CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC ISO 9001:2015 Certified TIRUCHIRAPPALLI

PG AND RESEARCH DEPARTMENT OF CHEMISTRY

M.Sc., Chemistry Syllabus 2022-2023 and Onwards

CAUVERYCOLLEGEFORWOMEN (AUTONOMOUS)

PG AND RESEARCH DEPARTMENT OF CHEMISTRY

VISION

□ To progress into a centre of superiority in Chemistry that will blend state-of-the-art practices in professional teaching in a communally enriching way, with the holistic progress of the students as its prime emphasis.

MISSION

- □ To produce graduates committed to integrity, professionalism and lifelong learning by widening their knowledge horizons in range and depth.
- □ To awaken the young minds and discover talents to achieve personal academic potential by creating an environment that promotes frequent interactions, independent thought, innovations, modern technologies and increased opportunities.
- □ To enhance the quality through basic and applied research frameworks, and encourage the students to take part in entrance and competitive examinations for higher studies and career.
- \Box To enhance services to the community and build partnerships with the industry.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR M.Sc., Mathematics, M.Sc., Physics, M.Sc., Chemistry PROGRAMMES

PO No.	Programme Outcome
	On completion of M.Sc., Programme, the students will be able to
PO1	Problem analysis: Provide opportunities to develop innovative design skills, including the ability to formulate problems, to think creatively, to synthesize information, and to communicate effectively.
PO2	Scientific skills: Create and apply advanced techniques and tools to solve the societal environmental issues.
PO3	Environment and Sustainability : Ascertain eco-friendly approach for sustainable development and inculcate scientific temper in the society.
PO4	Ethics: Imbibe ethical and social values aiming towards holistic development of learners.
PO5	Lifelong learning: Instill critical thinking, communicative knowledge which potentially leads to higher rate of employment and also for higher educational studies.

PROGRAMME SPECIFIC OUTCOMES FOR M.Sc. CHEMISTRY

PSO NO.	Programme Specific Outcomes` Students of M.Sc., Chemistry will be able to	POs Addressed
NO.		
PSO1	Acquire knowledge in basic concepts, fundamental principles, and applications of chemical and scientific theories and their relevancies in the day-to-day life.	PO1 PO2
	Design experiments, analyze, synthesize and interpret data to	PO1
	provide solutions to different industrial problems by working in	PO2
PSO2	the pure, inter and multi-disciplinary areas of chemicalsciences.	PO3
		PO3
PSO3	Attain maneuver in diverse contexts with Global Perspective	PO4
	Gain a thorough Knowledge in the subject to be able to work in	PO1
PSO4	projects at different research as well as academic institutions.	PO2
		PO5
	Afford Global level research opportunities to pursue Ph.D	PO1
	programme targeted approach of CSIR – NET examination	PO2
PSO5		PO3
		PO4
		PO5

Cauvery College for Women (Autonomous), Trichy-18 PG and Research Department of Chemistry

M.Sc., Chemistry

(For the Candidates admitted from the Academic year 2022-2023 onwards)

ter			Course Code	rs.		Exam			
Semester	Course	Course Title		.H ek	dits		Marks		ੀਜ਼
Sen				Inst. Hrs. / week	Credits	Hrs.	Int.	Ext.	Total
	Core Course–I (CC)	Organic Chemistry – I	22PCH1CC1	6	5	3	25	75	100
	Core Course – II (CC)	Inorganic Chemistry – I	22PCH1CC2	6	5	3	25	75	100
T	Core Course –III (CC)	Physical Chemistry – I	22PCH1CC3	6	5	3	25	75	100
-	Core Practical - I (CP)	Organic Chemistry – I (P)	22PCH1CC1P	6	5	6	40	60	100
	Discipline Specific Elective Course-I (DSE)	. Instrumentation echniques (P) 22PCH1DSE1AP					40	60	
		B. Nanoscience and Nanotechnology (P) 22PCH1DSE1BP		6	3	6			100
		C. Biochemistry (P)	22PCH1DSE1CP						
				30	23				500
		5 Days INTERNSHIP du			-	1	r	1	.
		Physical Methods in Chemistry – I	22PCH2CC4	6	5	3	25	75	100
		Organic Chemistry – II (P)	22PCH2CC2P	6	5	6	40	60	100
	Core Choice Course– I	A. Organic Chemistry – II	22PCH2CCC1A						
	(CCC)	B. Chemistry of Natural Products	22PCH2CCC1B	6	4	3	25	75	100
		C. Molecular Rearrangement	22PCH2CCC1C						
II	Core Course–I (CC)Organic CrCore Course – II (CC)Inorganic CCore Course – III (CC)Physical CICore Practical - I (CP)Organic CrDiscipline Specific Elective Course-I (DSE)A. Instrume Techniques B. Nanosci Nanotechne C. BiochemTotalTotalCore Course– IV (CC)Physical M Chemistry Core Practical – II (CP)Core Course–IV (CC)Physical M Chemistry Core Cre Choice Course–ICore Choice Course–I (CCC)A. Organic CrCore Practical – II (CP)Organic CrCore Practical – III (CP)Inorganic CCore Practical – III (CP)Inorganic CDiscipline Specific Elective Course-II (DSE)A. Green CDiscipline Specific Elective Course-II (DSE)A. Green CDiscipline Specific Elective Course-II (DSE)A. Green CInternshipInternship	Inorganic Chemistry – I (P)	22PCH2CC3P	6	5	6	40	60	100
		A. Green Chemistry	22PCH2DSE2A	6	3	3	25	75	100
		B. Forensic Chemistry	22PCH2DSE2B						
		C. Analytical Chemistry	22PCH2DSE2C						
	Internship	Internship	22PCH2INT	-	2	-	-	100	100
	Internship Internship 22PCH2INT - 2 - 100							on	<u> </u>
	Total	1	1	30	24				600

	Core Course–V (CC)	Physical Chemistry- II	22PCH3CC5	6	5	3	25	75	100
	Core Practical – IV (CP)	Inorganic Chemistry –II (P)	22PCH3CC4P	6	5	6	40	60	100
	Core Choice Course– II	A. Cyber Security	22PGCS3CCC2A						
	(CCC)	B. Photochemistry and	22PCH3CCC2B						
		Advanced Chemical		5	4	3	25	75	100
		Kinetics							
		C. Electro Chemistry	22PCH3CCC2C						
	Core Practical - V (CP)	Physical Chemistry – I (P)	22PCH3CC5P	6	5	6	40	60	100
	Discipline Specific Elective	A. Chemistry for	22PCH3DSE3A						
III	Course-III (DSE)	Competitive Examinations	22FCH5D5E5A	4	3	2	-	100	
		B. Bioorganic Chemistry	22PCH3DSE3B						100
		C. Pharmaceutical		4	3	3	25	75	
		Chemistry	22PCH3DSE3C						
	Generic Elective Course -I	Nanoscience and	22PCH3GEC1	3	2	3	25	75	100
	(GEC)	Nanotechnology							
	Extra Credit Course	SWAYAM	Asp	As per UGC Recommendation					
	Total			30	24				600
	Core Course–VI (CC)	Physical Methods in	22PCH4CC6	6	5	3	25	75	100
		Chemistry – II							
	Core Choice Course– III	A. Chemistry of	22PCH4CCC3A	6	4	3	25	75	100
IV	(CCC)	Nanoscience							
		B. Biofuels	22PCH4CCC3B						
		C. Bioinorganic Chemistry	22PCH4CCC3C						
	Core Practical - VI (CP)	Physical Chemistry - II (P)	22PCH4CC6P	6	5	6	40	60	100
	Generic Elective Course-II	Corrosion and Pollution	22PCH4GEC2	3	2	3	25	75	100
	(GEC)	Management							
	Project	Project Work	22PCH4PW	9	5	-	-	100	100
			Total	30	21				500
			Grand Total	120	92				2200

S. No	Courses	No. of Courses	No. of Credits	Marks
1.	Core Course – (CC)	6	30	600
2.	Core Choice Course– (CCC)	3	12	300
3.	Core Practical - (CP)	6	30	600
4.	Discipline Specific Elective- (DSE)	3	09	300
5.	Generic Elective Course - (GEC)	2	04	200
6.	Project	1	05	100
7.	Internship	1	02	100
	Total	22	92	2200

Courses & Credits for PG Science Programmes

The internal and external marks for theory and practical papers are as follows:

Subject	Internal Marks	External Marks
Theory	25	75
Practical	40	60

Separate passing minimum is prescribed for Internal and External

For Theory:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 75 marks (i.e.30 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Practical:

- a) The passing minimum for CIA shall be 40% out of 40 marks (i.e. 16 marks)
- b) The passing minimum for End Semester Examinations shall be 40% out of 60 marks (i.e.24 marks)
- c) The passing minimum not less than 50% in the aggregate.

For Project:

Marks for Dissertation: 80

Marks for Viva Voce : 20

Total marks 100

Internal Component (Theory)

Component	Marks
Library	05
Assignment &	10
Seminar	
CIA -I	05
CIA-II	05
Total	25

Internal Component (Practical)

Component	Marks
Observation	05
Record	10
Continual	10
Performance	
Model	15
Total	40

Question Paper Pattern

PART A (10X2=20) Answer all the questions

PART B (5X5=25) Answer all the questions

PART C (3X10=30) Answer any three questions

Semester I	InternalMarks:25	ExternalMarks:75			
COURSECODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PCH1CC1	ORGANIC CHEMISTRY-I	CORE	6	5	

- > To learn the basic concepts of aromaticity and stereochemistry of various organic molecules
- To give ideas of nucleophilic and electrophilic substitution reactions and makes to learn about the oxidizing and reducing reagents for organic synthesis.

Prerequisites

Aromaticity, substitution, oxidation, reduction and symmetry

Course Outco	ome and Cognitive Level Mapping	
CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall and summarize the fundamentals of aromaticity, stereochemistry, selection rules and reagents inorganic synthesis.	K1, K2
CO2	Interpret the concept to Huckels theory, conformation analysis, substitution, FMO method, oxidation and reduction reactions.	К3
CO3	Categorize the aromaticity, configuration, reactivity and reagents.	K4
CO4	Evaluate aromatic character, stereoanalysis, pathway of reactions and catalysis.	K5
CO5	Predict the conditions and product of substitution mechanism, Pericyclic reactions and suitable reagents in redox reactions.	K6

reactions and suitable re-

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO 5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"-Slight (Low)Correlation

"2"-Moderate (Medium)Correlation

"3"-Substantial (High)Correlation

"-"indicates there is no correlation

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVELE VEL
I	Electronic Effects and Aromaticity: ElectronicEffects- inductive, resonance and hyper conjugative effects and their influence. Aromatic character:Huckel's theory of aromaticity - three, four, five, six, seven and eight membered rings–other systems with aromatic sextet – concept of homo aromaticity and anti- aromaticity- Craig's rule and its applications. Consequences of aromaticity. non-alteration in bond length-Huckel's MO calculation. Electron occupancy in MO's and aromaticity NMR concept of Aromaticity and anti-aromaticity.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
Π	Stereochemistry and Conformational Analysis:Stereoisomerism – optical activity and chirality –typesof molecules exhibiting optical activity – R, S andE, Zconfiguration, absolute configuration chirality inmolecules with non-carbon stereocenters (N, S and P)Molecules with more than one chiralcenter. Stereochemistry of molecules with axialchirality.Biphenyls, allenes, spiranes andanalogues-Atropisomerism - Helicity and chirality -Resolution –methods of Resolution. Conformationsof monoand disubstituted sixmembered ringsystemsconformations of decalin. Quantitativecorrelation between conformation and reactivity.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	Aliphatic Substitution Reactions:Aliphatic Electrophilic substitution: selected reactions-migration of double bonds-halogenation of aldehydesand ketones - Stork-Enamine reaction-decarboxylation	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

			-	_
	of aliphatic acids-Haloform reaction. Aliphatic			
	nucleophilic substitution-mechanisms-SN1, SN2, SNi-			
	ion-pair mechanisms - neighboring group participation			
	non-classical Carbocations-substitutions at allylic and			
	vinylic carbons. Reactivity effect of substituents,			
	nucleophilic, leaving group and stereo chemical factors			
	-correlation of structure with reactivity-solvent effects-			
	Von Braun Reaction. Claisen and Deickmann			
	condensation.			
IV	Pericyclic Reactions: Concerted reactions orbital	18	CO1,	K1, K2, K3,
	symmetry and concerted symmetry -Woodward and		CO2, CO3,	K4,K5,K6
	Hoffmann rules-selection rules for electrolytic		CO3, CO4,	
	reactions-frontier molecular orbital approachcorrelation		CO5	
	diagram–examples–Chelotropic and ene reactions.			
	Sigmatropic rearrangements – 1,3, 1,5and1,7- hydrogen			
	shifts-examples-Cope and Claisen			
	rearrangements-1,3-dipolar cycloadditions reactions.			
V	Reagents in Organic Synthesis:	18	CO1,	K1, K2, K3,
	Oxidation: Jacobsen epoxidation, Shi epoxidation, Jones		CO2, CO3,	K4,K5,K6
	reagent, PCC, PDC, DMP, Selenium oxide, Swern		CO4,	
	oxidation, Sommelet reaction, Elbs reaction, Prevost		CO5	
	reaction and Woodward modification. Reduction:			
	palladium / platinum rhodium/nickel based			
	heterogeneous catalysts for hydrogenation, Noyori			
	asymmetric hydrogenation. Red-Al, NaBH4 and			
	NaCNBH ₃ , trialkylsilanes and trialkylstannane.			

	Self-Study for Enrichment:		
VI	(Not to be included for External Examination) Rules of resonance-tautomerism-steric effects- Enantiomers and diastereomers-SE1 and SE2 and SEi mechanisms-selection rules for cycloaddition reactions Thermal and photochemical reaction of pericyclic reaction- MCPBA reagent and Wilkinson's catalyst.	CO1, CO2 CO3	K1, K2,K3,K4

Text Books

- 1. Mukherji, S.M Singh. S. P. (2015). Reaction Mechanism in Organic Chemistry (Revised Edition): Trinity; New Delhi.
- 2. Kalsi. P. S. (1993). Stereochemistry. Wiley eastern limited; New Delhi.
- 3. Jagdamba Singh. (2016). Organic synthesis: Pragati Prakashan.
- 4. Bansal. R. K.(1975). Organic Reaction Mechanisms. Tata McGraw Hill.

Reference Books

- March and Smith. M.B March's Advance Organic Chemistry Reactions, MechanismsandStructure,7thEdition. (2013),Wiley, New York.
- 2. Finar. I.R, Organic ChemistryVol.II7thedition. (2009), Pearson, New Delhi.
- Nasipuri. D, Stereochemistry of Organic Compounds Principles, 2ndEdition.(2002), New Age International and applications.
- 4. Lowry.T.H.E and Richardson. K. S, Mechanism and Theory in Organic chemistry,3rdedition. (1997),Benjamin Cummings Publishing, USA.
- Carey. F. A and Sundberg. R.J, Advanced Organic chemistry Part A and B, 5thedition. (2007), Springer, Germany.

Web References

- 1. <u>https://hithaldia.in/faculty/sas_faculty/Dr_Gora_Das/Class</u> %20Notes%20(CH-101%20&CH-201)%20Module-4%20(Structure%20&%20reactivity%20of%20Organic%20Molecules).pdf
- 2. http://courses.washington.edu/medch562/pdf/MEDCH400_Stereochem.pdf

- 3. https://byjus.com/chemistry/substitution-reaction/
- 4. <u>http://www.ancpatna.ac.in/departments/Chemistry</u> /lectures/PG/Sem-II/Pericyclic%20Reactions%20By%20Dr%20Tripti %20Gangwar.pdf
- 5. <u>https://www.tcichemicals.com/assets/brochure-</u> <u>pdfs/Reagent_Guide_8th_Synthetic_Organic_Che</u> <u>mistry_Materials_Chemistry_E.pdf</u>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designers

- 1. Dr. P. Pungayee Alias Amirtham
- 2. Dr. C. Rajarajeswari

Semester I	Internal Marks:25		External Marks: 75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS			
22PCH1CC2	INORGANIC CHEMISTRY-I	CORE	6	5			

- To articulate the learning of coordination chemistry in Inorganic Chemistry
- This subject will also create a foundation to learn inorganic photochemistry.

Prerequisites

Metals, ligands, complexes and stereoisomers

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level				
CO1	Recognize and execute the basic concepts of clusters and complexes in inorganic chemistry.	K1, K2				
CO2	CO2 Sketch the synthesis of polynuclear compounds reaction mechanism of coordination compounds and their photochemical reactivity.					
CO3	Examine the properties of clusters and coordination complexes.	K3, K4				
CO4	Generalize the stabilization of clusters, kinetics of reactions, structure of metal carbonyls and ligand field photochemistry.	K5				
CO5	Critical thinking on complex structure and properties of reactions.	K6				

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
C01	3	2	1	2	2	2	3	1	1	3
CO2	3	2	2	3	3	3	3	2	2	3
CO3	3	2	2	3	2	3	2	2	2	2
CO4	3	3	3	2	3	3	3	2	2	3
CO5	2	3	2	3	3	3	3	2	1	3

"2"-Moderate (Medium) Correlation

"1"–Slight (Low) Correlation "3"–Substantial (High)Correlation

"-"indicates there is no correlation.

	Syllabus									
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL						
Ι	Clusters and Polynuclear Compounds: Introduction- clusters of the p-block elements, clusters of p-block Elements in a ligand shell: Boron hydrides, Clusters in a ligand shell of the heavier elements of Group 13 and 14, Bare clusters of p- block Elements. Clusters of d-block elements, Low-valent metal clusters, Metal carbonyl clusters, Low-valent metal clusters stabilized by other π ligands, Clusters of late transition metals stabilized by phosphines.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
II	Principles of Coordination Chemistry : Studies of coordination compounds in solution –detection of complex formation in solution –stability constants–step wise and overall formation constants –methods of determination (potentiometric, pH metric and photometric)–factors affecting stability– statistical and chelate effects– forced configurations.	16	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						
III	Mechanism in Coordination Complexes : Kinetics and mechanism of reactions in solution–labile and inert complexes–ligand displacement in octahedral and square planar complexes – acid hydrolysis, base hydrolysis and anation reactions. Trans effect – theory and applications – electron transfer reactions – electron exchange reactions – complementary and non-complementary types –inner sphere and outer sphere processes–application of electron transfer reactions in inorganic complexes – isomerization and racemization reactions of complexes. Molecular rearrangements of four- and six-coordinate complexes – interconversion of stereoisomers –reactions of coordinated ligands.	20	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6						

IV	Organometallic Compounds -Classification of organometallic compounds – structure of methyl lithium, Zeise's salt and Ferrocene- Metal carbonyls – EAN rule – Mono and poly nuclear carbonyls – preparation, reactions and structure (Ni(CO) ₄ , Fe(CO) ₅ , Cr(CO) ₆ , Mn ₂ (CO) ₁₀ , Co ₂ (CO) ₈ and Fe ₂ (CO) ₉ – Bonding in metal Carbonyls – Metal-ethylenic complexes – methods of formation –bonding – chemical properties.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
V	Inorganic Photochemistry : Fundamental concepts- Electronic transitions in metal complexes, metal-cantered and charge-transfer transitions – various photo physical and photochemical processes of coordination compounds. Unimolecular charge transfer photochemistry of cobalt (III) complexes–mechanism of CTTM, photo reduction –ligand field photo chemistry of chromium (III) complexes – Adamson's rules, photo active excited states, V-C model – photo physics and photochemistry of ruthenium– polypyridine complexes, emission and redox properties.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
VI	Self- Study for Enrichment (Not to be included for External Examination) High-valent metal Clusters and halide Clusters- Importance and applications of coordination compounds. Template effect and its applications for the synthesis of macrocyclic ligands-Fullerene Ligands and Metal complexes- Reinecke's salt chemical actinometer.		CO1, CO2	K2, K3

Text Books

- Greenwood. (1996). Chemistry of the Elements. United Kingdom: Elsevier Science & Technology Books.
- 2. Kaesz, H., Adams, R., Shriver, D.(1990). The Chemistry of MetalCluster Complexes.

 Sharma, L. R., Puri, B. R., Sharma, L. R., Puri, B. R. (1976). Principles of Inorganic Chemistry:

For B.Sc. and B.Sc. (Hons.) Classes of Indian Universities. India: S. Nagin.

