { CO3, } \\ & \text { CO4, } \\ & \text { CO5 } \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4, } \\ & \text { K5 } \end{aligned}$
VI	Self -Study for Enrichment: (Not included for End Semester Examination) Integration of the form $\sqrt{a x^{2}+b x+c}$ and $(p x+q) \sqrt{a x^{2}+b x+c}-$ Integration as summation - Applications of multiple integrals - Applications of Gamma functions to multiple integrals Approximate Integration: Trapezoidal rule.	-	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \end{aligned}$	K1, K2, K3, K4, K5

Text Book

1. Narayanan.S Manicavachagom Pillay.T.K. (2021). Calculus Volume II. Ananda Book Depot.

Chapters and Sections

UNIT-I	Chapter 1	$:$	Sections 7.1-7.4, 8(Page No. 40-46)
UNIT-II	Chapter 1	$:$	Sections 12,13, 14, 15.1.
UNIT-III	Chapter 5	$:$	Sections 2.1, 2.2,3.1,3.2, 4.
UNIT-IV	Chapter 7		Sections 2.1-2.3,3,4.
	$:$		
UNIT-V	Chapter 2	$:$	Sections 1.1-1.4

Reference Books

1. Shanti Narayan \& Mittal, P. K (2008). Integral Calculus, S. Chand \& Company Ltd.
2. Singh. U. P. Srivastava, R. J \& Siddiqui, N. H. (2011). A Text Book of Integral Calculus, Wistom Press.
3. Singh. J. P. (2014) Calculus, Ane Books Pvt. Ltd.

Web References

1. https://youtu.be/GIGJJdvdrdhs?si=-zflb8uCpb7Aw0WT
2. https://youtu.be/ocgifF2AboA?si=8NMu-wdGBn9Yij9F
3. https://youtu.be/5SuPKa3Q9BM?si=taJPIYim2zdBJqZA
4. https://youtu.be/rCQZipoVJ-o?si=VCw5630f1FEcLRh-
5. https://youtu.be/xU1HBisdJJs?si=nChZzYPOKF8foCPT
6. https://math.mit.edu/~nehcili/data/mat136 integration.pdf
7. https://www.academia.edu/31132415/MA 210 lecture notes INTEGRAT ION_TECHNIQUES_pdf

Pedagogy

Chalk and Talk, Power point presentation, Group Discussion, seminar,
Assignment and Quiz.

Course Designer

Dr. P. Sudha

CORE PRACTICAL -I (CP)
STATISTICS WITH EXCEL (P)
(2023-2024 Onwards)

Semester II	Internal Marks: 40	External Marks:60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
23UMA2CC1P	STATISTICS WITH EXCEL (P)	CORE PRACTICAL	$\mathbf{2}$	$\mathbf{2}$
	2			

Course Objective

- Understands the basic concepts in quantitative data analysis.
- Apply the technical knowledge to interpret and solve the problems.
- Explore the ideas of Excel in Statistics.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Explore various statistical concepts in Excel.	$\mathbf{K 3}$
$\mathbf{C O 2}$	Solve the different types of statistical problems using Excel.	$\mathbf{K 3}$
$\mathbf{C O 3}$	Make use of formulas, including the use of built-in functions.	$\mathbf{K 3}$
$\mathbf{C O 4}$	Compute Statistical data's using Excel.	$\mathbf{K 3}$
$\mathbf{C O 5}$	Analyze the concepts of statistical methods and apply it to the real-life problems.	$\mathbf{K 4}$

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	1	2	3	2	2	2	3	2	2	2
CO2	1	2	3	2	2	2	3	2	2	2
CO3	1	2	3	2	2	2	3	2	2	2
CO4	1	2	3	2	2	2	3	2	2	2
CO5	1	2	3	2	2	2	3	2	2	2

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

LIST OF PROGRAMS:

1. Arithmetic Mean, Geometric Mean and Harmonic Mean.
2. Median and Mode.
3. Quartile Deviation and Mean Deviation.
4. Standard Deviation and Co-efficient of Variation.
5. Moments and Kurtosis.
6. Fitting of a Binomial Distribution.
7. Fitting of a poisson distribution.
8. Karl Pearson's Co-efficient of correlation.
9. Rank Correlation.
10. Fit the regression line.
11. Test the hypothesis for the difference between two sample means.
12. Test the hypothesis for single proportion.
13. Test the significance of hypothesis using ' t ' test.
14. Test the significance of hypothesis using ' F ' test.
15. Test the significance of hypothesis using chi-square test.

Web References

1. https://youtu.be/rRGJZp6GLsY
2. https://youtu.be/6dw3KNn0dYw
3. https://youtu.be/L9TiYC6tOmU
4. https://youtu.be/rAKu30EtVg8
5. https://youtu.be/GzUNF0PspYw
6. https://youtu.be/vqvBX0fe0S8
7. https://youtu.be/bcUW8kELOLw
8. https://youtu.be/sPgm9e8pDQM
9. https://youtu.be/7Y1g340tcbU
10. https://youtu.be/L_a8Z0BVjyM
11. https://youtu.be/0Bjf8LKnSOA
12. https://youtu.be/BIS11D2VL_U

Pedagogy

Power point presentations, Live Demo, Hands on training.