- 4. Day, M. C., Selbin, J., Day, M. C., Selbin, J. (1976). Theoretical Inorganic Chemistry.
- Cotton, F.A., Wilkinson, G., Cotton, F.A., Wilkinson, Advanced Inorganic Chemistry, 6th Edition. (2007). India: Wiley India Pvt. Limited.
- Keiter, E. A., Keiter, R. Medhi, O.K., Huheey, J.E., Keiter, E.A., Keiter, R.L., Medhi, O.K., Huheey, J.E. (2006) Inorganic Chemistry: Principles of Structure and Reactivity. India: Pearson Education.
- Arthur W. Adamson, Paul. D.(1975). Fleischauer, Concepts of Inorganic Photochemistry. United Kingdom: Wiley.
- 8. Kettle, S. F. A., Kettle, S. F. A. (2019). Physical Inorganic Chemistry: ACoordination Chemistry Approach. Germany: Springer Berlin Heidelberg.

Reference Books

- 1. J.D.Lee, Concise Inorganic Chemistry, 5th Edition. (2008). India: Wiley India Pvt. Limited.
- 2. GurdeepRaj, Advanced Inorganic ChemistryVol-1(2020). Krishna Prakashan.
- Ferraudi, G. J., Ferraudi, G. J. (1988). Elements of Inorganic Photochemistry. United Kingdom: Wiley.
- Pearson, R. G., Basolo, F., Pearson, R. G., Basolo, F. (1967). Mechanisms of Inorganic Reactions:

A Study of Metal Complexes in Solution. United Kingdom: Wiley.

 Sharma,R.K., Sharma,R.K.(2007).Inorganic Reaction mechanisms. India: Discovery Publishing House.

Web References

- 1. https://www2.chemistry.msu.edu/courses/cem151/chap24lect_2019.pdf
- 2. http://www.vpscience.org/materials/Unit%203%20B%20Coordination%20chemistry.pdf
- 3. https://www.usb.ac.ir/FileStaff/2896_2019-4-18-0-9-32.pdf
- 4. https://www.uou.ac.in/sites/default/files/slm/BSCCH-101.pdf
- 5. https://www.chem.uci.edu/~lawm/11-16.pdf
- 6. https://www.usb.ac.ir/FileStaff/5269_2018-9-18-10-21-39.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

Dr. K. Shenbagam

Semester I	InternalMarks:25 ExternalMarks:75				
COURSECODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PCH1CC3	PHYSICAL CHEMISTRY-I	CORE	6	5	

- To understand the principles of quantum chemistry and group theory
- To learn about theories of reaction rates, kinetics of reactions in solution phase and catalysis
- To study in detail the basic concepts of statistical thermodynamics.

Prerequisites

Diatomic, rigid rotator and symmetry operations

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course students will be able to	Cognitive Level
CO1	Re-phrase and discuss the basic concepts of quantum mechanics, group theory, Kinetics of reactions, catalysis and statistical thermodynamics.	K1 &K2
CO2	Illustrate an insight on quantum mechanical operators, character table, and theories of reaction rate, adsorption isotherm and Maxwell's distribution law.	K3
CO3	Analyze and interpret particles in box, Applications of HMO theory, orthogonality theorem, kinetics of complex reaction, enzyme catalysis, types of statistical thermodynamics.	K4
CO4	Evaluate the energy of particles in a box, Symmetry operations, factors influencing reaction rate, kinetics of enzyme catalysis, partition functions for diatomic molecules.	K5
CO5	Develop and write wavefunction for hydrogen like particles, charactertable, Michaelis Menten equation, and quantum statistics.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	3	3	3	1	1	3
CO2	2	2	1	2	2	3	3	1	2	2
CO3	3	3	2	3	3	3	3	2	1	3
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	3	2	3	3	3	3	2	2	3

"1"-Slight (Low)Correlation

"3"-Substantial (High) Correlation

"2"–Moderate (Medium)Correlation "-"indicates there is no correlation.

	Syllabus			
UNIT	CONTENT	HOURS	COs	COGNITIVE
I	Quantum Theory: Concept of operators-sums and products of	18	C01	LEVEL K1
1	operators-commutator-linear and non-linear operators-Hermitian	10	CO2	К2
	and Hamiltonian Operatorspostulates of quantum mechanics-		CO3 CO4	K3 K4
	Applications Schrodinger wave equation to free particle-particle		CO4	K5
	in a one-dimensional box, simple linear harmonic oscillator and			K6
	its limitations, Rigid rotator- model for a rotating diatomic			
	molecule-solutions. Solving of Schrodinger equation for the H-			
	atom (or H-like species)-energy levels. Introduction to the			
	methodsof self – consistent field. Virial theorem - Huckel theory			
	of conjugated systems, bond order and charge density			
	calculations, Application to ethylene, 1, 3-butadiene, and			
	benzene.			
II	Group Theory: Definition of a mathematical group and its	18	CO1 CO2	K1 K2
	properties - multiplication table -cyclic groups-subgroups -		CO3	К3
	classes – symmetry elements - symmetry operation – classes of		CO4 CO5	K4 K5
	symmetry operations-classification of molecular point groups.		COS	K6
	Matrix representations of symmetry operations-representation of			
	groups-reducible and irreducible representations. Great			
	Orthogonality theorem and its consequences- character tables -			
	construction of character tables for C_{2v} and C_{3v} point groups.			
III	Kinetics of Complex and Fast Reactions: Theories of reaction	18	CO1	K1
	rates- absolute reaction rate theory-thermodynamic formulation of		CO2 CO3	K2 K3
	ARR theory-Lindeman's theory of unimolecular reactions. Chain		CO4	K4
	reactions-characteristics, kinetics of decomposition of		CO5	K5 K6
	acetaldehyde (Rice-Herzfeld scheme), photochemical reaction of			
	H ₂ -Br ₂ ·Thermal reaction-non-stationary chain reaction, H2-			
	O2reaction and explosion limits. Effect of temperature, relative			
	permittivity, ionic strength and solvent (Grunwald Weinstein			
	equation) on reaction rates. Reactions in solutions-effect of			
	pressure,			

	dielectric constant, and ionic strength on reactions in solutions.			
IV V	Surface chemistry and catalysis: Adsorption: physisorption and chemisorption, Gibb's adsorption isotherm - Langmuir theory, kinetic and statistical derivation, multi-layer adsorption BET theory, Use of Langmuir and BET isotherms for surface area determination. Application of Langmuir adsorption isotherm in surface catalyzed reactions. Catalysis by enzymes - Kinetics of enzyme-catalyzed reaction - Michaelis - Menten equation and its interpretation. Effect of substrate concentration, pH and temperature on enzyme-catalyzed reactions - inhibition of enzyme-catalyzed reactions - Competitive, Non-competitive and uncompetitive inhibition. Statistical Thermodynamics: Calculation of thermodynamic probability of a system- micro and macro states-different methods of counting macro states - distinguishable and indistinguishable particles, classical statistics- derivation of Maxwell-Boltzmann distribution law. Physical significances of translational, rotational,	18	CO1 CO2 CO3 CO4 CO5 CO5 CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6 K6 K1 K2 K3 K4 K5 K6
	particles, classical statistics- derivation of Maxwell-Boltzmann			K5
VI	Self-Study for Enrichment (Not to be included for External Examination)Eigen values and Eigen functions- physical interpretation of wavefunction- orthogonality and normalization theorems-space group and Schoen flies symbol for point group-kinetics of fast reactions- flow method and relaxation methods-comparison of physisorption and chemisorption and types of adsorption isotherms-difference between thermodynamic and statistical probability.	-	CO1, CO2	K2 K3

Text Books

- 1. Akins, P. W. (2008). Physical Chemistry. Oxford, UK. Oxford University Press,8th Edition.
- 2. Puri, Sharma, Pathania, (2019). Principle of Physical Chemistry. Jalandhar, India. Vishal publication & CO. 47th Edition.
- 3. Grutu, J.N & Grutu, A (2015). Advanced Physical Chemistry. Pune, India. Pragathipublisher, 18th Edition.

Reference Books

- Prasad, R. K. (2006). Quantum Chemistry. New Delhi, India. NewAge International(P)Ltd., Revised 3rd Edition.
- Albert Cotton, F. (2008). Chemical Applications of Group theory. New Delhi, India. WillyIndia PvtLtd publisher, 3rdEdition.
- 3. Laidler, K. J. (2003). Chemical Kinetics.NewDelhi,India.TataMecraHill,Revised3rdEdition.
- Gupta, M. C. (2011). Statistical Thermodynamics. New Delhi, India. New Age International(P)Lt d., 3rdEdition.

Web References

- 1. https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA
- 2. https://www.chem.tamu.edu/rgroup/hughbanks/courses/673/lecturenotes/lecturenotes.html
- 3. http://www.kpgcollege.org/admin/upload/1586604901.pdf
- 4. <u>https://youtu.be/ALwziZSRiqM</u>
- 5. <u>https://youtu.be/ACY-Wbudg0o</u>
- 6. https://youtu.be/yO8v0nszUz8

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr.V. Sangu

Semester I	Internal Marks	: 40	External	Marks: 60
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22PCH1CC1P	ORGANIC CHEMISTRY-I (P)	CORE	6	5

To perform the qualitative analysis of a given organic mixture and to carry out the preparation of organic compounds.

Pre-requisites

Separation of components, Qualitative analysis

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Apply the principles of separation in organic mixtures.	K1
CO2	Prepare the organic compounds by single stage method.	K2
CO3	Identify various functional group in organic compounds.	K3
CO4	Develop skills in separating techniques	K3
CO5	Analyze the nature of organic mixture containing two components.	K4

Mapping of CO with PO and PSO

CCOs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO 1	3	2	2	2	2	2	1	3	2	1
CO2	2	3	2	2	2	3	2	1	3	2
CO3	2	3	3	2	3	1	1	1	2	1
CO4	3	2	2	3	2	2	3	2	3	2
CO5	2	3	3	3	2	1	2	2	2	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation.

SYLLABUS

I. QUALITATIVE ANALYSIS OF AN ORGANIC MIXTURE CONTAINING TWO COMPONENTS

Mixtures containing two components are to be separated (pilot separation) and

purified (bulk separation).

II PREPARATION OF ORGANIC COMPOUNDS (SINGLE STAGE)

- 1. Methyl-*m*-nitrobenzoate from methylbenzoate (nitration)
- 2. Glucose pentaacetate from glucose(acetylation)
- 3. Resacetophenone from resorcinol(acetylation)
- 4. Benzophenone oxime from benzophenone (addition)
- 5. o-Chlorobenzoic acid from anthranilic acid (Sandmayer reaction)
- 6. *p*-Benzoquinone from hydroquinone (oxidation)
- 7. Phenylazo-2-naphthol from aniline(diazotization)

Text Books

- 1. Mohan.J (2003), Organic Analytical Chemistry: Theory and Practice, Narosa
- 2.Ahluwalia.V.KBhagat.P, And Agarwal.R (2005), Laboratory Techniques in Organic

Chemistry, I.K. International

Reference Books

- 1. Gnanaprakasam, N.S and Ramamurthy. G (1987), Organic Chemistry Lab Manual, S. V. Printers
- 2. Vogel.A.IT atchell. A. R Furniss B.S Hannaford. A. Jand SmithP. W. G, (1989), Vogel's Textbook of PracticalOrganic Chemistry, 5th Ed., Prentice Hall

Web References

- 1. https://authors.library.caltech.edu/25034/10/BPOCchapter9.pdf
- 2. http://do.chem.uni.wroc.pl/system/files/Preparatory%20classes.pdf.

Pedagogy

Demonstration and practical sessions

Course Designers

- ✤ Dr. P. Pungayee Alias Amirtham
- Dr. R. Subha

Semester I	Internal Marks	: 40	External Marks: 60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22PCH1DSE1AP	INSTRUMENTATION TECHNIQUES (P)	DISCIPLINE SPECIFIC ELECTIVE	6	3	

- ➢ Gain proficiency in the use of analytical pipettes, volumetric measurements, and analytical instruments.
- ➤ Learn how to correctly use a UV/Vis spectrophotometer.
- ➢ Gain familiarity with a new technique.
- Perform quantitative analytical methods including titrations, pH measurements, spectrophotometry, and chromatography.

Prerequisites

Chromatography, qualitative analysis and spectroscopy

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Become familiar with fundamental concepts of instruments.	K1
CO2	Observe the application of Instrumentation Techniques	K2
CO3	To be trained in lab safety, preparation of solutions numerically.	K4
CO4	Develop the core skills to parse existing chromatographic protocols and identify the key factors influencing a chromatography experiment	K5
CO5	To develop students' ability and skill to acquire expertise in calibration techniques.	K5

Mapping of CO with PO and PSO

Cos		PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	2	3	2	3	3
CO2	2	2	2	1	2	2	2	3	2	2
CO3	3	2	2	2	2	1	2	2	2	2
CO4	3	2	3	2	2	3	2	2	2	3
CO5	2	3	2	3	3	2	2	2	2	2

"1" – Slight (Low) Correlation \square "2" – Moderate (Medium) Correlation \square

"3" – Substantial (High) Correlation \square "-" indicates there is no correlation.

Syllabus

- 1. Use and calibration of volumetric equipment (volumetric flasks, pipette's and burette's).
- 2. Separation of monosaccharide present in a given mixture by paper chromatography.
- 3. Determination of chlorine in water using colorimetry.
- 4. Analysis of soil
 - i) Determination of pH of soil.
 - ii) Determination of total soluble salts by conductometry
- 5. Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.
- 6. Separation of a mixture of metals by TLC.
- 7. Determining the concentration of citric acid in soft drink using titration.
- 8. Determination of equilibrium constant by colorimetry.
- 9. Verification of Beer-Lambert's law by colorimetry.
- 10. Determination of ascorbic acid in lime juice by titration.
- 11. Spectrophotometric determination of iron in vitamin tablets.
- 12. Estimation of aspirin from tablet using titration method.
- 13. Determination of strength of commercial vinegar by conductometry.
- 14. Analysis of potassium permanganate by UV/visible spectrophotometer.
- 15. Estimation of sugar by titrimetric method.

Text Books

- 1. Fifield, F.W. (2011). Principles and Practice of Analytical Chemistry. United States: Springer US.
- 2.Lundanes, E., Reubsaet, L., Greibrokk, T., Lundanes, E., Reubsaet, L., Greibrokk, T. (2013).
- Chromatography: Basic Principles, Sample Preparations and Related Methods. Germany: Wiley.
- Franson, S., Mary, H. (2007). Standard Methods for the Examination of Water and Wastewater. United States: American Public Health Association.

Reference Books

- Harris, D. C. (2012). Exploring Chemical Analysis: International Edition. United Kingdom: Macmillan Learning.
- 2. Dilts, R. V. (2010). Analytical Chemistry: Methods of Separation. United Kingdom: Van Nostrand.
- 3. Harris, D. C., Lucy, C. A. (2019). Quantitative Chemical Analysis. United States: W. H. Freeman.

4.Mikeš, O., Mike S, O., Chalmers, R. A. (2007). Laboratory Handbook of Chromatographic Methods. United Kingdom: Van Nostrand.

Web References

- 1. https://www.epa.gov/sites/default/files/2015-12/documents/9214.pdf
- <u>https://chem.libretexts.org/Ancillary_Materials/Laboratory_Experiments/Wet_Lab_Experiments/Gen</u> eral_Chemistry_Labs/Online_Chemistry_Lab_Manual/Chem_10_Experiments/11%3A_Titration_of_ <u>Vinegar_(Experiment)</u>
- 3. <u>https://www.lacitycollege.edu/Departments/Chemistry/documents/Chemistry-101-Experiments-Documents/E12B_titration2016</u>
- 4. <u>https://www.uobabylon.edu.iq/eprints/publication_10_11891_250.pdf</u>

Pedagogy

Table Work

Course Designer

1. Dr. G. Sivasankari.

Semester I	Internal Marks	: 40	External Marks: 60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22PCH1DSE1BP	NANOSCIENCE AND NANOTECHNOLOGY (P)	DISCIPLINE SPECIFIC ELECTIVE	6	3	

- Covers the whole spectrum of nanomaterials ranging from overview, synthesis, properties, and characterization of nano phase materials to application including some new developments in various aspects.
- Introduces the theory and practice on Nanomaterials and various techniquesused for the fabrication and characterization of nanostructures.

Prerequisites

Precipitation, reduction and absorption methods.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	To foundational knowledge of the Nanoscience and related fields	K1
CO2	Understand in broad outline of Nanoscience and Nanotechnology.	K2
CO3	Acquire an understanding the Nanoscience and Applications	К3
CO4	Apply principles of basic science concepts in understanding, analysis and prediction of matter at Nano scale.	К3
CO5	Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment	K2 & K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	1	3	2	2
CO2	2	3	2	3	2	3	2	1	3	2
CO3	2	3	3	2	3	1	1	2	2	1
CO4	3	2	2	3	2	2	3	2	2	2
CO5	2	3	3	3	2	1	2	2	2	2

"1" – Slight (Low) Correlation \square "2" – Moderate (Medium) Correlation \square

"3" – Substantial (High) Correlation \square "-" indicates there is no correlation.

Syllabus

- 1. Synthesis of CuO nano particles by sonochemical method
- 2. Synthesis of ZnO nano particles by sonochemical method
- 3. Synthesis of Carbon nano particles by Microwave Irradiation Method.
- 4. Characterization of nanoparticles by UV- Visible Spectrophotometer.
- 5. Synthesis of Silver Nanoparticles by Chemical reduction method and their UV-VIS absorption studies.

6. Synthesis of Iron Oxide Nanoparticles by Polyol method and their UV-VIS absorption studies.

- 7. Synthesis of ZnO Nanoparticles by Co-Precipitation Method.
- 8. Preparation of thiolated silver nanoparticles.
- 9. Synthesis of Nanoparticles from plant materials by Sonochemical Method.

Text Books

- Edelstein, A.S., Cammaratra, R.C. (2017). Nanomaterials: Synthesis, Properties and Applications, Second Edition. United Kingdom: Taylor & Francis.
- 2. Wiederrecht, G. (2010). Handbook of Nanofabrication. Italy: Elsevier Science.
- Altavilla, C., CilibertoE.(2017). Inorganic Nanoparticles: Synthesis, Applications, and Perspectives. United Kingdom: CRC Press.

Reference Books

- 1. Fritzsche, W., Köhler, M., Fritzsche, W., Köhler, M. (2008). Nanotechnology: An Introduction to Nanostructuring Techniques. Germany: Wiley.
- Muller, A., A.K., Cheetham., Rao C.N.R. (2006). The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Germany: Wiley.

Web References

- 1. <u>https://www.researchgate.net/publication/229419482_Sonochemical_synthesis_size_controlling</u> __and_gas_sensing_properties_of_NiO_nanoparticles
- 2. https://www.sciencedirect.com/science/article/pii/S1569441018301445

- 3. https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj01360a

Pedagogy

Table Work

Course Designers

- 1. Dr. G. Sivasankari
- 2. Dr. R. Subha

Semester I	Internal Marks:40	External Marks:60				
COURSECODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS		
22PCH1DSE1CP	BIOCHEMISTRY (P)	DISCIPLIN ESPECIFIC ELECTIVE	6	3		

- > To expertise the student to identify and isolate various biomolecules.
- To acquire training to estimate the quantity of biomolecules present by applying biochemical techniques.

Prerequisites

Chromatographic techniques, biomolecules and plant pigments.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall and understand the techniques involved in isolation, separation and estimation of various biomolecules	K1 & K2
CO2	Develop and apply the skills in handling various chromatographicand colorimetric techniques	К3
CO3	Qualitatively and quantitatively analyze the biomolecules	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	3	2	2	3	2	2	3
CO2	3	3	2	3	3	3	3	2	2	3
CO3	3	3	3	3	3	3	3	3	2	3

"1"-Slight(Low) Correlation

"3"-Substantial(High) Correlation

"2"–Moderate(Medium)Correlation "-"indicates there is no correlation.

Syllabus

I EXTRACTION OF BIOMOLECULES

- * Starch from potato.
- * Casein from milk.
- * Oil from oil seeds.
- * Cellulose from plant material.

II BIOCHEMICAL TECHNIQUES

- * Identification of amino acid by circular and ascending paper chromatography.
- * Separation of amino acids and carbohydrates in a mixture by paper chromatography.
- * Separation of lipids by thin layer chromatography.
- * Separation of a mixture of proteins and salt by column chromatography.
- * Separation of plant pigments using Chromatography techniques TLC, Paper chromatography.

III QUALITATIVE ANALYSIS OF BIOMOLECULES

- * Carbohydrate–Glucose, Fructose, Sucrose, Lactose and Starch.
- * Proteins Precipitation reactions of proteins, Color reactions of proteins, color reactions of amino acids like tryptophan, tyrosine, cysteine, methionine, arginine, proline and histidine.
- * Lipids-solubility, acrolein test, Salkowski test, Lieberman-Burchard test.
- * Qualitative tests for nucleic acid.

IV COLORIMETRIC ESTIMATION

- * Glucose by DNS method.
- * Protein by Biuret/Bradford and Lowry's method.
- * Uric acid.
- * Urea by DAM method.
- * Creatinine by Jaffe's method.
- * Phosphorous by Fiske and Subbarow's method.

Text Books

- Rajan, S.&Selvi Christy.R.(2018). Experimental Procedures in Life Sciences. CBS Publishers & Distributors.
- 2. Wilson, K & Walker, J. (2000). Principles and Techniques of PracticalBiochemistry. Fifth edition. Cambridge University Press.
- 3. Upadhyay & Upadhyay Nath (2016). Biophysical Chemistry: Principles and Techniques. Himalaya Publishing House.

Reference Books

- 1. Hofmann, A. &Clokie, S. (2018). Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology. 8thedition. Cambridge University Press.
- 2. Wood, W. B. (1981). Biochemistry-A problem Approach. Addison Wesley.

Web References

- 1. http://nec.edu.np/Publications/Chemistry_LAB_Manual/Experiment%204.pdf
- 2. https://www.mlsu.ac.in/econtents/1616_Biochemical%20Tests%20of%20Carbohydrate, %20protein,%20lipids%20and%20salivary%20amylase.pdf
- 3. <u>https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/files/files/2% 20 ESTIMATION% 20</u> OF%20PROTEIN%20BY%20LOWRY.pdf
- 4. https://orbitbiotech.com/estimation-of-reducing-sugars-by-dnsa-method/
- 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575183/
- $6. \ \underline{http://atlas-medical.com/upload/productFiles/208011/Creatinine\% 20 Package\% 20 Insert.pdf}$

Pedagogy

Demonstration and practical sessions

Course Designers

- 1. Dr. P. Pungayee Alias Amirtham
- 2. Dr. S. Saranya

Semester II	InternalMarks:25	ExternalMarks:75					
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS			
22PCH2CC4	PHYSICAL METHODS IN CHEMISTRY-I	CORE COURSE	6	5			

- > To understand, Microwave Spectroscopy and Vibrational Spectroscopy
- ➤ To learn IR and UV-Vis spectroscopy
- ➢ To study NMR & EPR spectroscopy
- > To learn, mass and ORD techniques

Prerequisites

Electromagnetic radiation, molecular energy level, Rigid rotor, selection rules for spectroscopy

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand principle of various spectral techniques involving molecular absorption of electromagnetic radiations.	K1, K2
CO2	Apply NMR, IR, MS, UV-Vis spectroscopic techniques in solving structure of organic molecules and in determination of their Stereochemistry	K3
CO3	Explain the principle, rules to analyses, compare and identify the structure of organic molecules using various spectral techniques.	K4
CO4	Discriminate structural and stereoisomers of compounds, radical and radical ion from adsorption pattern of molecules.	K5
CO5	Evaluate and identify configuration and conformation of isomers.	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	1	1	3	3
CO2	3	2	1	3	2	2	3	3	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"-Slight (Low)Correlation

"2"-Moderate(Medium)Correlation

"3"–Substantial (High)Correlation

"-"indicates there is no correlation

	Syllabus			
UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Theoretical principles of Molecular Spectroscopy:			
	Microwave spectroscopy - rotational spectra of diatomic			
	molecules, rigid and nonrigid rotors, - Intensity of spectral	18	CO1	K1
	lines, - Effects of isotopic substitution - Stark effect.		CO2	K2
	Applications of microwave spectroscopy - determination		CO3	К3
	of bond length and atomic mass from microwave spectra.		CO4	K4
	Infrared Spectroscopy: Linear harmonic oscillator-		CO5	K5
	vibrational energies of diatomic molecules - zero point			
	energy- force constant and bond strengths -			
	anharmonicity- Morse potential energy diagram- vibration-			
	rotation spectroscopy. Basic instrumentation, selection			
	rules -normal modes of vibration - group frequencies -			
	overtones - Fermi resonance - hot bands - factors affecting			
	the band positions and intensities - problems - Hydrogen			
	bonding (intermolecular and intramolecular). and NIR			
II	Electronic spectroscopy: Franck-Condon principle –			
	Selection Rules for Electronic Transitions Vibrational and			
	rotational fine structure- Predissociation- spectroscopic			
	determination of dissociation energy Electronic spectra of			
	diatomic molecules - solvent effect - decay of an		CO1	K1
	electronicallyexcited state-photophysical processes,		CO2	K2
	Jablonsky diagram, fluorescence and phosphorescence,	18	CO3	K3
	excited state lifetime and		CO4	K4
	quantum yield -fluorescence quenching- quenching by		CO5	K5
	excimer and exciplex emission- fluorescence resonance			
	energy transfer between photoexcited donor and acceptor			
	system.			

Raman and UV-Visible Spectroscopy: Raman spectra –			
Rotational Raman spectra of linear and symmetric top		CO1	K 1
molecules – Vibrational Raman spectra, Rotational fine	18	CO2	K2
structure. Rayleigh and Raman scattering, Stokes and anti-		CO3	K3
Stokes lines For trait diagram - applications of Raman		CO4	K4
spectroscopy.		CO5	K5
UV-Visible Spectroscopy: Introduction- Instrumentation,			
Sampling techniques - Woodward–Fieser and Scott rules for			
conjugated dienes and polymers, ketones, aldehydes,			
α , β -unsaturated acids, esters- identification of geometrical			
isomers and positional isomers.			
NMR Spectroscopy: ¹ H NMR spectroscopy – origin of			
NMR spectra – chemical shift – number of signals – peak			
areas - multiplicity - geminal, vicinal and long-range		CO1	K1
couplings – factors affecting chemical shifts and coupling		CO2	K2
constants, Karplus equation, AX, AX3, AB2, AMX and ABX	18	CO3	K3
pattern of first order spectra (problems in spin - spin splitting		CO4	K4
pattern), Simplification of complex spectra- Double		CO5	K5
resonance techniques, shifts reagents - an elementary			
treatment of NOE phenomenon. Carbon NMR			
spectroscopy: ¹³ C NMR Spectroscopy — Broad band			
decoupling – Off resonance decoupling ² D Techniques:			
1 H 1 H COSY – 1 H 13 C COSY and NOESY.			
	molecules – Vibrational Raman spectra, Rotational fine structure. Rayleigh and Raman scattering, Stokes and anti- Stokes lines For trait diagram - applications of Raman spectroscopy. UV-Visible Spectroscopy: Introduction- Instrumentation, Sampling techniques - Woodward–Fieser and Scott rules for conjugated dienes and polymers, ketones, aldehydes, α , β-unsaturated acids, esters- identification of geometrical isomers and positional isomers. NMR Spectroscopy: ¹ H NMR spectroscopy – origin of NMR spectra – chemical shift – number of signals – peak areas – multiplicity – geminal, vicinal and long-range couplings – factors affecting chemical shifts and coupling constants, Karplus equation, AX, AX ₃ , AB ₂ , AMX andABX pattern of first order spectra (problems in spin - spin splitting pattern), Simplification of complex spectra– Double resonance techniques, shifts reagents – an elementary treatment of NOE phenomenon. Carbon NMR spectroscopy: ¹³ C NMR Spectroscopy — Broad band decoupling – Off resonance decoupling ² D Techniques:	Rotational Raman spectra of linear and symmetric top molecules – Vibrational Raman spectra, Rotational fine18structure. Rayleigh and Raman scattering, Stokes and anti- Stokes lines For trait diagram - applications of Raman spectroscopy.18 UV-Visible Spectroscopy: Introduction- Instrumentation, Sampling techniques - Woodward–Fieser and Scott rules for conjugated dienes and polymers, ketones, aldehydes, a, β-unsaturated acids, esters- identification of geometrical isomers and positional isomers.NMR Spectroscopy: ¹ H NMR spectroscopy – origin of NMR spectra – chemical shift – number of signals – peak areas – multiplicity – geminal, vicinal and long-range couplings – factors affecting chemical shifts and coupling constants, Karplus equation, AX, AX3, AB2, AMX andABX pattern), Simplification of complex spectra – Double resonance techniques, shifts reagents – an elementary treatment of NOE phenomenon. Carbon NMR spectroscopy: ¹³ C NMR Spectroscopy — Broad band decoupling – Off resonance decoupling ² D Techniques:	Rotational Raman spectra of linear and symmetric top molecules – Vibrational Raman spectra, Rotational fine structure. Rayleigh and Raman scattering, Stokes and anti- Stokes lines For trait diagram - applications of Raman spectroscopy.CO1UV-Visible Spectroscopy: Introduction- Instrumentation, Sampling techniques - Woodward–Fieser and Scott rules for conjugated dienes and polymers, ketones, aldehydes, α , β -unsaturated acids, esters- identification of geometrical isomers and positional isomers.CO1NMR Spectroscopy:

V	NQR, X-Ray, Electron and Neutron Diffraction:			
	Characteristics of quadrupolar nucleus – Effects of field			
	gradient and magnetic field upon quadrupolar energy			
	levels – NQR transitions – Applications of NQR		CO1	K 1
	spectroscopy. X-Ray diffraction by single crystal method –		CO2	K2
	space groups – systematic absences in X-ray data	18	CO3	K3
	and identification of lattice types, glide planes and		CO4	K4
	screwaxes –Electron diffraction by gases – scattering		CO5	K5
	intensity vs. scattering angle, Wierl equation –			
	measurement techniques. Neutron diffraction by crystals –			
	magnetic scattering – measurement techniques –elucidation			
	of structure of magnetically ordered unit cell.			
	Self-Study for Enrichment			
VI	(Not to be included for External Examination) Problems based on joint application of UV, IR, PMR, CMR,		CO2,	К3
	and Mass. (Including reaction sequences), DEPT, INTEPT,	-	СОЗ,	K4
	Chemical spin decoupling of rapidly exchangeable protons		CO4	K5
	(OH, SH, COOH, NH, NH ₂).			

- 1. Banwell. C.N., (2017). Fundamentals of molecular Spectroscopy, 4th edition, McGraw Hill, New Delhi.
- 2. Silverstein.P.M., & Western.F.X., (2014). Spectroscopic Identification of Organic compounds.8th edition, John Wiley, New York.
- 3. Kalsi.P.S., (2016). Spectroscopy of Organic Compounds. 7th edition, New Age International Publishers, New Delhi.
- 4. William Kemp., (2019). Organic spectroscopy. 3rd edition, Macmillan publisher Pvt, Bangalure.

Reference Books

- 1. Drago. R.S., (2012). Physical Methods in Inorganic Chemistry. Affiliated East-West press Pvt. Ltd, New Delhi.
- 2. Kaur. K., (2014). Spectroscopy. 16th edition, Pragati Prakashan Educational Publisher.
- 3. Sharma. Y. R., (2016). Elementary organic spectroscopy. revised 4th edition, S. Chand &Co Ltd, New Delhi.
- 4. Jan Fleming.,& Dudley Williams., (2020). Spectroscopic Methods in Organic Chemistry, 7th edition, Tata McGraw-Hill Education, India.

Web References

- 1. http://www.organic-chemistry.org/
- 2. http://www.organicworldwide.net/
- 3. http://www.ccdc.cam.ac.uk/products/csd/
- 4. <u>http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20Chemistry%20</u> <u>Paper-IX%20Unit-5.pdf</u>
- 5. http://www.rcsb.org/pdb/home/home.do

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

1. Dr. V. Sangu

Semester II	Internal Marks:40	External Marks: 60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PCH2CC2P	ORGANIC CHEMISTRY-II (P)	CORE PRACTICAL	6	5

To perform the quantitative analysis of a given organic compounds and to carry

out the preparation of organic compounds.

Prerequisites

Hydrolysis, Acetylation, bromination, nitration and oxidation/ reduction

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the qualitative estimation and double stage preparation of organic compounds.	K2
CO2	Apply the methods in sporte and ethical scientific conduct.	K3
CO3	Interpret results observed in lab experiments	К3
CO4	Analyze qualitatively organic components in the environment	K4
CO5	Exercise hands-on experience with latest technical instrumentation.	К5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	1	3	2	1
CO2	2	3	2	2	2	3	2	1	3	2
CO3	2	3	3	2	3	2	1	1	2	1
CO4	2	3	3	2	3	1	1	2	2	1
CO5	3	3	3	2	3	2	2	2	2	1

"1"–Slight (Low)Correlation "3"–Substantial (High)Correlation "2"–Moderate (Medium)Correlation "-"indicates there is no correlation

Syllabus

I QUANTITATIVE ANALYSIS OF ORGANIC COMPOUNDS

- 1.Estimation of phenol
- 2.Estimation of aniline
- 3.Estimation of ketone
- 4. Estimation of glucose
- 5. Estimation of nitrobenzene
- 6. Estimation of glycine
- 7. Estimation of iodine value of oil

II PREPARATION OF ORGANIC COMPOUNDS (DOUBLE STAGE)

- 1. Acetylsalicylic acid from methyl salicylate (hydrolysis and acetylation)
- 2. 1,3,5-Tribromobenzene from aniline (bromination, diazotization and hydrolysis)
- 3. p-Nitroaniline from acetanilide (nitration and hydrolysis)
- 4. Benzilic acid from benzoin (rearrangement)
- 5. p-Aminobenzoic acid from p-nitrotoluene (oxidation and reduction)
- 6. Benzanilide from benzophenone (rearrangement)
- 7. m-Nitroaniline from nitrobenzene (nitration and reduction)

Text Books

- 1. Mohan.J (2003), Organic Analytical Chemistry: Theory and Practice, Narosa
- Ahluwalia.V.K Bhagat.P & Agarwal.R (2005), Laboratory Techniques in OrganicChemistry, I.K. International

Reference Books

- 1. Gnanaprakasam, N. S & Ramamurthy. G (1987), Organic Chemistry Lab Manual, S.V.Printers
- Vogel.A.IT atchell. A.R, Furniss B.S, Hannaford. A. J & SmithP.W. G, (1989), Vogel's Textbookof Practical Organic Chemistry, 5th Ed., Prentice Hall.

Web References

- 1. http://rushim.ru > books > praktikum > Mann
- 2. http://do.chem.uni.wroc.pl/system/files/Preparatory%20classes.pdf.

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. K. Shenbagam

Semester II	Internal Marks:25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PCH2CCC1A	ORGANIC CHEMISTRY-II	CORE CHOICE COURSE	6	4

- > To learn about the effect of structure on reactivity.
- Enable the students to acquire surplus knowledge about the addition, elimination mechanism, and the chemistry behind the photolytic reactions.
- > Guide the students to know the role of heterocyclic compounds in drug development.

Prerequisites

Quantitative treatment, Substitution, Addition, Elimination, photoreaction and Heterocycles.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Outline the synthesis, reactivity of organic compounds, various methods for determining the mechanism and fundamentals of photochemistry.	K1&K2
CO2	Interpret the reaction mechanism of various organic reactions including photochemical and heterocycles.	К3
CO3	Classify the different types of substitution, addition, elimination, photolytic reactions and heterocyclic compounds.	K4
CO4	Categorize the techniques of investigating reaction pathways and naming reactions.	K5
CO5	Predict the mechanism and products of organic reactions	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	2	3	2	1	1	3
CO2	3	2	1	3	2	3	3	1	1	2
CO3	3	3	2	1	2	3	3	2	2	3
CO4	3	3	2	2	3	3	3	2	2	3
CO5	3	3	2	3	3	3	2	1	1	2

"1"-Slight (Low)Correlation

"2"-Moderate (Medium)Correlation

"3"-Substantial (High)Correlation

"-"indicates there is no correlation

Syllabus

CONTENT	HOURS	COs	COGNITIVE
			LEVEL
Effect of Structure on reactivity: Quantitative treatment:	18	CO1	K1
Hammett equation- linear free energy relationship, substituent		CO2	K2
constant and reaction constant and limitations of Hammett		CO3	K3
equation, Taft equation, thermodynamically and kinetically		CO4	K4
controlled reactions, Hammond's postulate, Non- kinetic		CO5	K5
methods of determining mechanism- isolation, trapping and			K6
detection of intermediates, isotopic labelling, crossover			
experiments, product analysis, stereo chemical evidence,			
kinetic method -kinetic isotope effect.			
Aromatic Nucleophilic and Electrophilic Substitution:	18	CO1	K1
SN1, SNAr, Benzyne mechanism, reactivity and orientation,		CO2	K2
Ullmann, Sandmeyer and Chichibabin reaction, Steven's -		CO3	K3
Sommelet Hauser and Von Richter Rearrangements. Aromatic		CO4	K4
electrophilic substitution – orientation, reactivity and		CO5	K5
mechanism based on transition state theory with suitable			K6
reactions. Ortho- para ratio, ipso attack, Vilsmeier- Haack,			
Jacobson and Scholl's reactions.			
Addition and Elimination: Addition to carbon-carbon	18	CO1	K1
multiple bonds - Electrophile, nucleophile and free radical		CO2	K2
addition, addition to carbonyl and conjugated carbonylsystem-		CO3	K3
mechanisms. Knoevengal, Stobbe, Darzen'sglycidic ester		CO4	K4
condensation and Reformatsky reaction. Elimination reaction-		CO5	K5
Mechanism of E1, E2, E1CB, stereochemistry, Hoffmann's and			K6
Zaitsev's rules. Pyrolytic cis elimination, Chugaev reaction,			
Hoffmann exhaustive methylation, Cope			
elimination and Bredt's rule.			
	Effect of Structure on reactivity: Quantitative treatment: Hammett equation- linear free energy relationship, substituent constant and reaction constant and limitations of Hammett equation, Taft equation, thermodynamically and kinetically controlled reactions, Hammond's postulate, Non- kinetic methods of determining mechanism- isolation, trapping and detection of intermediates, isotopic labelling, crossover experiments, product analysis, stereo chemical evidence, kinetic method -kinetic isotope effect. Aromatic Nucleophilic and Electrophilic Substitution: SN1, SNAr, Benzyne mechanism, reactivity and orientation, Ullmann, Sandmeyer and Chichibabin reaction, Steven's – Sommelet Hauser and Von Richter Rearrangements.Aromatic electrophilic substitution – orientation, reactivity and mechanism based on transition state theory with suitable reactions. Ortho- para ratio, ipso attack, Vilsmeier- Haack, Jacobson and Scholl's reactions. Addition and Elimination: Addition to carbon-carbon multiple bonds - Electrophile, nucleophile and free radical addition, addition to carbonyl and conjugated carbonylsystem- mechanisms. Knoevengal, Stobbe, Darzen'sglycidic ester condensation and Reformatsky reaction. Elimination reaction- Mechanism of E1, E2, E1CB, stereochemistry, Hoffmann's and Zaitsev's rules. Pyrolytic cis elimination, Chugaev reaction, Hoffmann exhaustive methylation, Cope	Effect of Structure on reactivity: Quantitative treatment:18Hammett equation- linear free energy relationship, substituent constant and reaction constant and limitations of Hammett equation, Taft equation, thermodynamically and kinetically controlled reactions, Hammond's postulate, Non- kinetic methods of determining mechanism- isolation, trapping and detection of intermediates, isotopic labelling, crossover experiments, product analysis, stereo chemical evidence, kinetic method -kinetic isotope effect.18Aromatic Nucleophilic and Electrophilic Substitution: SN1, SNAr, Benzyne mechanism, reactivity and orientation, Ullmann, Sandmeyer and Chichibabin reaction, Steven's – Sommelet Hauser and Von Richter Rearrangements. Aromatic electrophilic substitution – orientation, reactivity and mechanism based on transition state theory with suitable reactions. Ortho- para ratio, ipso attack, Vilsmeier- Haack, Jacobson and Scholl's reactions.18Addition and Elimination: Addition to carbon-carbon multiple bonds - Electrophile, nucleophile and free radical addition, addition to carbonyl and conjugated carbonylsystem- mechanisms. Knoevengal, Stobbe, Darzen'sglycidic ester condensation and Reformatsky reaction. Elimination reaction, Mechanism of E1, E2, E1CB, stereochemistry, Hoffmann's and Zaitsev's rules. Pyrolytic cis elimination, Chugaev reaction, Hoffmann exhaustive methylation, Cope	Effect of Structure on reactivity: Quantitative treatment:18CO1Hammett equation- linear free energy relationship, substituent constant and reaction constant and limitations of Hammett equation, Taft equation, thermodynamically and kinetically controlled reactions, Hammond's postulate, Non- kinetic methods of determining mechanism- isolation, trapping and detection of intermediates, isotopic labelling, crossover experiments, product analysis, stereo chemical evidence,

IV	Organic Photochemistry: Fundamental concepts, energy	18	CO1	K1
	transfer, characteristic of photoreaction - photo-reduction,		CO2	K2
	photo-oxidation and photosensitization. Classification of		CO3	K3
	photoreactions of Ketones and enones- Norrish type I and II,		CO4	K4
	Paterno-Buchi reaction, Photo-Fries rearrangement.		CO5	K5
	Photochemistry of alkenes and aromatic compounds –			K6
	Zimmerman's Di-pi methane rearrangement. Reaction of			
	unactivated centres- Photochemistry of α,β - unsaturated			
	carbonyl compounds, Barton Reaction.			
V	Heterocycles: Nomenclature, synthesis and reactivity of	18	CO1	K1
	aromatic heterocycles – pyrazole, isothiazole, triazole,		CO2	K2
	pyrimidine, purines, triazines, pyridazines and pyrazines.		CO3	K3
	Synthesis and reactivity of non-aromatic heterocycles -		CO4	K4
	tetrahydro furan, pyrrolidine, piperidine, oxirane, oxetane,		CO5	K5
	oxazole and imidazole			K6
	Self-Study for Enrichment	-	CO1	K1
VI	(Not to be included for External Examination)		CO2	K2
	Reactivity of intermediates, nature of substituents,		CO3	К3
	Markovnikov's and Anti-Markovnikov's rule, syn-anti addition			K4
	and elimination, Jablonski diagram and chemistry of simple			
	heterocycles.			