Course Designer

Dr. C. Saranya

FIRST ALLIED COURSE - III (AC)

APPLIED STATISTICS

(2023-2024 Onwards)

Semester II	Internal Marks: 25		External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
23UMA2AC3	APPLIED STATISTICS	ALLIED	4	$\mathbf{3}$	

Course Objective

- Define the notion of measures of central tendency, measures of dispersion.
- Explore the fundamental concepts correlation and regression.
- Apply the idea of large sample tests and small sample tests in various fields.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	On the successful completion of the course, students will be able to	Cognitive Level
$\mathbf{C O 1}$	Define measures of central tendency, correlation, regression, measures of dispersion, large and small sample tests.	K1
$\mathbf{C O 2}$	Explain the basic concepts of measures of central tendency, measures of dispersion, correlation, regression, large and small sample tests.	$\mathbf{K 2}$
$\mathbf{C O 3}$	Apply the various concepts of correlation, regression, measures of central tendency \& dispersion and sampling tests for solving the problems.	$\mathbf{K 3}$
$\mathbf{C O 4}$	Solve the problems using measures of central tendency and dispersion, correlation, regression, large and small sample tests.	$\mathbf{K 3}$
$\mathbf{C O 5}$	Examine the given data and interpret the results.	$\mathbf{K 4}$

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	2	3	3	3
CO2	3	3	3	3	3	2	3	3	2	3
CO3	3	3	3	3	3	2	3	2	3	3
CO4	3	3	3	3	3	3	3	2	2	3
CO5	3	3	3	3	3	3	2	3	3	3

" 1 " - Slight (Low) Correlation \neg " 2 " - Moderate (Medium) Correlation \neg
" 3 " - Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	$\begin{aligned} & \hline \text { COGNITI } \\ & \text { VE } \\ & \text { LEVEL } \\ & \hline \end{aligned}$
I	Measures of Central Tendency: Arithmetic Mean - Properties of Arithmetic Mean - Merits and Demerits of Arithmetic Mean - Weighted Mean - Median - Merits and Demerits of Median - Mode - Merits and Demerits of Mode - Geometric Mean - Merits and Demerits of Geometric Mean - Harmonic Mean - Merits and Demerits of Harmonic Mean - Selection of an Average - Partition Values.	12	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
II	Measures of Dispersion: Measures of Dispersion - Range - Quartile Deviation - Mean Deviation - Standard Deviation and Root Mean Square Deviation - Relation between Standard Deviation and Root Mean Square Deviation Different Formulae for Calculating Variance - Theorem (Variance of the Combined Series) - Coefficient of Dispersion - Coefficient of Variation.	12	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
III	Correlation and Regression: Karl Pearson Coefficient of Correlation - Limits of Correlation Coefficient - Rank Correlation Repeated Ranks - Regression - Lines of Regression Regression Curves - Regression Coefficients Properties of Regression Coefficients.	12	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
IV	Sampling and large Sample Tests: Tests of Significance for Large Samples Sampling of Attributes - Test for Single Proportion Test of Significance for Difference of Proportions - Test of Significance for Single Mean - Test of Significance for Difference of means - Test of Significance for the Difference of Standard Deviations. (Problems Only).	12	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
V	Exact Sampling Distribution: Chi-square Test as a Test for Population Variance -Chi-square Test of Goodness of Fit - Independence of Attributes - Test for Single Mean - F-test for Equality of Population Variance. (Problems Only).	12	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2, \\ & \mathrm{CO} 3, \\ & \mathrm{CO} 4, \\ & \mathrm{CO} 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$
VI	Self Study for Enrichment: (Not included for End Semester Examinations) Graphical Location of Partition Values Moments - Probable Error of Correlation Coefficient Angle between two Lines of Regression - Standard Error of sample Mean - Applications of Chi-square Distribution - Applications of t -distribution Applications of F-distribution.	-	CO1, CO2, CO3, CO4, CO5	$\begin{aligned} & \text { K1, } \\ & \text { K2, } \\ & \text { K3, } \\ & \text { K4 } \end{aligned}$

Text Book

1. Gupta.S.C and Kapoor.V.K. (2003). Elements of Mathematical Statistics (Third Edition). Sultan Chand \& Sons Educational Publishers, New Delhi.

Chapters and Sections

UNIT-I Chapter 2: Sections 2.5 - 2.11 (Omit 2.11.1)
UNIT-II Chapter 3: Sections 3.3-3.8
UNIT-III Chapter 10: Sections 10.3, $10.6 \& 10.7$ (10.7.1-10.7.4)
UNIT- IV Chapter 12: Sections 12.8, 12.9, 12.13-12.15
UNIT- V Chapter 13: Sections 13.5.1-13.5.3
Chapter 14: 14.2.6, 14.2.7, 14.3.2

Reference Books

1. Pillai.R.S.N \& Bhagavathi (2008). Statistics, Theory and Practice. S.Chand \& Sons.
2. Bhishma Rao.G.S.S. (2011). Probability and Statistics. Scitech Publications (India) Pvt. Ltd..
3. Veerarajan.T (2010). Probability, Statistics and Random Processes. Tata McGraw Hill Education Private Limited.

Web References

1. https://tinyurl.com/yu57nmb5
2. https://youtu.be/pSm9mgi6514
3. https://youtu.be/BiLIcCtXmm0
4. https://youtu.be/xTpHD5WLuoA
5. https://tinyurl.com/yb57hh5e
6. https://tinyurl.com/h3nbyj35
7. https://rb.gy/muaxp

Pedagogy

Power Point Presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designer

Dr. S. Vidhya