- Pine S.H, Hendrickson J B, Cram & Hammond, (1980), Organic Chemistry, 4th edition McGraw Hill, New York.
- 2. March J & Smith M.B (2020), Advanced Organic Chemistry, Reactions, mechanisms and Structure, 8th edition Wiley.
- Carey F A & Sundberg R J, (2007), Advanced Organic Chemistry, Part A and Part B, 5th Corrected edition Springer.
- 4. Bansal. R .K, (1990), Reaction mechanism in Organic Chemistry, Tata McGraw Hill.
- 5. Finar I.L, (2009), Organic Chemistry, 6th edition, Pearson Education Ltd.

Reference Books

- 1. Peter sykes (2009), A guide book to mechanism in Organic Chemistry, 6th edition, Pearson
- 2. Education.
- 3. Raj K Bansal. (2009), Heterocyclic Chemistry, 4th edition, New Age International Publishers.
- 4. Gurdeep.R. Chatwal, (2015), Reaction Mechanism and Reagents in Organic Chemistry, Himalaya Publishing House.

Web References

https://chemicalnote.com/reaction-mechanism-methods-of-determining-reactionmechanism/

- 2. https://www.chemistrylearner.com/addition-reaction.html
- 3. http://www-oc.chemie.uni-regensburg.de/OCP/ch/chb/oc5/Photochemie-08.pdf

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. P. Pungayee Alias Amirtham Dr. A. Sharmila

Semester II	Internal Marks:25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PCH2CCC1B	CHEMISTRY OF NATURAL PRODUCTS	CORE CHOICE COURSE	6	4

- By the end of this course the student will be familiar with definition, isolation and uses of natural products.
- > The students will be able to know the general properties and methods of preparation of natural products chemically and biosynthetically.

Prerequisites

Isolation, addition, elimination, substitution, oxidation, reduction reactions.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Differentiate the different types of alkaloids, terpenes, steroids, flavonoids and vitamins.	K1
CO2	Know the basic terms in natural product chemistry and their physiological significance.	K2
CO3	Evaluate the different methods of preparation of natural products	K3
CO4	Recognize the most important building blocks employed in the biosynthesis of natural products.	K4
CO5	Elaborate general methods of structural elucidation of compounds of natural origin.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"-Slight (Low)Correlation

"2"-Moderate(Medium)Correlation

"3"-Substantial (High)Correlation

"-"indicates there is no correlation

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Alkaloids: Classification of alkaloids, general methods	18	CO1	K1
	of structural determination of alkaloids, synthesis and		CO2	K2
	biogenesis of Papaverine, Adrenaline, Ephedrine,		CO3	K3
	Piperine, Hygrine and Reserpine		CO4	K4
			CO5	K5
II	Terpenoids and Carotenoid: Classification of	18	CO1	K1
	terpenoids, isoprene rules- structural elucidation &		CO2	K2
	synthesis of geraniol, α -pinene and camphor.		CO3	K3
	Diterpenoids: Carotenoid- Introduction- Structure and		CO4	K4
	Synthesis of β -Carotene and Lycopene.		CO5	K5
III	Steroids: Introduction and nomenclature of steroids.	18	CO1	K1
	Blanc's rule, Barbier-Wieland degradation, Oppenauer		CO2	K2
	oxidation, Diel's hydrocarbon, chemistry of Cholestrol,		CO3	K3
	Ergosterol and Vitamin-D.		CO4	K4
			CO5	K5
IV	Flavonoids and Isoflavonoids: Occurrence,	18	CO1	K1
	nomenclature and general methods of structure		CO2	K2
	determination, isolation, structure elucidation and		CO3	K3
	synthesis of Kaempferol, Quercetin, Cyanidin,		CO4	K4
	Genestein.		CO5	K5
V	Vitamins: Classification and structure of water soluble	18	CO1	K1
	and fat-soluble vitamins, plant and animal sources,		CO2	K2
	vitamins as coenzymes, deficiency of vitamins and their		CO3	К3
	effects.		CO4	K4
			CO5	K5

	Self-Study for Enrichment	-	CO2	K2
VI	(Not to be included for External Examination) Definition, isolation and purification of alkaloids, terpenes, and flavonoids.		CO3	K3

- 1. Chatwal G.R, (1990), Natural Products Chemistry-Vol. I & II, Himalaya Bombay.
- 2. Agarwal, O.P, Goel Gorakhpur (1985), Chemistry of Natural Products-Vol. I & II:
- 3. Longmann E.L, London B.S, (2000), Organic Chemistry-Vol. I-II: I. L. Finar.
- Sujatha V. Bhat, Nagasampige B.A & Sivakumar M, (2006), Chemistry of Natural Products:, 2nd reprint, Springer.

Reference Books

- Dewick P.M (2009), Medicinal Natural Products: A Biosynthetic Approach", 2nd Edition, Wiley & Sons,
- 2. Graham Solomons T.W, Craig B. Fryhle, Scott A. Snyder (2013), Organic Chemistry, 11th Edition, International Student Version, John Wiley &Sons..Himalaya Publishing House.

Web References

- 1. https://chemnote.weebly.com/uploads/2/5/8/6/25864552/alkaloids.pdf
- 2. https://www.vedantu.com/biology/steroid
- 3. https://www.slideshare.net/TareqAspirant/a-short-note-on-vitamins
- 4. https://www.tuscany-diet.net/2014/01/22/flavonoids-definition-structure-classification
- 5. https://www.intechopen.com/chapters/62573
- 6. https://gcwgandhinagar.com/econtent/document/1588068142ch-1.pdf

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo , Quiz, Seminar

Course Designers

1. Dr. C. Rajarajeswari

Semester II	Internal Marks:25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PCH2CCC1C	MOLECULAR REARRANGEMENT	CORE CHOICE COURSE	6	4

- > To learn about the reactions intermediates involved in rearrangement reactions.
- To learn about the basic concepts about the electrophilic and nucleophilic rearrangement reactions.
- > To learn the concept and mechanism of rearrangement reactions.

Prerequisites

Reaction intermediates, nitrenes, carbenes, electrophilic, nucleophilic, naming reactions.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Know the outline for determining nature of rearrangements.	K1, K2
CO2	Interpret the reaction mechanism in various organic reactions.	K3
CO3	Classify the different types of intermediates involving in organic rearrangement reactions.	K4
CO4	Recognize the technique of identifying reaction mechanism in various naming reactions.	K5
CO5	Predict the mechanism and product of molecular rearrangement reactions.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"-Slight (Low)Correlation

"2"-Moderate(Medium)Correlation

"3"-Substantial (High)Correlation "-"it

"-"indicates there is no correlation

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Molecular Rearrangements – Introduction,	18	CO1	K1
	intermolecular and intra molecular rearrangement,		CO2	K2
	intermediates, classification based on migration origin and		CO3	К3
	migration terminus. Rearrangement to electron-deficient		CO4	K4
	carbon - Wagner- Meerwein rearrangement, pinacol		CO5	K5
	rearrangement, Wolff rearrangement, benzil-benzilic acid			
	rearrangement- Allylic rearrangement-Sommelet-Hauser			
	rearrangement- Tiffeneau-Demjanov Rearrangement.			
II	Rearrangement to electron-deficient nitrogen:	18	CO1	K1
	Beckmann rearrangement- Schmidt rearrangement,		CO2	K2
	Hofmann rearrangement-Curtius rearrangement- Lossen		CO3	К3
	rearrangement-Neber rearrangement- Stieglitz		CO4	K4
	Rearrangement- Rearrangements with acyl carbenes-		CO5	K5
	Arndt-Eistert Reaction- Diazo Ketone Reactions			
III	Rearrangement to electron-deficient oxygen: Baeyer-	18	CO1	K1
	Villiger oxidation, cumene hydroperoxide rearrangement-		CO2	K2
	phenol rearrangement-Dakin reaction- free radical		CO3	К3
	rearrangements. Sigmatropic rearrangement –		CO4	K4
	classification, [1,2] shift, [1,3] shift and [3,3] shift -		CO5	K5
	Claisen rearrangement, cope rearrangement			
IV	Migration from N- to ring carbon rearrangement:	18	CO1	K1
	Hoffmann Martius rearrangement- Orton rearrangement –		CO2	K2
	Benzidine - semidine rearrangement – Bamberger		CO3	К3
	rearrangement- Migration to electron rich carbon center –		CO4	K4
	Fries rearrangement – Favorski rearrangement.		CO5	K5

V	Aromatic and Photochemical rearrangement	18	CO1	K1
	Stevens rearrangement-Wittig rearrangement-		CO2	K2
	Photochemical rearrangement – di -pi methane		CO3	K3
	rearrangement		CO4	K4
			CO5	K5
	Self-Study for Enrichment	-	CO1	K1
VI	(Not to be included for External Examination)		CO2	К2
	Aldol condensation-allylic rearrangement-ullmann			К3
	reaction-sandmeyer reaction-perkin reaction.			

- Tewari, .K.S, Vishil, N.K, & Mehotra N.S (2001), A text book of org. chem 1st edition, Vikas Publishing House Pvt Ltd., New Delhi.
- 2. Soni P.L (2005), Text Book of Organic chemistry, Sultans Chand, 1991, New Delhi,
- 3. Bahl& Arun Bahl (2005), Organic Chemistry, S. Chand and Sons, New Delhi.
- 4. Agarwal O.P (2002), Chemistry of Organic Natural Products, Vol 1 and 2, Goel Pub. House.
- 5. Gurdeep Chatwal (2002), Chemistry of Organic Natural Products, Vol 1 and 2, Goel Pub. House..

Reference Books

- Sharma, Y.R &Vig O.P (1997), Elementary organic absorption spectroscopy 1st edition, Goel Pulishers, Meerut.
- 2. Morrison R.T & Boyd R.N (1992), Organic Chemistry, 6th edition, PHI Limited, New Delhi.
- 3. Jerry March (1992), Advanced Organic Chemistry, 4th edition, John Wiley and Sons, New York.
- 4. Pine S.H (1987), Organic Chemistry, 5th edition, McGraw Hill International Edition, Chemistry Series, New York.

Web References

- 1. https://www.masterorganicchemistry.com/2012/08/15/rearrangement-reactions-1-hydride-shifts
- 2. https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/rearrang.htm
- 3. <u>https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Virtual_Textbook_of_O</u> <u>Chem</u>
- 4. https://www.organic-chemistry.org/namedreactions/claisen-rearrangement.shtm

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

1. Dr. K. Uma Sivakami

Semester II	Internal Marks:40	External Marks:60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PCH2CC3P	INORGANIC CHEMISTRY -I (P)	CORE PRACTICAL	6	5

1. To perform the semi-micro qualitative analysis and to estimate the metal ions using photoelectric colorimeter.

Prerequisites

Separation of cations and anions, quantitative analysis

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the quantitative estimation and estimation of inorganic compounds.	K2
CO2	Apply the methods and identify the components.	K3
CO3	Interpret results, while observing responsible and scientific conduct	К3
CO4	Analyze quantitatively organic components in the environment	K4
CO5	Hands-on experience with latest technical instrumentation	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	1	3	2	1
CO2	2	3	2	2	2	3	2	1	3	2
CO3	2	3	2	2	2	1	1	1	2	2
CO3	2	3	2	2	2	2	1	2	2	1
CO3	2	3	2	2	2	1	1	1	2	2

"1"–Slight (Low)Correlation

"2"-Moderate (Medium)Correlation

"3"-Substantial (High)Correlation "-"indicates there is no correlation

Syllabus

1. Semi-micro qualitative analysis of a mixture containing two common cations (Pb, Bi, Ca, Cd, Fe,Cr, Al, Co, Ni, Mn, Zn, Ba, Sr, Ca, Mg,) and two less common cations (W, Tl, Se, Te, Mo, Ce, Th, Zr, Ti, V, U, Li).

2. Quantitative Estimation of copper, iron, nickel, chromium and manganese ions using photoelectric colorimeter

Text Books

- 1. Vogel.A.I (2000), Text Book of Quantitative Inorganic Analysis, Longman.
- 2. RamanujamV.V (1988), Inorganic Semimicro Qualitative Analysis, National Pubs.
- 3. Svehla.G. (1987), Text Book of Macro and Semimicro Qualitative Inorganic analysis, Longman.

Reference Books

1. Vogel.A.IT atchell. A.R, Furniss B.S, Hannaford.A. J &SmithP.W. G, (1989), Vogel's Textbookof Practical Organic Chemistry, 5th Ed., Prentice Hall.

Web References

- 1. <u>https://iscnagpur.ac.in/study_material/dept_chemistry/4.1_MIS_and_NJS_Manual_for_Inorganic_semi-micro_qualitative_analysis</u>
- 2. https://byjus.com/chemistry/systematic-analysis-of-cations
- 3. https://www.uou.ac.in/sites/default/files/slm/MSCCH-505L.pdf

Pedagogy

E-content, Demo, Hands on training

Course Designers

1. Dr. K. Shenbagam

Semester II	Internal Marks:25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PCH2DSE2A	GREEN CHEMISTRY	DISCIPLINE SPECIFIC ELECTIVE	6	3	

- To know about twelve principles of green chemistry, eco-friendly synthesis using microwave, ionic liquid and phase transfer catalyst.
- > To know the synthesis of organic compounds in greener way.
- > To gain knowledge about the use of environmentally friendly practices in reducing pollution.

Prerequisites

Pollution, hazardous chemicals, toxic chemicals. Catalyst, condensation, substitution, elimination,

oxidation, reduction.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Describe the basics of green chemistry and introduction of organic synthesis.	K1
CO2	Understand the importance and role of solvents, solid-state reactions, phase transfer catalyst and alternative energy sources.	K2
CO3	Apply green synthesis for synthesizing different organic compounds.	K3
CO4	Analyze the applications of green synthesis.	K4
CO5	Create a new route for the synthesis of organic compounds from the knowledge gained throughout the course.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	2	2	2	2	2
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

"1"–Slight (Low)Correlation

"2"-Moderate (Medium)Correlation

"3"-Substantial (High)Correlation "-"indicates there is no correlation

	Syllabus			
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Introduction to Green Chemistry: Need of Green	18	CO1	K1
	Chemistry- twelve principles of green chemistry. Planning		CO2	K2
	a green synthesis- percentage atom utilization - Evaluating		CO3	К3
	the type of the reaction - selection of solvents-selection of		CO4	K4
	starting materials- use of catalyst. International		CO5	К5
	organizations promoting green chemistry.			
II	Organic Synthesis in Green Solvents: Reactions in water	18	CO1	K1
	- pericyclic reactions, Wittig-Horner reaction,		CO2	K2
	Knoevenagel reactions, Pinacol coupling, Aldol		CO3	K3
	condensation, Benzoin condensation, Heck reaction,		CO4	K4
	Wurtz reaction and Mannich reactions. Organic synthesis in		CO5	K5
	supercritical carbon dioxide -Diels-Alder reaction and			
	Kolbe-schmitt synthesis. Reaction in ionic liquids – types,			
	preparations and synthetic applications.			
III	Organic Synthesis in Solid State: Introduction, room	18	CO1	K1
	temperature solid state reactions - Grignard reaction,		CO2	K2
	Reformatsky reaction. Solid state reactions on heating -		CO3	K3
	oxidations of hydroxylated aldehydes, ketones, nitriles,		CO4	K4
	sulfides and nitrogen heterocycles. Solid state reactions		CO5	K5
	using solid support - oxidation, reduction, rearrangement,			
	isomerization and condensation reactions.			
IV	Alternate Energy Processes in Chemical Synthesis:	18	CO1	K1
	Microwave assisted organic synthesis - hydrolysis of benzyl		CO2	K2
	chloride and benzamide and coupling reactions - Baylis -		CO3	K3
	Hillman reaction, Esterification, synthesis of chalcones.		CO4	K4
	Ultrasound assisted organic synthesis -homogenous sono		CO5	K5
	chemical reactions - Curtius			
	rearrangement, organometallic reactions- Heterogenous			
	rearrangement, organometallic reactions- Heterogenous			

	liquid-liquid reactions and solid-liquid reactions.			
V	Phase Transfer Catalysts: Mechanism of phase transfer	18	CO1	K1
	reaction, types and advantages of phase transfer catalyst.		CO2	K2
	Applications of phase transfer catalyst in organic synthesis -		CO3	K3
	Darzen reaction, Michael addition, oxidation reactions using		CO4	K4
	permanganate, chromate, hypochloride, osmium tetraoxide,		CO5	K5
	potassium ferricyanide and peroxides and			
	reduction reactions			
	Self-Study for Enrichment	-	CO1	K1
VI	(Not to be included for External Examination) Properties of CO ₂ - Phase diagram for CO ₂ - uses of CO ₂		CO2	K2
	in dry cleaning. Synthesis of quinoxaline derivatives and			
	β -keto sulfones from ketones using green synthesis.			
	Instrumentation and types of sonochemical reaction in			
	ultrasound assisted green synthesis.			

- 1. Kumar, V. (2007) An Introduction to Green Chemistry. Vishal Publishing Co. Jalandhar.
- 2. Ahluwalia. V. K. An Introduction to Green Chemistry. Narosa Publishing.
- 3. Anastas. P. T., and Warner, J. C. (2008). Green Chemistry. Oxford University Press.

Reference Books

- Ahluwalia. V. K., and Kidwai, M. (2007). New Trends in Chemistry. Anamaya Publishers. 2nd Edition.
- 2. Ahluwalia. V. K., and Varma, R. S. (2009). Green Solvents. Narosa Publishing. 1st Edition.

Web References

- 1. <u>https://www.epa.gov/greenchemistry/basics-green-chemistry.</u>
- 2. https://pubs.rsc.org/en/content/articlelanding/2005/gc/b418069k.
- <u>https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text=The%20soli</u> <u>d%2Dphase%20organic%20synthesis%20(SPOS)%20has%20emerged%20as,chemistry%20t</u> <u>o%20discover%20new%20hits.&text=In%20SPOS%2C3%20the%20solid,to%20drive%20r</u> <u>eactions%20to%20completion.</u>

- 4. <u>https://www.organic-chemistry.org/topics/sonochemistry.shtm.</u>
- 5. https://www.sciencedirect.com/topics/chemistry/phase-transfer-catalyst.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. S. Devi,

Semester II	Internal Marks:25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PCH2DSE2B	FORENSIC CHEMISTRY	DISCIPLINE SPECIFIC ELECTIVE	6	3	

- > To know about the history and principles involved in Forensic science
- > To demonstrate proficiency in accurately conveying scientific data's for crime cases.
- To develop testable hypothesis, designing and analysis of collected sample to solve criminal justice system.

Prerequisites

Finger print analysis, Crime detection in Gold, Food and soil

Course Outcome and Cognitive Level Mapping

CO Nu mb er	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	To know the fundamental principles, technological methods and functions of forensic science	K1 &K2
CO2	Apply the principles of Spectroscopy in physical evidences and beverages	К3
CO3	Illustrate the mechanism persisting in identification of evidences, finger prints and explosives	K4
CO4	Appraise the role of chemistry in detection of corrupted jewels, explosives and consumed liquors	K5
CO5	Design the role of handwriting exemplars, alcoholic beverages, marked currency notes and hidden explosives	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	2	3	3	3	2
CO2	2	3	3	3	2	3	3	2	3	3
CO3	2	3	3	3	2	3	2	3	3	3
CO4	2	2	2	3	3	2	3	2	3	2
CO5	3	3	3	3	3	3	3	3	3	3

"1"-Slight (Low)Correlation

"2"-Moderate (Medium)Correlation

"3"-Substantial (High)Correlation

"-"indicates there is no correlation

Syllabus

UNIT	CONTENT	HOURS	COs	CONGNITIVE
				LEVEL
Ι	INTRODUCTION OF FORENSICSCIENCE: Functions of	18	CO1	K1
	forensic science-Historical aspects - definitions and concepts in		CO2	K2
	forensic science-scope of forensic science-need of forensic		CO3	K3
	science-basic principles of forensic		CO4	K4
	science-branches of forensic science-forensic science in		CO5	K5
	international perspectives.			K6
II	CHEMISTRYOFFORENSIC INVESTIGATIONS:	18	CO1	K1
	Definition, Classification -physical evidence- Glass and soil -		CO2	K2
	physical properties - comparing glass fragments - collection and		CO3	K3
	preservation of glass evidence - forensic characteristics of soil -		CO4	K4
	collection and preservation of soil evidence. Fingerprints-		CO5	K5
	fundamental principles -classification of methods of detecting			K6
	fingerprints - preservation of developed prints. Document and			
	voice examination - collection of handwriting exemplars -			
	typescript comparisons - inks and papers -			
	alterations, erasures and obliterations.			
III	TECHNOLOGICALMETHODSINFORENSICSCIENCE:	18	CO1	K1
	Chromatographic methods-Fundamental principles and		CO2	K2
	forensic applications of thin layer chromatography- gas		CO3	K3
	chromatography and liquid chromatography.		CO4	K4
	Spectroscopic methods-Fundamental principles and forensic		CO5	K5
	applications of Ultraviolet- visible spectroscopy, infrared			K6
	spectroscopy, atomic absorptions spectroscopy, atomic			
	Emission spectroscopy and masss spectroscopy. X-rays			
	spectrometry. Colorimetric analysis and Lambert-Beer law.			
IV	FORGERYANDCOUNTERFEITING:	18	CO1	K1
	Detecting forgery in bank cheques / drafts and educational		CO2	K2

	records (mark lists, certificates) using UV-light. Alloy		CO3	K3
	analysis using AAS to detect counterfeit coins. Checking		CO4	K4
	Silverline water mark in currency notes. Jewellery: detection		CO5	K5
	of gold, purity in 22 carat ornaments, detecting goldplated			K6
	jewels, authenticity of diamonds, (natural, synthetic,			
	glassy).			
V	STUDY OFBEVERAGES ANDEXPLOSIVES:	18	CO1	K1
	Definition-classification of liquors based on origin (Indian		CO2	K2
	made foreign products, Country made)- Methods-Fermentation		CO3	K3
	and Distillation process- Characterization of Beer, wines,		CO4	K4
	Congeners in alcoholic beverages. Explosives-Definition and		CO5	K5
	chemistry of explosives- characteristics of high and low			K6
	explosion, dust explosion- Gas/vapour explosion- Detection of			
	hidden explosives- Examination of explosives and explosion			
	residues using chemical and instrumental techniques.			
	Self-Study for Enrichment	-	CO1	K1
VI	(Not to be included for External Examination) Case studies on crime cases related to documentation, money		CO2	K2
	and mobile data hacking			K3

1.Jay.A.Seigel (2015), Forensic Chemistry: Fundamentals and Applications, Wiley Pulications.

2. Suzanne Bell, (2022), Forensic Chemistry, CRC Press

3. Syed Aftab Iqbal (2021), Textbook of Forensic chemistry, Discovery Publishers Ltd

Reference Books

1. Kenyon Evans Nguyen (2021), Forensic Chemistry, American chemical society.

 Anthony J.Bertino (2019), Forensic Science: Fundamentals and Investigations, Cenage Publishers

Web References

- 1. https://www.pdfdrive.com/introduction-to-forensic-chemistry-e189712545.html
- 2. https://www.degruyter.com/document/doi/10.1515/9783110718812/html?lang=en

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

1. Dr. R. Subha

Semester II	InternalMarks:25	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PCH2DSE2C	ANALYTICAL CHEMISTRY	DISCIPLINE SPECIFIC ELECTIVE	6	3

- > To acquire the knowledge of basic principles and theory behind analytical techniques.
- > To know the separation of chemical compounds from mixtures.
- To gain knowledge about the application of analytical techniques to analysis chemical compounds.

Prerequisites

Adsorption, elution, solubility, Electromagnetic radiation.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Describe the basic concepts of data analysis, chromatography, electroanalytical methods, thermal methods and flame photometry.	K1
CO2	Understand the theory of various analytical techniques.	K2
CO3	Illustrates the instrumentation and experimental details of analytical techniques.	К3
CO4	Compare various analytical techniques based on their principles and applications.	K4
CO5	Evaluate the applications of data analysis, chromatography, electroanalytical methods, thermal methods and flame photometry.	К5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	3	2	3
CO3	3	3	2	3	3	3	3	3	2	2
CO4	3	3	2	2	3	3	3	2	2	2
CO5	3	3	2	3	3	3	3	3	2	3

"1"-Slight (Low)Correlation

"2"–Moderate (Medium)Correlation

"3"-Substantial (High)Correlation

"-"indicates there is no correlation

	Syllabus			
UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Introduction To Analytical Chemistry: Analytical	18	CO1	K1
	chemistry - role of analytical chemistry, classification,		CO2	K2
	advantages and limitations of analytical methods - Safety		CO3	К3
	in laboratory. Errors - Types, definitions of relative error,		CO4	K4
	absolute error, significant figures, mean, median, standard		CO5	K5
	deviation, sensitivity, detection limits, precision and			
	accuracy. Confidence limit, test of significance - Q - test,			
	F - test and T - test. Linear least squares methods.			
	Minimization of errors. Sampling, standardization and			
	calibration in analytical methods.			
II	Chromatography I: Chromatography -Introduction,	18	CO1	K1
	definition, types, principles and theories. Principle,		CO2	K2
	experimental details, theory, advantages, limitations and		CO3	К3
	applications of paper chromatography, thin layer		CO4	K4
	chromatography, liquid - liquid partition		CO5	K5
	chromatography, column chromatography.			
III	Chromatography II: Introduction, principle.	18	CO1	K1
	instrumentation, advantages, limitations and applications		CO2	K2
	of gas chromatography, gel permeation chromatography,		CO3	K3
	ion exchange chromatography. Principle, instrumentation		CO4	K4
	and applications of high-performance liquid		CO5	K5
	chromatography, gas chromatography - massspectroscopy			
	and liquid chromatography - mass			
	spectroscopy techniques.			
IV	Electroanalytical Methods: Definitions and	18	CO1	K1
	terminology involved in electrochemistry. Types of		CO2	K2

- 1. Skoog. D. A., West. D. M., & Holler. H. J. (1992). Fundamentals of Analytical Chemistry.
- Chatwal, G. R., and Anand. S. (1999). Instrumental Method of Analysis. Himalya Publishing House, 13th reprint.
- 3. Srivastava. A. k., and Jain, P. C. Instrumental Approach to Chemical Analysis.
- 4. Allen J. Bard and Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications.

Reference Books

- Skoog, D. A., Holler, F. J., and Crouch, R. (2006). Principles of Instrumental Analysis. 6thEdition.
- 2. Vogel's Textbook of Quantitative Chemical Analysis, Pearson Education. 6th Edition.
- 3. Kaur, H. Instrumental Methods of Chemical Analysis. Pragati Edition.

Web References

- 1. https://www.simplilearn.com/data-analysis-methods-process-types-article
- 2. https://www.britannica.com/science/chromatography
- 3. https://microbenotes.com/high-performance-liquid-chromatography-hplc/
- 5. <u>https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/621%20Unit%202.</u> <u>pdf</u>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

1.Dr. S. Devi

Semester III	Internal Marks:25		External Marks:75		
COURSECODE	COURSETITLE	CATEGORY	Hrs/ Week	CREDITS	
22PCH3CC5	PHYSICAL CHEMISTRY-II	CORE COURSE	6	5	

- > To recall the fundamentals of thermodynamics and the composition of partial molar quantities.
- > To apply the quantum mechanics to hydrogen and polyelectronic systems.
- > To familiarize the symmetry in molecules and predict the point groups.
- > To predict the vibrational modes, hybridization using he concepts of group theory

Prerequisites

Thermodynamics, chemical equilibrium, electrolytes, wave function, Schrodinger wave equation, Eigen values, Eigen functions, Hermitian properties of operators.

Course Out come and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Understand principle of classical and irreversible thermodynamics, interfaces of electrolytes, variation and approximation methods for wavefunctions.	K1,K2
CO2	Compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions, variation and Perturbation method, theories of electrolytic double layer.	К3
CO3	Analyses thermodynamic concepts, variation theorem, perturbation method and electro-capillary phenomenon.	K4
CO4	Discriminate various concepts of reversible and irreversible thermodynamics and theories of quantum mechanics	K5
CO5	Apply the concept of TDs to study the kinetics of chemical reactions, VB and perturbation theorem to construct trial wavefunction for hydrogen like molecules and slater determinant for conjugated system to determine energy and bond order.	К5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	3	3	1	3
CO2	3	2	2	3	2	2	3	3	3	2
CO3	3	3	3	1	2	3	2	2	2	3
CO4	3	3	3	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	3	3

"1"–Slight (Low)Correlation

"2"-Moderate (Medium)Correlation

"3"-Substantial (High)Correlation "-" indicates there is no correlation

SYLLABUS

UNIT	CONTENT	HOURS	Cos	CONG NITIVE	
				LEVEL	
Ι	Classical Thermodynamics: Partial molar properties-	18	CO1 CO2	K1 K2	
	Chemical potential- Gibb's- Duhem equation-binary and		CO2 CO3	K2 K3	
	ternary systems- Determination of partial molar		CO4 CO5	K4 K5	
	quantities. Thermodynamics of real gases - Fugacity-		COS	K.J	
	determination of fugacity by graphical and equation of				
	state methods-dependence of temperature- pressure and				
	composition- Thermodynamics of ideal and non-ideal				
	binary mixtures-Duhem - Margulus equation -				
	applications of ideal and non-ideal mixtures- Activity and				
	activity coefficients-standard states - determination-				
	vapour pressure- EMF and freezing point methods.				
II	Irreversible Thermodynamics: Theories of	18	CO1	K1	
	conservation of mass and energy entropy production in		CO2 CO3	K2 K3	
	open systems by heat- matter and current flow- force and		CO4 CO5	K4	
	flux concepts- Onsager theory-validity and verification-			К5	
	Onsager reciprocal relationships- Electro kinetic and				
	thermo mechanical effects-Application of irreversible				
	thermodynamics to biological systems.				
III	Electrode-electrolyte interface: Interfacial phenomena -	18	CO1	K1	
	Evidences for electrical double layer- polarizable and		CO2 CO3	K2 K3	
	non-polarizable interfaces- Electrocapillary phenomena -		CO4	K4	
	Lippmann equation electro capillary curves- Electro-		CO5	K5	
	kinetic phenomena electro-osmosis- electrophoresis-				
	streaming and sedimentation potentials-colloidal and poly				
	electrolytes- Structure of double layer- Helmholtz -Perrin,				
	Guoy- Chapman and Stern models of electrical double				
	layer- Zeta potential and potential at zero charge-				
	Applications and limitations.				
IV	Applications to Hydrogen and Polyelectron atoms:	18	CO1	K1	
	Hydrogen atom and hydrogen like ions-Hamiltonian-		CO2	K2	
			CO3 CO4	K3 K4	

	wave equation and solutions- radial and angular functions- representation of radial distribution functions- Approximation methods –variation methods- trial wave function-variation integral and application to particle in 1D box- Perturbation method - first order applications- Hatrefock self-consistent field method-Hohenberg-Kohn theorem and Kohn-Sham equation- Helium atom-electron spin-Paulis exclusion principle and Slater determination.	CO5	K5
V	Applications of quantum and group theory: Hydrogen Molecule-Molecular orbital theory and Heitler London (VB) treatment- Energy level diagram-Hydrogen molecule ion- Use of linear variation function and LCAO methods- Electronic conjugated system- Huckel method to Ethylene butadiene- cyclopropenyl, cyclo butadiene and Benzene- Applications of group theory to molecular vibrations- electronic spectra of ethylene.	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
VI	Self-study: (Not for final examination) Eigen value. Eigen function, applications of quantum mechanics-black body radiation, photoelectric effect, hydrogen spectrum. Need for quantum mechanics, Postulates.	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

- 1. Rajaram and KuriacoseJ.C (1986), Thermodynamics for Students of Chemistry, S.L.N.Chand and Co., Jalandhar, 2nd edition,
- 2. GrutuN, Grutu,A.(2015) AdvancedPhysicalChemistry.Pune,India.Pragathipublisher,18th Edition
- 3. Atkins, P.W. (2008). Physical Chemistry. Oxford, UK. Oxford University Press, 8th Edition.
- 4. Prasad, R.K.(2006).QuantumChemistry. New Delhi, India.New Age International(P)Ltd.,Revised3rd Edition.
- 5. Albert Cotton,F.(2008).Chemical Applications of Grouptheory. New Delhi, India.Willy India PvtLtd., publisher, 3rdEdition.
- 6. L.I Antropov (1977), Theoretical electrochemistry, Mir Publishers.

Reference Books

- 1. Rastogi R.P and Misra R.R (1990), Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi.
- 2. Maron S.H and Lando J.B (1974), Fundamentals of Physical Chemistry, Macmillan Publishers, New York.
- 3. Levine N (1983), Quantum Chemistry, Allyn& Bacon Inc, 4th edition.
- 4. Kaur.K, (2014), Spectroscopy, 16th edition, Pragati Prakashan Educational Publisher.
- 5. Sharma Y. R (2016), Elementary organic spectroscopy, revised 4th edition, S. Chand &Co Ltd, New Delhi.
- 6. Atkins P.W and de Paula J (2000), Physical Chemistry, 7th Ed., Oxford University Press, Oxford,
- 7. Rahman A (1986), Nuclear Magnetic Resonance-Basic Principles, Springer-Verlag, New York.
- 8. Levine N.I (1974), Molecular Spectroscopy, John Wiley & Sons, New York.

Web References

- 1.<u>https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA</u>
- 2.<u>https://www.chem.tamu.edu/rgroup/hughbanks/courses/673/lecturenotes/lecturenotes.</u>
- 3. http://www.kpgcollege.org/admin/upload/1586604901.pdf
- 4. <u>https://youtu.be/ALwziZSRiqM</u>
- 5. https://youtu.be/ACY-Wbudg0o
- 6. https://youtu.be/yO8v0nszUz8
- 7. https://nptel.ac.in/courses/104101124
- 8. https://ipc.iisc.ac.in/~kls/teaching.html
- 9. https://www.pdfdrive.com/modern-electrochemistry-e34333229.

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar **Course Designers**

Dr. V. Sangu

Semester III	Internal Marks	Internal Marks:40 External Marks:60			
COURSE	COURSE	CATEGORY	Hrs/Week	CREDITS	
CODE	TITLE				
	INORGANIC	CORE	6	5	
22PCH3CC4P	CHEMISTRY –II (P)	PRACTICAL – IV			

- To gain the knowledge on the molecular structure and of chemical and biological properties of biomolecules such as amino acids, proteins, lipids and nucleic acids.
- To know the mechanisms of enzymatic reactions, the various role of organic molecules in living systems.
- \succ To learn the concepts of bio energies.

Prerequisites

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course students will be able to	Cognitive Level
CO1	Apply the principles for the separation of cations.	K3
CO2	Prepare the inorganic complexes.	К3
CO3	Estimation of metal ions by volumetric and gravimetric methods	K3
CO4	Characterization of metal ions	K4
CO5	Identification and recrystallisation of complexes	K5

Mapping with Programme Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	2	3	3	3	2	2
CO2	2	3	2	2	1	3	2	3	3	3
CO3	3	2	2	3	3	3	3	3	2	2
CO4	3	2	2	2	3	3	3	3	2	2
CO5	3	2	2	3	2	3	3	3	2	2

"1" – Slight or No Correlation

"2" -(Moderate(/Medium) correlation

"3" – Substantial(High) Correlation

"-" - indicates No Correlation

I. TITRIMETRY AND GRAVIMETRY

A mixture of solution(s) should be given for estimation

- 1. Cu (V) and Ni (G)
- 2. Cu (V) and Zn (G)
- 3. Fe (V) and Zn (G)
- 4. Fe (V) and Ni (G)
- 5. Zn(C) and Cu(G)

II. PREPARATION OF COMPLEXES

- 1.Tris(thiourea)copper(I) chloride
- 2.Tetraamminecopper(II) sulphate
- 3. Potassium trioxalatoferrate
- 4.Potassium trioxalatoaluminate(III)
- 5.Potassium trioxalatochromate(III)
- 6.Hexammine cobalt(III) chloride.

1. Vogel A. I, (2000). Text Book of Quantitative Inorganic Analysis; 6th Ed, Longman, New Delhi.

Reference Books

1. Gurthu, J.N and Kapoor R, Advanced Experimental Chemistry, S. Chand and Co., 1987.

Web References:

1. <u>https://www.youtube.com/watch?v=OGFWZclzXkk</u>

Pedagogy

E-content, Demo, Hands on training

Course Designer

Dr. K. Shenbagam

Semester III	Internal Marks: 25	External Marks: 75				
COURSECODE	COURSETITLE	CATEGORY	Hrs/ Week	CREDITS		
22PCH3CCC2B	PHOTOCHEMISTRY AND ADVANCED CHEMICAL KINETICS	CORE CHOICE COURSE- II	5	4		

- > To learn the basic principles of photochemistry and energy transfer mechanism.
- > To learn about the theories of reaction rates and kinetics of fast reactions.
- > To gain knowledge about the catalysis and solar cells.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall the terms related to photochemistry, theories of reaction rates, kinetics of fast reactions and catalysis.	K1
CO2	Discuss the various methods to study photochemistry and chemical kinetics.	K2
CO3	Apply the concepts of photochemistry, chemical kinetics and solar cells.	К3
CO4	Analyze the importance of photochemistry, chemical kinetics, catalysis and solar cells.	K4
CO5	Evaluate the theory and applications of photochemistry, chemical kinetics, and solar cells.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	2	3	3
CO5	3	3	3	2	3	3	3	2	3	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	Cos	COGNITIVE LEVEL
Ι	Photo Chemistry	15	CO1,	K1, K2, K3,
	Principle - absorption and emission spectra -		CO2,	K4, K5
	properties of excited states - excited state		CO3,	
	acidity constants - dipole moments and redox		CO4,	
	properties - importance of photochemistry -		CO5	
	photo physical processes in electronically			
	excited molecules - types of photophysical			
	pathways - types of radiation less transitions -			
	fluorescence emission-fluorescence and			
	structure - Triplet state and phosphorescence			
	emission – delayed fluorescence - e - type and			
	p-type delayed fluorescence - photosynthesis.			
II	Electronically excited states	15	CO1	K1, K2, K3,
	Electronic, vibrational and spin levels -		CO2,	K4, K5
	unimolecular and bimolecular photophysical		CO3,	
	processes - kinetic collisions and optical		CO4,	
	collisions - mechanism of fluorescence		CO5	
	quenching - collisions in solution - kinetics			
	of collisional quenching - Stern- Volmer			
	equation - deviations from Stern- Volmer			
	equation - concentration dependence of			
	quenching and excimer formation -			
	quenching by added substances - charge			
	transfer- mechanism - energy transfer			
	mechanism.			

III	Theories of reaction rates	15	CO1,	K1, K2, K3,
	Potential energy surfaces – reaction		CO2,	K4, K5
	coordinate - theories of unimolecular gas		CO3,	
	phase reactions – Lindemann hypothesis –		CO4,	
	Hinshelwood treatment –reactions in solutions		CO5	
	- kinetic isotope effect - Linear free energy			
	relationships – Hammett equation – Okamato–			
	Brown Equation – Taft Equation - chain			
	reactions H_2 - Cl_2 , H_2 - Br_2 and H_2 - O_2 reaction			
	– explosion limits – factors affecting			
	explosion limits.			
IV	Kinetics of Fast Reactions	15	CO1,	K1, K2, K3,
	Chamical relayation method principles		CO2,	K4, K5
	Chemical relaxation method - principles – parameters affecting relaxation time and		CO3,	
	amplitude – derivation of equations for		CO4,	
	relaxation time for one-step transformations –		CO5	
	chemical relaxation in two step – experimental			
	techniques - pressure jump - principle and			
	relaxational behavior in beryllium sulphate			
	solutions – temperature jump - principle and			
	factors affecting relaxation time –competition			
	methods – nuclear magnetic resonance line			
	shape analysis – nuclear relaxation – effect of			
	chemical exchange –flash photolysis and			
	pulse radiolysis – principles and applications.			
	parse radiorysis principles and appreadolis.			

V	Catalysis and Solar Cells	15	CO1,	K1, K2, K3,
	Homogenous catalysis – heterogenous		CO2,	K4, K5
	catalysis – enzyme catalysis: Kinetics –		CO3,	
	influence of substrate concentration – pH –		CO4,	
	temperature – turn over number – catalytic		CO5	
	efficiency – enzyme-like catalysis– critical			
	micellar concentration (CMC) – factors			
	affecting CMC – thermodynamics of			
	micellization – reverse micelles – mechanism			
	of surface reactions – unimolecular and			
	bimolecular surface reactions – solar cells –			
	photovoltaic and photo galvanic cells –			
	prospects of solar energy conversion and			
	storage - organic solar cells.			
VI	Self-Study for Enrichment:	_	CO1,	K1, K2
VI	Self-Study for Enrichment: (Not to be included for External	-	CO1, CO2	K1, K2
VI	Self-Study for Enrichment:	-		K1, K2
VI	Self-Study for Enrichment: (Not to be included for External	-		K1, K2
VI	Self-Study for Enrichment: (Not to be included for External Examination)	-		K1, K2
VI	Self-Study for Enrichment:(Not to be included for ExternalExamination)Photo chemical reactions - ketones, olefins	-		K1, K2
VI	Self-Study for Enrichment:(Not to be included for ExternalExamination)Photo chemical reactions - ketones, olefinsconjugated olefins and aromatic compounds -	-		K1, K2
VI	Self-Study for Enrichment:(Not to be included for ExternalExamination)Photo chemical reactions - ketones, olefinsconjugated olefins and aromatic compounds -Mechanism of sensing - sensing techniques	-		K1, K2
VI	Self-Study for Enrichment:(Not to be included for ExternalExamination)Photo chemical reactions - ketones, olefinsconjugated olefins and aromatic compounds -Mechanism of sensing - sensing techniquesbased on coalitional quenching - electrical	-		K1, K2
VI	Self-Study for Enrichment:(Not to be included for ExternalExamination)Photo chemical reactions - ketones, olefinsconjugated olefins and aromatic compounds -Mechanism of sensing - sensing techniquesbased on coalitional quenching - electricalfield jump - principles and applications to	-		K1, K2
VI	Self-Study for Enrichment:(Not to be included for External Examination)Photo chemical reactions - ketones, olefins conjugated olefins and aromatic compounds - Mechanism of sensing - sensing techniques based on coalitional quenching - electrical field jump - principles and applications to neutralization reaction - methods with	-		K1, K2
VI	Self-Study for Enrichment:(Not to be included for ExternalExamination)Photo chemical reactions - ketones, olefins conjugated olefins and aromatic compounds - Mechanism of sensing - sensing techniques based on coalitional quenching - electrical field jump - principles and applications to neutralization reaction - methods with enhance time resolution- photoelectron	-		K1, K2

- Kalidas. C., (1995). Chemical Kinetic Methods Principles of relaxation techniques and Applications. (2nded.). New Age International (P) Ltd., New Delhi.
- 2. Keith J Laidler, (2004). Chemical Kinetics. (3rded.). Pearson education. New Delhi.
- 3. Santosh K. Upadhyay, (2006). Chemical Kinetics and Reaction Dynamics, New York: Springer with Anamaya Publishers. New Delhi.
- Margaret Robson Wright, (2005). An introduction to Chemical Kinetics. John Wiley & sons, Ltd. England.
- 5. Rohatgi K. K and Mukherjee, (1978). Fundamentals of Photochemistry. NewAge International Publisher. New Delhi.

Reference Books

- 1. Peter Atkins and Julio de Paula, (2016). Physical Chemistry. (10thed.). Oxford University Press. New Delhi.
- 2. Houston, Paul L, (2001). Chemical Kinetics and Reaction Dynamics. McGraw-Hill, Inc, Singapore.
- 3. Ira N. Levine, (2011). Physical Chemistry.(6thed.). McGraw-Hill Higher Education. New York.
- 4. Robert G. Mortimer, (2008). Physical Chemistry. (3rded.). Elsevier Academic Press. London.
- 5. Alan Cox and Terence James Kemp, (1971). Photochemistry. McGraw-Hill. European.

Web References

- 1. https://www.jstor.org/stable/2414473
- 2. <u>https://www.sciencedirect.com/topics/chemistry/excited-electronic-</u> state#:~:text=An%20excited%20electronic%20state%20of,any%20of%20the%20valence% 20electrons.
- 3. https://archive.nptel.ac.in/courses/104/101/104101128/
- 4. <u>https://www.youtube.com/watch?v=k3Y_tONFQTU</u>
- 5. https://pdfcoffee.com/homogeneous-catalyst-pdf-free.html

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

Dr. P. Thamizhini

Semester III	Internal Marks: 25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22PCH3CCC2C	ELECTRO CHEMISTRY	CORE CHOICE COURSE- II	5	4	

- > To understand the theories and concepts of electrochemistry.
- To understand the behavior of electrolytes in solution and compare the structures of electrical double layer of different models.
- > To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations
- To gain knowledge about modern areas of electrochemistry like electrocatalysis, photoelectron catalysis and bioelectrodics.

Pre requisites:

Electrode, bio electrochemistry, electro diodes, Debye-Huckel

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
	Categorize and account the importance ions in electrode reactions and applications of electrochemistry.	K1&K2
	Demonstrate and categorize the importance of electrodics and its reactions in multi-step systems	K3
	Understand the concept and applications of electrochemistry in photo and bio electrochemistry.	K4
	Recognize the characterization of electrolyte in Electro-chemical reaction mechanisms with rates of reaction.	K5
	Distinguish the categorization of electrolyte in Electro-chemical reaction mechanisms and bio electrochemistry.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	2	2	3	2	3	3	2	2	2

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Ionics: Arrhenius theory –limitations- van't Hoff factor and its relation to colligative properties- Deviation from ideal behavior- Ionic activity- mean ionic activity and mean ionic activity coefficient-concept of ionic strength-Debye Huckel theory of strong electrolytes- activity coefficient of strong electrolytes-Determination of activity coefficient ion solvent and ion-ion interactions- Born equation- Debye-Huckel Bjerrum model- Derivation of Debye-Huckel limiting law at appreciable concentration of electrolytes modifications and applications- Electrolytic conduction-Debye- Huckel Onsager treatment of strong electrolyte qualitative and quantitative verification and limitations- Evidence for ionic atmosphere- Ion association and triple ion formations.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,K6
II	Electrode-electrolyte interface: Interfacial phenomena - Evidences for electrical double laye-, polarizable and non-polarizable interfaces- Electrocapillary phenomena - Lippmann equation electro capillary curves- Electro-kinetic phenomena electro-osmosis- electrophoresis- streaming and sedimentation potentials- colloidal and poly electrolytes- Structure of double layer- Helmholtz –Perrin- Guoy Chapman and Stern models of electrical double layer- Zeta potential and potential at zero charge. Applications and limitations.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,K6

III	Electrodics of Elementary Electrode Reactions:			
	Behavior of electrodes- Standard electrodes and	15	CO 1	
	electrodes at equilibrium- Anodic and Cathodic		CO1, CO2,	K1, K2, K3,
	currents, condition for the discharge of ions- Nernst		CO3,	K4, K5,K6
	equation- polarizable and non-polarizable		CO4,	
	electrodes- Model of three electrode system- over		CO5	
	potential- Rate of electro chemical reactions- Rates			
	of simple elementary reactions- Butler-Volmer			
	equation-significance of exchange current density-			
	net current density and symmetry factor-Low and			
	high field approximations- symmetry factor and			
	transfer coefficient Tafel equations and Tafel plots.			
IV	Electrodics of Multistep Multi Electron System:			
	Rates of multi-step electrode reactions- Butler -	15	CO1	
	Volmer equation for a multi-step reaction- Rate		CO1, CO2, CO3,	K1, K2, K3, K4, K5,K6
	determining step- electrode polarization and			
	depolarization- Transfer coefficients, its		CO4,	
	significance and determination- Stoichiometric		CO5	
	number. Electro-chemical reaction mechanisms-			
	rate expressions- order and surface coverage-			
	Reduction of I $^{3-}$ -Fe $^{2+}$ -and dissolution of Fe to Fe			
	²⁺ -Overvoltage - Chemical and electro chemical-			
	Phase-activation and concentration over potentials-			
	Evolution of oxygen and hydrogen at different pH.			
V	Advanced topics in electrochemistry			
	Photo electrochemistry- introduction, band bending	15	CO1,	
	at the semiconductor/solution interface- photo		CO1, CO2,	K1, K2, K3,
	excitation of electrons by absorption of light-		CO3,	K4, K5,K6
	surface effects in photo electrochemistry- photo		CO4,	
	electrochemical splitting of water- photo		CO5	
	electrochemical reduction of CO ₂ . Bio			
	electrochemistry – bioelectrodics- membrane			
	potentials- electrochemical communication in			
	potentiais- electrochemical communication in			

	biological organisms- enzymes as electrodes- electron transfer in enzymes- electrochemical sensors- electrochemical biosensors- gas sensors- solid state devices and sensor arrays.			
VI	Self-Study for Enrichment (Not to be included for External Examination) Rates of electrochemical reactions- over potential- chemical- electrochemical conditions for the discharge of ions- electro catalysis- Basics of electrodics- rates of simple electrode reactions- elementary electron electrode process.	-	CO1, CO2, CO3	K1, K2, K3

- 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014.
- 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011.
- 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008.
- 4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai, 2007.
- 5. Joseph Wang, Analytical Electro chemistry, 2nd edition, Wiley, 2004.

Reference Books:

1. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press,

New York, 2008.

2. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer,

Plenum Press, New York, 2008.

- 3. Philip H. Rieger, Electrochemistry, 2nd edition, Springer, New York, 2010.
- 4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.
- 5. K.L. Kapoor, A Text book of Physical chemistry, volume-3, Macmillan, 2001.

Web Reference

1.<u>https://www.dalalinstitute.com/wp-content/uploads/Books/A-Textbook-of-Physical-Chemistry-Volume-1/ATOPCV1-4-5-Debye-Huckel-Limiting-Law-of-Activity-Coefficients-and-Its-Limitations.pdf</u> 2.<u>https://www.pdfdrive.com/modern-electrochemistry-e34333229</u>.

3. https://www.ph.tum.de/academics/org/labs/fopra/docs/userguide-28.en.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

Dr. K. Uma Sivakami

Semester III	Internal Marks:40		External	Marks:60
COURSECODE	COURSE TITLE	CATEGORY	Hrs/ Week	CREDITS
22PCH3CC5P	PHYSICAL CHEMISTRY – I (P)	CORE	6	5

- > To understand the principle of conductivity experiments through conductometric titrations.
- > To evaluate the order of the reaction, temperature coefficient, and activation energy of the reaction by following pseudo first order kinetics.
- > To construct the phase diagram of two component system forming congruent melting solid and find its eutectic temperatures and compositions. To determine the kinetics of adsorption of oxalic acid on charcoal.

Prerequisites

Basic Knowledge in electrochemistry, kinetics, phase rule and adsorption theories.

Course Outcome and Cognitive Level Mapping

CO No.	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall the principles associated with various physical chemistry experiments.	K1,K2
CO2	Scientifically plan and perform kinetics, rast and adsorption experiments.	K3, K4
CO3	Calculate and process the experimentally measured values and compare with graphical data.	K4, K5
CO4	Interpret the experimental data scientifically to improve students' efficiency for societal developments.	K6
CO5	Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO 5
CO1	3	3	3	3	3	3	3	3	2	3
CO2	3	3	3	3	3	2	3	3	3	2
CO3	3	3	3	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3
CO5	3	3	3	3	3	3	3	2	3	3

"1"–Slight (Low)Correlation

"2"-Moderate (Medium)Correlation

"3"-Substantial (High)Correlation "-" indicates there is no correlation

I. Kinetics

- 1. Study the kinetics of acid hydrolysis of an ester, relative strength of acids, determine the temperature coefficient and also the activation energy of the reaction.
- 2. Study the kinetics of the reaction between acetone and iodine in acidic medium by half-life method and determine the order with respect to iodine and acetone.
- 3. Study of effect of salt (ionic strength) on the kinetics of reaction between potassium persulphate and potassium iodide (second order reaction).

II. Phase diagram -Construction of phase diagram for a simple binary system

- 1. Naphthalene- Phenanthrene
- 2. Naphthalene Biphenyl
- 3. Benzophenone- diphenylamine
- 4. Benzoic acid and Cinnamic acid

III. Adsorption and CST

- 1. Adsorption of oxalic acid on charcoal and determination of surface area (Freundlich adsorption isotherm only).
- 2. Determination of critical solution temperature of phenol-water system.
- 3. Effect of added electrolyte on the CST of phenol-water system.

- 1. Viswanathan B and Raghavan P.S, Practical Physical Chemistry (2009), Viva Books, New Delhi,
- 2. Sundaram, Krishnan (1996), Raghavan, Practical Chemistry (Part II), Viswanathan Co. Pvt.,
- Athawale and Parul Mathur (2008), Experimental Physical Chemistry, New Age International (P)Ltd., New Delhi.
- 4. Lewers E.G (2011), Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2nd Ed., Springer, New York,

Reference Books

- 1. Yadav J.B, (2001), Advanced Practical Physical Chemistry, Goel Publishing House,
- 2. Gurthu J.N and Kapoor R (1987), Advanced Experimental Chemistry, S. Chand & Co.,

Web References

https://web.iitd.ac.in/~nkurur/2015-16/Isem/cmp511/lab_handout_new.pdf

Pedagogy

E-content, Demo, Hands on training, Quiz, Assignments.

Course Designers

Dr. V. Sangu,

Semester III		ŀ	External M	arks: 100
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PCH3DSE3A	CHEMISTRY FOR COMPETITIVE EXAMINATIONS	DISCIPLINE SPECIFIC ELECTIVE	4	3

- > To know the types of bonds, properties of transition elements, structures and functions of biomolecules.
- > To study the reaction mechanism and spectroscopy techniques.
- > To learn the catalytic behavior of organometallic compounds. Prerequisites

Polarity, oxidation state, biomolecules, selection rule

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall and understand the modern approaches of chemical bonding, coordination compounds, reaction mechanism and various spectral techniques.	K1,K2
CO2	Interpret the shapes, reactions, spectrum and point group of the molecules.	K3
CO3	Analyze bond properties, catalytic behaviour, enzyme mechanism, reagents and frequencies of functional group.	K4
CO4	Explain the molecular bonding, functions of biomolecules, rearrangements and applications of various spectroscopies.	K5
CO5	Predict the nature of bonds, organometallic reactions, electron transfers, reagents and structure of molecules.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	1	1	2	3	2	2	2	3

"3"-Substantial (High) Correlation

"-"indicates there is no correlation

[&]quot;1"–Slight (Low)Correlation "2"–Moderate (Medium)Correlation

UNIT	CONTENT	HOURS	СО	COGNITI VE
				LEVEL
Ι	Chemical Bonding: Ionic bond - lattice energy- Born-Haber cycle.	12	CO1, CO2,	K1, K2, K3, K4, K5, K6
	Covalent bond- polarities of bonds in molecules		CO3, CO4,	
	and their dipole moments. Valence bond theory		CO5	
	- VSEPR model- shapes of molecules.			
	Molecular orbital theory (LCAO method):			
	Bonding in H ₂ ,He ₂ , Li ₂ , Be ₂ , B ₂ , N ₂ , NO, CO,			
	HF, and CN ⁻ . Bond order- bond strength and			
	bond length.			
II	Chemistry of Coordination Complexes: IUPAC nomenclature - No. of possible isomers	12	CO1, CO2,	K1, K2, K3, K4, K5, K6
	- EAN rule- Valence bond theory - CFT and		CO3, CO4,	
	CFSE calculation-Jahn Teller distortion theory.		CO5	
	Organometallic reactions: ligand association -			
	dissociation - oxidative addition- reductive			
	elimination and insertion reactions. Reactions			
	of coordinated ligands in organometallics:			
	hydrogenation-hydroformylation - epoxidation			
	- metathesis- polymerization of olefins and			
	olefin oxidation (Wacker process).			
III	Bioinorganic Chemistry : Metal ions in biological systems - role in ion	12	CO1, CO2,	K1, K2, K3, K4, K5, K6
	transport across the membranes (molecular		CO3, CO4,	
	mechanism) - oxygen uptake proteins. Heme		CO5	
	and non-heme proteins -haemoglobin and			
	myoglobin - oxygen transport and storage -			
	electron transfer and oxygen activation-			
	cytochromes - Ferredoxin and Rubredoxin.			
	Copper containing proteins: Classification and			
	examples - electron transfer - oxygen transport			
	– oxygenation - oxidases and reductases -			

	cytochrome oxidase - superoxide dismutase			
	(Cu, Zn). Nickel containing enzyme: urease.			
IV	Reaction Mechanism of Rearrangements and	12	CO1,	K1, K2, K3,
	Reagents:		CO2, CO3,	K4, K5, K6
	Molecular Rearrangements: Baeyer-Villiger -		CO4,	
	Favorskii- Fries – Claisen – Cope - Stevens and		CO5	
	Wagner-Meerwein rearrangements. Aldol			
	condensation - Claisen condensation -			
	Dieckmann – Perkin – Knoevenagel –Witting -			
	Von Richter reactions. Synthetic Uses of			
	Reagents: OsO ₄ - HIO ₄ - Pb(OAc) ₄ - SeO ₂ -			
	NBS - LiAlH ₄ - NaBH ₄ - n-BuLi and MCPBA.			
V	Spectroscopy and Group Theory:	12	CO1,	K1, K2, K3,
	Principle and applications in structural		CO2, CO3,	K4, K5, K6
	elucidation. Rotational: Diatomic molecules -		CO4,	
	isotopic substitution and rotational constants.		CO5	
	Vibrational: Diatomic molecules- linear			
	triatomic molecules - specific frequencies of			
	functional groups in polyatomic molecules.			
	Mass Spectrometry- parent peak - base peak -			
	metastable peak -McLafferty rearrangement.			
	Group theory: symmetry elements - symmetry			
	operation - point group of simple molecules like			
	H ₂ O, NH ₃ , BF ₃ , C ₆ H ₆ , biphenyl and Ferrocene.			
VI	Self-Study for Enrichment:		CO1, CO2,	K1, K2, K3
	(Not to be included for External Examination)		CO2, CO3	
	Lewis structure -hydrogen bonding - calculation			
	of oxidation number and oxidation state - action			
	of enzymes - types of fissions and			
	rearrangements - electromagnetic radiations -			
	wavelength - frequency and wave number.			
			I	

- 1. Puri B. R., Sharma L. R., Day M. C., and Selbin J. (2012), Theoretical Inorganic Chemistry; Sisler, Literary Licensing (LLC), Montana.
- 2. Jagdambasingh (2016), Organic Synthesis, Pragati Prakashan.
- Kasim W and Schewederski B. (2013), Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2ndEdn. John Wiley and Sons, New York, USA.
- 4. Finar I.R, (2009) Organic Chemistry Vol.1, 7thEdn, Pearson Education Asia.

5. Banwell C.N and Mc Cash.E.M.(2000) Fundamentals of Molecular Spectroscopy, 4thEdn, Tata McGraw Hill, New Delhi.

Reference Books

1. Huheey J. E. (2006) Inorganic Chemistry, 4thEdn., Harper and Row publisher, Singapore.

2. Mukherji,S.M and Singh.S.P (2015) Reaction Mechanism in Organic Chemistry, (Revised Edition), Trinity, New Delhi.

- 3. Dargo.R.S. (1977) Physical Methods in Chemistry, Saunders, Philadelphia.
- 4. Carey.F.A and Sundberg R.J (2000) Advanced Chemistry Part A &B, 4th Edn, Kluwer Academic/Plenum Publishers.
- Ramam.K.V. (1990) Group Theory and its Application to Chemistry, Tata McGrawHill, New Delhi.

Web References

1.<u>https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organ</u> ic_Chemistry)/Fundamentals/Ionic_and_Covalent_Bonds

2. https://byjus.com/jee/coordination-compounds/

3.<u>https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Organometallic_Chemistry_(</u> Evans)/04%3A_Fundamentals_of_Organometallic_Chemistry

4.<u>https://www.ncbi.nlm.nih.gov/books/NBK544256/#:~:text=Myoglobin%20is%20a%20protein%20located,can%20reversibly%20bind%20to%20oxygen</u>.

```
5.<u>https://tmv.ac.in/ematerial/chemistry/kpb/SEM_IV_Honours_Rearrangement%20final.pdf</u>
```

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

Dr. A. Sharmila

Semester III	Internal Marks: 25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	HRs/ WEEKS	CREDITS	
22PCH3DSE3B	BIOORGANIC CHEMISTRY	DISCIPLINE SPECIFIC ELECTIVE	4	3	

- To Gain the knowledge on the molecular structure and of chemical and biological properties of biomolecules such as amino acids, proteins, lipids and nucleic acids.
- > To know the mechanisms of enzymatic reactions, the various role of organic molecules in living systems.
- > To learn the concepts of bio energies.

Prerequisites

Bio energies, nucleic acids, molecular structure.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course students will be able to	Level
CO1	To understand the basic concepts of biomolecules and natural products.	K2, K3
CO2	To integrate and assess the different methods of preparation of structurally different biomolecules and natural products.	K2, K3
CO3	To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.	K3, K4
CO4	To analyse and rationalise the structure and synthesis of heterocyclic compounds.	K4, K5
CO5	To develop the structure of biologically important heterocyclic compounds by different methods.	K4, K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"-Slight (Low)Correlation

"3"–Substantial (High) Correlation "-"

"2"-Moderate (Medium)Correlation

"-"indicates there is no correlation

UNIT	CONTENT	HOURS	Cos	COGNITIVE LEVEL
Ι	Chemistry and metabolism of carbohydrates Definition, classification and biological role of carbohydrates. Monosaccharides: Linear and ring structures (Haworth formula) of ribose, glucose, fructose and mannose (structure determination not required), physical and chemical properties of glucose and fructose. Disaccharides: Ring structures (Haworth formula) –occurrence, physical and chemical properties of maltose, lactose and sucrose. Polysaccharides: Starch, glycogen and cellulose – structure and properties, glycolysis of carbohydrates.	12	CO1 CO2 CO3 CO4 CO5	K2 K3 K4 K5
II	Steroids and Hormones: Steroids-Introduction, occurrence, nomenclature, configuration of substituents. Diels' hydrocarbon, stereochemistry, classification, Diels' hydrocarbon, biological importance, colour reactions of sterols, cholesterol-occurrence, tests, physiological activity, biosynthesis of cholesterol from squalene. Hormones-Introduction, classification, functions of sex hormones- androgens and estrogens, adrenocortical hormones- cortisone and cortisol	12	CO1 CO2 CO3 CO4 CO5	K2 K3 K4 K5
III	Proteins: Separation and purification of proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amino acid metabolism and urea cycle.	12	CO1 CO2 CO3 CO4 CO5	K2 K3 K4 K5

IV	Nucleic acids: Structure, methods for the synthesis of nucleosides - direct combination, formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson-Crick model, solid phase synthesis of oligonucleotides.	12	CO1 CO2 CO3 CO4 CO5	K2 K3 K4 K5
V	Fused Ring Heterocyclic Compounds:Benzofused five membered rings: Indole,isoindole, benzofuran and benzothiophene,Preparation and properties. Benzofused sixmembered rings: Quinoline and isoquinoline:Preparation by ring closure reactions, Reactions:Mechanism of electrophilic and nucleophilicsubstitutions, oxidation and reduction reactions	12	CO1 CO2 CO3 CO4 CO5	K2 K3 K4 K5
VI	Self-Study for Enrichment (Not to be included for External Examination) Formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Structure and functions of non- steroidal hormones-adrenaline and thyroxin.		CO1, CO2	K2, K3

- Lindhorst, T.K., (2007). Essentials of Carbohydrate Chemistry and Biochemistry, Wiley VCH, North America, 2007.
- 2. Finar, I. L., (1975). Organic Chemistry Vol-2, 5th edition, Pearson Education Asia.
- Ahluwalia V. K., Goyal, M., (2000). Textbook of Heterocyclic compounds, Narosa Publishing, New Delhi, 2000.
- Jain M. K., Sharma, S. C., (2014). Modern Organic Chemistry, Vishal Publishing Co., Jalandhar, Delhi.
- 5. Ahluwalia, V. K., (2009). Steroids and Hormones, Ane books pub., New Delhi.

Reference Books

1. Finar, I. L., (2004). Organic Chemistry Vol-1, 6thedition, Pearson Education Asia.

- 2. Pelletier, (2000). Chemistry of Alkaloids, Van Nostrand Reinhold Co.
- 3. Shoppe,(1994). Chemistry of the steroids, Butterworthes.
- Khan, I. A., Khanum, A.(2004). Role of Biotechnology in medicinal & aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad.
- 5. Singh. M. P., Panda, H., (2005). Medicinal Herbs with their formulations, Daya Publishing House, Delhi.

Web References

- 1. https://www.organic-chemistry.org/
- 2. https://www.studyorgo.com/summary.php
- 3. https://www.clutchprep.com/organic-chemistry

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. K. Shenbagam

Semester III	Internal Marks:25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PCH3DSE3C	PHARMACEUTICAL CHEMISTRY	DISCIPLINE SPECIFIC ELECTIVE	4	3

- > To understand the advanced concepts of pharmaceutical chemistry. To recall the principle and biological functions of various drugs.
- > Totrainthestudentstoknowtheimportanceaswelltheconsequencesofvariousdrugs.
- > To have knowledge on the various analysis and techniques.
- > To familiarize on the drug dosage and its structural activities

Prerequisites

Drugs, Isotopic dilution analysis, clincical tesing, Radio pharamaceuticals

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive Level
No.	On the successful completion of the course, students will be able to	
CO 1	To identify the suitable drugs for various diseases.	K1, K2
CO2	To apply the principles of various drug action and drug design.	K3
CO3	To acquire the knowledge on product development based on SAR.	К4
CO4	To apply the knowledge on applications of computers in chemistry.	K5
CO5	To synthesize new drugs after understanding the concepts SAR.	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"–Slight (Low)Correlation

"2"–Moderate (Medium)Correlation

"3"-Substantial (High)Correlation "-"indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNI TIVE LEVEL
I	Physical properties in Pharmaceuticals: Physical properties- Refractive index- specific & molar refraction. Optical activity\rotation- angle of rotation, specific rotation- examples-measurement of optical activity-Dielectric Constant- Induced Polarization- explanation-determination. Rheology of pharmaceutical systems-concept of viscosity, Newton's law of flow, Kinematic, Relative, Specific, Reduced & Intrinsic viscosity. Newtonian system, non-Newtonian system- Plastic flow-Pseudo plastic flow- Dilatant flow-Viscosity measurements- selection of viscometer for Newtonian	12	CO1, CO2, CO3, CO4, CO5	LEVEL K1, K2, K3, K4, K5, K6
Ii	 and non- Newtonian system. Isotopic Dilution analysis: Principle and applications Neutron activation analysis: Principle, advantages and limitations, Scintillation counters: Body scanning-radio pharmaceuticals. Properties-diagnostics, as therapeutics, for research and sterilization. Physico Chemical Properties and drugaction- Physico chemical properties of drugs-Partition coefficient-solubility-surface activity-degree of ionization. 	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
Ш	Drug dosage and product development:Drug dosage Forms- Drug Delivery system-DrugRegulationandcontrol-pharmacopoeiasformularies-sources of drug- drug nomenclature- routes ofadministration of drugs products-need for a dosage form-classification of dosage forms- Drug dosage and productdevelopment. Introduction to drug dosage Forms &DrugDelivery system-Drug regulation and	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K 6

	control-pharmacopoeias formularies, sources of drug,			
	drug nomenclature, routes of administration of drugs			
	products, need for a dosage form, classification of dosage			
	forms.			
IV	Development of new drugs:Drug design, the research for lead compounds- molecularmodification of lead compounds. Structure-ActivityRelationship(SAR)-Factorseffectingbioactivity-resonance-inductiveeffect-isoterism,-ioisosterism,spatialconsiderations -biological properties of simple functionalgroups-theories of drug activity-occupancytheory-	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
	ratetheory-induced-fittheory-4.3Quantitative structure activity relationship(QSAR)-Development of QSAR- drug recept or interactions-the additivity of group contributions- physico- chemical parameters- Lipophilicity parameters- electronic parameter-ionization constants.			
V	Antibiotics, Analgesics, Antipyretics and Anesthetics Definition – introduction – classification and biological actions- structure, properties and therapeutic uses – chemical structure and pharmacological activity of antibiotics, analgesics, antipyretics and anaesthetics- Aspirin, paracetamol and phenacetin – analgen– methohexitone-,ibuprofen, cocaine and amethocaine preparation- structure-properties and uses .	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
VI	Self-Study for Enrichment:(Not to be included for External Examination)Determination of sugar (glucose) in serum – o-toluidinemethod – diagnostic test for sugar in urine – Benedict's test– detection of diabetes – detection of cholesterol in urine –detection of anaemia – estimation of haemoglobin (Hbconcentration) – red cell count.		CO1, CO2 CO3	K1, K2, K3,K4

- 1. Bartley, E. H. (1901). Text-book of Medical and Pharmaceutical Chemistry. United Kingdom: P. Blakiston's Son & Company.
- 2. Braun, T., Kyrš, M., Tölgyessy, J. (2013). Isotope Dilution Analysis: International Series of Monographs in Analytical Chemistry. United Kingdom: Elsevier Science.
- 3. Shargel, L. (2016). Generic Drug Product Development: Specialty Dosage Forms. United Kingdom: CRC Press.
- 4. Toxicity Bibliography. (1972). United States: National Library of Medicine.

Reference Books

- 1. Ghosh, J. (n.d.). A Textbook of Pharmaceutical Chemistry. India: S. Chand Limited.
- 2. Alonso, J., Gonzalez, P. (2019). Isotope Dilution Mass Spectrometry. United Kingdom: Royal Society of Chemistry.
- 3. Isadore Kanfer, Leon Shargel, Generic Drug Product Development: International Regulatory Requirements for Bioequivalence. (2010). United Kingdom: CRC Press.
- 4. Goulding, R. (2013). Handbook of Dental Pharmacology and therapeutics. Netherlands: Elsevier Science..

Web References

https://www.ncbi.nlm.nih.gov/books/NBK482447/https://training.seer.cancer.gov/treatment/chem otherapy/types.html

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designers

- 1. Dr. R. Subha
- 2. Dr. C. Rajarajeswari

Semester III	Internal Mar	External Marks:75			
COURSE	COURSE	CATEGORY	Hrs/	CREDITS	
CODE	TITLE		Week		
22PCH3GEC1	NANO SCIENCE AND	GENERIC ELECTIVE	3	2	
	NANOTECHNOLOGY	COURSE-I (GEC)			

- > To understand the concept of nanomaterials and nanotechnology.
- To understand the various types of nanomaterials and their properties.
- > To understand the applications of synthetically important nanomaterials.
- > To correlate the characteristics of various nano materials synthesized by new technologies.
- > To design synthetic routes for synthetically used new nanomaterials.

Prerequisites

Basic knowledge of crystallography and material science

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course students will be able to	Cognitive Level
CO1	Explain methods of fabricating nanostructures	K1&K2
CO2	To relate the unique properties of nanomaterials to reduce dimensionality of the material.	K1,K2 &K3
CO3	To describe tools for properties of nanostructures.	K3
CO4	To discuss applications of nanomaterials.	K4
CO5	To Perceive the health and safety related to nanomaterial.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3	3	3	1	1	3
CO2	2	2	1	2	2	3	3	2	2	2
CO3	3	3	2	3	3	2	3	2	2	2
CO4	2	3	2	2	2	3	2	2	2	2
CO5	3	3	2	2	3	3	3	2	3	3

"1"–Slight (Low)Correlation

"3"-Substantial (High)Correlation

"2"-Moderate (Medium)Correlation

"-"indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Basics of Nanomaterials:	9	CO1,	K1, K2,K3, K4
	Introduction of nanomaterials and		CO2, CO3,	
	nanotechnologies – role of size – classification		CO4,	
	– 0D, 1D, 2D and 3D – Nano powder - Nano		CO5	
	powders - Features of nanostructure -			
	Background of nanostructures- Techniques of			
	synthesis of nanomaterials - Tools of the			
	nanoscience - Applications of nanomaterials			
	and technologies.			
II	Bonding, structure and properties of	9	CO1,	K1, K2, K3, K4
	nanomaterial:		CO2, CO3,	
	Predicting the type of Bonding in a substance		CO4,	
	crystal structure - Metallic nanoparticles -		CO5	
	Surfaces of materials, Nanoparticle size and			
	Properties - mechanical properties of			
	materials- thermal properties – electrical			
	properties – conductivity and resistivity -			
	magnetic properties- semiconductor material –			
	Synthesis of Nanoparticles: gold and silver,			
	metal oxides: silica, iron oxide and alumina.			
III	Synthesis:	9	CO2,	K1, K2, K3, K4
	Top down and Bottom-up approach		CO3, CO4	
	Limitations -Physical and chemical methods -			
	inert gas condensation, arc discharge, laser			
	ablation, sol-gel, solvothermal and			
	hydrothermal-CVD-types, metallo organic,			
	plasma enhanced, and low-pressure CVD.			
	Microwave assisted and electrochemical			
	synthesis			
IV	Characterization Techniques:	9	CO1	K1, K2, K3

	SEM, TEM and AFM– Surface plasmon resonance spectroscopy - principle, instrumentation and applications – Spectroscopic analysis- Dynamic light scattering - Zeta potential – Inductively coupled	CO2 CO3, CO4, CO5	K4, K5
	plasma mass Spectrometry – Matrix assisted		
V	Laser Desorption. Nano photonics- Foundation for nanophotonics- free-space propagation - confinement of photons and electrons - propagation through a classically Forbidden zone - localization under a periodic potential - nanoscale optical interactions - near field-optics - theoretical modeling of near-field nanoscopic interactions - photonic crystals - basic concepts - theoretical modeling of photonic crystals.	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5 K6
	Self-Study for Enrichment (Not to be included for External Examination) Nanofabrication - functional nanoparticles and nanomaterials,- Microwave assisted and electrochemical synthesis FESEM principle, instrumentation and applications- thermal and semi conducting properties of nanomaterials- Electrochemical sensors for food analysis and contaminant detection.	CO1, CO2	K2, K3

- 1. Mohan, S. and Arjunan, V. (2016). Principles of Materials Science. MJP Publishers
- 2. Arumugam,(2007). Materials Science, Anuradha Publications.
- 3. Giacavazzo et. al.,(2010).Fundamentals of Crystallography. International Union of Crystallography. Oxford Science Publications.
- 4. Woolfson, (2012). An Introduction to Crystallography, Cambridge University Press.

5. James, F. Shackelford, and Madanapalli, Muralidhara, K. (2007). Introduction to Materials Science for Engineers. 6thed., PEARSON Press.

Reference Books

- 1. Klabunde, K.J. (2009). Nanoscale Materials in Chemistry; 2nd Ed., Wiley-Interscience. New York.
- 2. Fujita, H. (2003) Micromachinesas Toolsin Nanotechnology Springer-Verlag. Berlin.

Web References

- 1. <u>http://xrayweb.chem.ou.edu/notes/symmetry.html.</u>
- 2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer:

Dr. G. Sivasankari

Semester IV	Internal Marks: 25		Externa	al Marks: 75
COURSECODE	COURSETITLE	CATEGORY	Hrs/Week	CREDITS
22PCH4CC6	PHYSICAL METHODS IN CHEMISTRY -II	CORE	6	5

- > To understand electronic spectroscopy of metal complexes
- > To study in detail IR, Raman and NMR of inorganic compounds
- > To learn the Mossbauer and magnetic properties of metal complexes

Prerequisites

Metal complexes, magnetic properties, electromagnetic spectrum.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
	Explain the principles of electronic, IR, NMR, ESR and mass spectrometry.	K1
(1)	Describe the applications of various spectroscopy to study the inorganic molecules.	K2
CO3	Sketch the different types of spectrum for metal complexes.	К3
CO4	Analyze the spectrum qualitatively certain chemical compounds.	K4
CO5	Assess the structure of a compound by various spectral data.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	2	3	3
CO5	3	3	2	2	3	3	3	2	3	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Electronic Spectroscopy		CO1,	K1, K2,
	Electronic configuration - terms and microstates of atoms		CO2,	K3, K4,
	and ions - term symbols (pn and dn) - spectroscopic terms		CO3,	K5
	- L-S coupling and jj coupling- effect of inter-electronic	18	CO4,	
	repulsion and spin- orbit coupling - selection rules - Orgel		CO5	
	diagram - prediction and assignment of transitions for			
	weak field $d^1 - d^9$ ions - calculation of β and 10 Dq for			
	simple octahedral complexes of Co and Ni- charge transfer			
	spectra – electronic spectra of [Ru(bipy) ₃] ²⁺			
II	IR and Raman Spectroscopy	18	CO1,	K1, K2,
	Introduction to IR spectroscopy- IR active and IR inactive		CO2,	K3, K4,
	vibrations - compare the intensity of M-O, M-N, M-X, and		CO3,	K5
	M-S stretching vibrations- factors affecting metal-ligand		CO4,	
	vibrations - Raman spectroscopy- theory of Raman effect-		CO5	
	applications of Raman spectroscopy for inorganic			
	chemistry - combined uses of IR and Raman Spectroscopy			
	in the structural elucidation of simple molecules like H2O,			
	ClF3, NO3-and ClO3 applications of IR to identify			
	terminal and bridging carbonyl group.			
III	NMR Spectroscopy	18	CO1,	K1, K2,
	Introduction to NMR spectroscopy - one dimensional		CO2,	K3, K4,
	NMR of ¹³ C, ¹⁵ N, ³¹ P, ¹⁹ F – structural determination of		СОЗ,	K5
	molecules by 2D NMR (Peptides-I & II) - chemical		CO4,	
	exchange - hydrogen or deuterium exchange - Diffusion		CO5	
	ordered spectroscopy (DOSY)- use of chemical shift			
	reagents - NMR of paramagnetic compounds (contact &			
	pseudo-contact shift) - magnetic resonance imaging			
	(MRI).			

IV	EPR Spectroscopy and Magnetic properties	18	CO1,	K1, K2, K3,
	Electron spin and its characteristics - treatment of EPR of		CO2,	K4, K5
	hydrogen atom with spin levels, g-value and hyperfine		СОЗ,	
	interaction in hydrogen atom and free radicals - McConnell		CO4,	
	equation - spectra of V(II), Mn(II), Fe(II), Co(II), Ni(II)		CO5	
	and Cu(II) complexes - applications of EPR to biological			
	molecules containing Cu(II) and Fe(III) ions - magnetic			
	properties - types of magnetism -magnetic properties of			
	free ions - magnetic moments and their applications to the			
	elucidation of structures of inorganic compounds -			
	magnetic properties of lanthanides and actinides.			
V	NRF and Mass spectrometry	18	CO1,	K1, K2, K3,
	Basic principle of NRF spectroscopy - Mossbauer		CO2,	K4, K5
	experiment - isomer shift - quadrupole splitting magnetic		CO3,	
	interactions - applications to iron and tin compounds -		CO4,	
	mass spectrometry - introduction - ion production -EI and		CO5	
	CI - factors affecting fragmentation - ion analysis - ion			
	abundance - mass spectral fragmentation of organic			
	compounds - common functional groups - molecular ion			
	peak - metastable peak - McLafferty rearrangement.			
VI	Self-Study for Enrichment	-	CO1	K1, K2
	(Not to be included for External Examination)			
	Applications of electronic spectroscopy to metal			
	complexes - symmetry notation for molecular vibrations -			
	Examples for different spin systems - chemical shifts and			
	coupling constants - factors affecting the magnitude of g			
	and A tensors in metal species - high resolution mass			
	spectrometry.			
			1	

- 1. Drago, R.S. (2012). Physical Methods in Inorganic Chemistry. Affiliated East-West Press Pvt. Ltd., New Delhi.
- 2. Drago, R.S. (1992). Physical Methods in Chemistry. Saunders College Publications, Philadelphia.
- 3. Cotton, F.A. & Wilkinson, G. (1999). Advanced Inorganic Chemistry. 6th Ed., WileyEastern Company, New Delhi.

4. Wheatley, P. J. (1981). The Determination of Molecular Structure. 2nd Ed., Dover Publications, Mineola.

5. Leigh, G. J. & Winterton, N. (2002). Modern Coordination Chemistry. Royal Society of Chemistry, UK.

Reference Books

- 1. Ebsworth, E. A. V. (1987). Structural Methods in Inorganic Chemistry. 3rd Ed., ELBS, Great Britain.
- 2. Kemp, W. (2011). Organic Spectroscopy. 3rd Ed., Palgrave, New York.
- 3. Puri, Sharma & Pathania, (2024). Principles of Physical Chemistry; 48th Ed., Vishal Publishing Co., Jalandhar.
- 4. Wahid.U.Malik, Tuli, G.D. & Madan, R.D. (2009). Selected Topics in Inorganic Chemistry. 7th edition, S.Chand, New Delhi.
- 5. Abdul Jameel, A. (2003). Application of Physical Methods to Inorganic compounds. JAN publication, Trichy.

Web References

- 1.<u>https://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/chemistry/07.inorganic_chemistry-</u> <u>ii/12. electronic_spectra_of_coordination_complexes-iv/et/7436_et_et.pdf</u>
- 2. https://oms.bdu.ac.in/ec/admin/contents/160_P16CH41_2020052904251921.pdf
- 3. <u>https://www.youtube.com/watch?v=4yUQMEwW4TU</u>
- 4. https://ccsuniversity.ac.in/bridge-library/pdf/chem-ESR-Lecture-5.pdf
- 5. https://www.blogs.uni-mainz.de/fb09akguetlich/files/2017/11/Moessbauer_Lectures.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

Dr. P. Thamizhini

Semester IV	Internal Marks:25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/ Week	CREDITS	
22PCH4CCC3A	CHEMISTRY OF NANOSCIENCE	CORE CHOICE	6	4	

- > To know the basic concepts of nanoscience and synthetic methods of various nanoparticles.
- > To know the ideas of nano clusters, reactions as semiconductors and its social applications like

agriculture and food technology.

Prerequisites

Synthesis, characterization, solar cells, nano structures. **Course Outcomes**

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Thorough knowledge of the general principles of physics, chemistry, electronics and biology that play a role on the nanometer scale	K1
CO2	Insight into the materials, fabrication and other experimental techniques that can be used on the nanoscale, as well as their limitations	K2
CO3	In-depth knowledge of at least one specialisation area within the field of nanoscience and nanotechnology	К3
CO4	Sufficient scientific background to undertake research.	K4
CO5	Proficiency in translating this knowledge into useful technological applications	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	2	2
CO3	2	3	3	3	3	2	3	3	3	2
CO4	3	3	2	3	2	3	2	2	2	2
CO5	2	3	1	2	3	3	3	3	2	3

"1"-Slight (Low)Correlation

"2"-Moderate (Medium)

"3"-Substantial (High)Correlation

"-"indicates there is no correlation

	Syllabus			
UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Synthetic Methods: Nano dimensional materials –	18	CO1	K1
	synthesis – hydrothermal synthesis- solvo thermal		CO2	K2
	synthesis – microwave irradiation- sol-gel - precipitation		CO3	K3
	technologies - chemical vapour condensation process -		CO4	K4
	sono chemical synthesis – Microbial and plant-mediated		CO5	К5
	synthesis.			
II	Characterization of Nanoscale Materials: Principles	18	CO1	K1
	of Atomic Force Microscopy (AFM) - Transmission		CO2	K2
	Electron Microscopy (TEM) Resolution and Scanning		CO3	K3
	Transmission Electron Microscopy (STEM) - Scanning		CO4	K4
	Tunneling Microscopy (STM) – Scanning Nearfield		CO5	K5
	Optical Microscopy (SNOM) and Scanning ion			
	conductance microscope.			
III	Carbon Clusters and Nanostructures: Nature of carbon	18	CO1	K1
	bond– new carbon structures – carbon clusters –		CO2	K2
	discovery of C60-alkali doped C60-superconductivity in		CO3	К3
	C60-larger - smaller fullerenes - carbon nanotubes -		CO4	K4
	synthesis - single walled carbon nanotubes - structure		CO5	K5
	and characterization - chemically modified carbon			
	nanotubes – applications of carbon nanotubes -			
	nanowires -synthetic strategies - applications of			
	nanowires			
IV	Chemical Sensors and Biosensors:	18	CO1	K1
	Biosensor and nanobiosensor - basic concepts –		CO2	K2
	characterization - Enzyme– meta NP hybrids for			

	biosensing - generation of nanostructures- Biomolecule		CO3	K3
	- different types of nanobiosensors - nano biosensors for		CO4	K4
	medical diagnostics -nanoprobes for analytical		CO5	K5
	applications.			
V	Solar and Fuel Cells: Nanomaterials for solar cells- Dye-	18	CO1	K1
	sensitized solar cells- Organic-inorganic hybrid solar		CO2	K2
	cells- Polymer composites for solar cells- current status		CO3	К3
	and future prospects. Polymer membranes for fuel cells,		CO4	K4
	Acid/ alkaline fuel cells- carbon nanotubes for energy		CO5	К5
	storage- use of nanoscale catalysts to save energy and			
	increase the industrial productivity.			
	Self-Study for Enrichment	-	CO1	K1
VI	(Not to be included for External Examination) Classification and properties of nano materials, Scanning		CO2	К2
	Nearfield Optical Microscopy, applications of carbon		CO3	К3
	nanotube, nano biosensors for medical diagnostics, Dye-		CO4	K4
	sensitized solar cells.			

- 1. Rao, C. N. R., Muller, A. and Cheetham, A. K., (2004). The Chemistry of Nanomaterials: (Eds), Vol. 1 and 2 Wiley-VCH. Germany, Weinheim.
- 2. Poole, C. P., and Owens, F. J., (2003). Introduction to Nanotechnology. Wiley Interscience New Jersey.
- 3. Pradeep, T. (2007) Nano: The Essentials in Understanding Nanoscience and Nanotechnology. 1st Ed., Tata McGraw Hill, New York.
- 4. Balandin, A. A., Wang, K. L., (2006). Handbook of Semiconductor Nanostructures and Nanodevices Vol 1-5. American scientific publishers.
- 5. Frewer, Lynn. Willehm, Norde, J. Fischer, R. H., and Kampers, W. H., (2011). Nanotechnology in the Agri-food sector Wiley-VCH Verlag.

Reference Books

- Klabunde, K.J., (2009). Nanoscale Materials in Chemistry; 2nd Ed., Wiley-Interscience, New York .
- 2. Fujita, H., (2003). Micromachines as Tools in Nanotechnology Springer-Verlag. Berlin.
- Kain, W., & Schweder ski, B. (2013). Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2nd Ed., John-Wiley R Sons, New York.
- Chaudry,Q., Castle, L., and Watkins, R., (2010) Nanotechnologies in Food. RSC Publications.

Web References

- 1. https://www.sathyabama.ac.in/sites/default/files/course-material/2020-10/note_1519281517.pdf
- 2. https://www.britannica.com/technology/solar-cell
- 3. https://www.nano.gov/about-nanotechnology/applications-nanotechnology
- 4. https://www.iberdrola.com/innovation/nanotechnology-applications

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

- 1. Dr. G. Sivasankari &
- 2. Dr. K. Shenbagam

Semester IV	Internal Marks:25	External Marks:75			
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22PCH4CCC3B	BIOFUELS	CORE CHOICE	6	4	

- > To understand basic concepts about biomass derived energy
- To acquire the concept of 1st generation, 2nd generation and advance biofuels
- > To understand terminologies related to biomass conversion and biofuel production
- > To describe techno-economic analyses of biofuel conversion technologies

Prerequisites

Biomass derived energy, advance biofuels, biofuel production, environmental impact. **Course Outcomes**

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognit
Num	On the successful completion of the course, students will be able to	ive
ber		Level
CO1	Know the outline about introduction of biofuels, biorefineries and environmental impacts.	K1, K2
CO2	Stabilize the knowledge on classifications and significance of biofuels in various fields.	K3
CO3	Interpret the characteristics and production methods of different biofuels and environmental impacts.	K4
CO4	Recognize the technique for synthesis and purification of classified biofuels.	K5
CO5	Predict the scope of different biofuels in various fields.	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"–Slight (Low)Correlation "2"–Moderate (Medium)Correlation

"3"-Substantial (High)Correlation "-"indicates there is no correlation

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
I	Biofuels: Classification of biofuels- solid-liquid - gaseous	18	CO1	K1
	fuels- production processes - raw materials - products -		CO2	K2
	Generation – first – second - third - fourth generation of		CO3	K3
	biofuels Concepts of biorefinery - alternative energies -		CO4	K4
	environmental - economic and regulatory issues- value		CO5	K5
	added processing of biofuel residues - co-products.			
II	Solid biofuels: Structure - properties of cellulose - isolation	18	CO1	K1
	and applications of lignin - pretreatment/fractionation by		CO2	K2
	dilute acid - steam explosion – organo solvent and		CO3	K3
	ammonia fiber explosion (AFEX) methods - biochemical		CO4	K4
	conversion of lignocellulosic to alcohols by separate		CO5	K5
	hydrolysis and fermentation (SHF) - simultaneous			
	saccharification and fermentation (SSF) process - thermal			
	conversion of biomass to liquid fuels by gasification -			
	pyrolysis			
III	Liquid Biofuels: Characteristics - significance of liquid	18	CO1	K1
	biofuels - production - refined oils as fuel hydrogenation of		CO2	K2
	unsaturated lipids - Fischer-Tropsch process for the		CO3	K3
	production of hydrocarbons from syngas - bioethanol- raw		CO4	K4
	materials - pretreatment processes- enzymatic hydrolysis		CO5	K5
	and fermentation – recovery - uses – regulations -			
	production of Ethyl ter-butyl ether (ETBE) biodiesel- trans			
	esterification - raw materials - pretreatment process-			
	separation – purification - quality- uses - regulations.			
IV	Gaseous Biofuels: Characteristics and scope of gaseous	18	CO1	K1
	biofuels- Energy conversion process- anaerobic digestion		CO2	K2
	acidogenesis – acetogenesis – methanogensis -		CO3	К3
	disintegration – hydrolysis - environmental and		CO4	K4
	optimization conditions for production of gaseous biofuels		CO5	K5
	- temperature -pH - alkalinity nutrients - organic loading			
	rate - solid and hydraulic retention time - granulation of			

	anaerobic biomass.			
V	Other Biofuels: Biobutanol production – Principles,	18	CO1	K1
	materials and feedstocks - Process technologies -		CO2	K2
	Biopropanol – Bioglycerol – Production of bio-oils via		CO3	K3
	catalytic pyrolysis - Life-Cycle environmental impacts of		CO4	K4
	biofuels and Co-products.		CO5	K5
	Self-Study for Enrichment	-	CO1	K1
VI	(Not to be included for External Examination)		CO2	K2
	Generation of biofuels -Integration of biofuels into			K3
	biorefineries - Environmental sustainability of biofuels -			
	Economic sustainability of biofuels.			

- 1) K. Sharma, Environmental chemistry, Krishanan pumblications, 2014.
- 2) Rao, M.N and Datta, A. K, Wastewater treatment, Oxfod and IBH publishers, 2007.
- 3) Robert C.Brown, Biorenewable resources: Engineering new products from Agriculture, Wiley Publishers, 2003.
- 4) Mousdale, Biofuels: Biotechnology, chemistry & Sustainble development, CRC Press, 2008.

Reference Books

- 1) Mark Hammer, Water and Wastewater Technology, Pearson, 1975.
- 2) Sharma, B.K, An Introduction to Environmental pollution, Krishna Prakashan media, 2001.
- 3) Caye Drapcho, Terry Walker, Engineering Process Technology, Mc Graw Hill,2008.

4)Sungyu Lee & Y.T. Shah, Biofuels and Bioenergy Process Technologies, CRC Press, 2013.

Web References

- <u>https://www.slideshare.net/flanzashebarina/biofuels-28535080</u>.
 <u>https://unstats.un.org/unsd/energy/meetings/2016iwc/19renewables.ppsx</u>.
- 3. https://www.slideshare.net/AjaySinghLodhi/biofuel-226702434.
- 4. https://www.rgpv.ac.in/PDF/05%20Biomass.ppt. 5.https://www.slideshare.net/tarun316/biobutanol-ppt.

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. K. Uma Sivakami

Semester IV	Internal Marks:	:25 External Marks:75		
COURSECODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22PCH4CCC3C	BIOINORGANIC CHEMISTRY	CORE CHOICE	6	4

- \checkmark To learn the basic concepts of bioinorganic chemistry
- \checkmark To give ideas of biological membrane
- \checkmark To learn the concepts of oxygen transport
- \checkmark To study the role of biological enzymes

Prerequisites

Biological enzymes, Enzyme functions, metallo enzymes **Course Outcomes**

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall and summarize the fundamentals of bioinorganic chemistry	K1, K2
CO2	Interpret the concept to structure, function and transport of enzymes.	K3
CO3	Categorize the interaction and effect of biological enzymes	K4
CO4	Evaluate the role of metals in function of biological system	K5
CO5	Predict the favorable conditions of application of metals and enzymes in daily life.	K6

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1"–Slight (Low)Correlation

"2"-Moderate(Medium)Correlation

"3"-Substantial (High)Correlation "-"indicates there is no correlation

	Syllabus			
UNIT	CONTENT	HOURS	COs	COGNITIVE
		10	C C C C	LEVEL
Ι	General Principles of Bioinorganic Chemistry:	18	CO1,	K1,
	Occurrence and availability of Inorganic elements in		CO2,	K2,
	biological systems- Metal ion interactions with purine		СОЗ,	КЗ,
	and pyrimidine bases, nucleosides, nucleotides and		CO4,	K4,
	nucleic acids - DNA and RNA, metal ions in genetic		CO5	K5, K6
	information transfer- Different possible ways of DNA			
	interaction			
II	Function and Transport of Alkali and Alkaline earth	18	CO1,	K1,
	metals: Uptake, transport and storage of metal ions by		CO2,	K2,
	organisms - structure and functions of biological		CO3,	КЗ,
	membranes - the generation of concentration gradients		CO4,	K4,
	(the Na+ -K + pump) - mechanisms of ion-transport		CO5	K5, K6
	across cell membranes – bleomycin - siderophores (e.g.			
	enterobactin and desferrioxamine) - transport of iron by			
	transferring - storage of iron by ferritin - bio chemistry			
	of calcium as hormonal messenger.			
III	Metalloporphyrins/Metalloenzymes: Dioxygen	18	CO1,	K1,
	transport and storage - hemoglobin and myoglobin:		CO2,	K2,
	electronic and spatial structures - hemeythrin and		CO3,	K3,
	hemocyanine - synthetic oxygen carriers, model systems		CO4,	K4,
	- blue copper proteins (Cu) - iron-sulfur proteins (Fe)-		CO5	K5, K6
	cytrochromes electron transport chain - carbon			
	monoxide poisoning.			
IV	Redox enzymes: Catalase, peroxidase, super oxide	18	CO1,	K1,
	dismutase (SOD), cytochrome P-450, nitric oxide		CO2,	K2,
	synthases (NOS), ascorbate oxidase, aldehyde oxidase -		CO3,	КЗ,
	molybdo enzymes- xanthene oxidase, nitrate reductase,		CO4,	K4,
	sulfite oxidase including some model study.		CO5	K5, K6

V	Bioenergetics	18	CO1,	K1,
	DNA polymerization, glucose storage, metal complexes		CO2,	K2,
	in transmission of energy- chlorophylls, photo system I		CO3,	КЗ,
	and photo system II in cleavage of water - Model		CO4,	K4,
	systems.		CO5	K5, K6
	Self-Study for Enrichment:		CO1,	K1,
VI	(Not to be included for External Examination)		CO2	K2,
	Medicinal bioinorganic chemistry: platinum complexes		CO3	КЗ,
	in cancer therapy – cis-platin and its mode of action –			K4
	metal toxicity. Metals in medicine: anticancer agents,			
	diabetes, arthritis, radionuclides and related applications			

- Lippard, S. J., and Berg, J. M., Principles of Bioinorganic Chemistry, (1997) Panima Publishing Company, New Delhi
- 2. Kaim W., and Schewederski, B., Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life (2013 John Wiley & Sons, New York, USA,
- 3. Bertini, I., Gray, H. B., Lippard, S. J. and Valentine, J. S., Bioinorganic Chemistry, 1 st South Asia edition, (2007) Viva books Pvt. Ltd
- 4. Huheey, J. E., Keiter, E. A. and Keiter, R. L., and Medhi, O. K., Inorganic Chemistry Principles of Structure and Reactivity,4th edition (2006), Pearson Education,
- Behrens, P., Bauerlein, E., Hand Book of Biomineralization, 1st edition, Vol. 1& 2 Wiley-VCH.
- Arnikar, H. J., Essentials of Nuclear Chemistry, 4th edition (1995), New Age International Publishers Ltd., New Delhi,
- Loveland, W. D., Morrissey, D. J., Seaborg, G. T., Modern Nuclear Chemistry (2006), Wiley-VCH Verlag GmbH Co. KGaA
- 8. Glasstone, 'Source Book on Atomic Energy', 3rd edition (1979), Affiliated East West Press.
- 9. Lee, J. D. Concise Inorganic Chemistry, 5th edition (1996) Blackwell Science.
- S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry (1994), University Science Books, Mill Valley, California.

Reference Books

- 1. Purcell, K. F. and Kotz, J. C., Inorganic Chemistry, (2012) Cengage Learning.
- Cotton, F. A., Wilkinson, G., Carlos A. Murillo, Manfred Bochmann, Advanced Inorganic Chemistry, 6th edition (2007) A Wiley - Interscience Publication, John – Wiley & Sons, USA.
- 3. Atkins, P., Overton, T., Rourke, J., Weller M., and Armstrong, F., Inorganic Chemistry, 5th edition (2010) Oxford University Press.
- Lehninger, A., Nelson, D. L., Cox, M. M, Principles of Biochemistry, 5th edition (2008) W.H Freeman.
- Alessio, E., Bioinorganic Medicinal Chemistry, 1st Edition (2012) Wiley-VCH Verlag GmbH Co. KGaA.

Web References

- 1. <u>https://www.youtube.com/watch?v=jrkqvZSCsQU</u>
- 2. https://www.sciencedirect.com/science/article/pii/S2772422022000283
- 3. https://www.slideshare.net/fatimasaleh94214/enzymes-2-30256325
- 4. https://www.slideshare.net/iqbal1313/bioenergetics-25078367

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designers

Dr. K. Shenbagam, Assistant Professor of Chemistry

Semester IV	Internal Marks 40		External Ma	arks:60
COURSECODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDIT S
22PCH4CC6P	PHYSICAL CHEMISTRY- II (P)	CORE	6	5

- > To interpret the electrical devices standardization
- This course helps to perform various electrical experiments. \succ
- > To know the difference between conductometric and potentiometric titration.
- To analyze the pH meter and to identify common items as acid, base or neutral. \triangleright

Course Outcome

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain the various types of reactions using instruments	K2
CO2	Apply the methods and identify the suitability of methods	K3
CO3	Analyze the electrical data and correlating results graphically	K3
CO4	Estimate the concentration of ions using Potentiometer	K4
CO5	Estimate the concentration of ions using Conductometer	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	1	3	2	1
CO2	2	3	2	2	2	3	2	1	3	2
CO3	2	3	2	2	2	1	1	1	2	2
CO3	2	3	2	2	2	2	1	2	2	1
CO3	2	3	2	2	2	1	1	1	2	2

"1"–Slight (Low)Correlation "2"–Moderate (Medium)Correlation "3"–Substantial (High)Correlation "-"indicates there is no correlation "2"-Moderate (Medium)Correlation

Syllabus

Any ten experiments (to be decided by the course teacher) out of the following experiments.

A) Conductometry

- 1)Acid-alkali titrations.
- 2) Precipitation titration
- 3) Displacement titrations.
- 4) Determination of dissociation constant of weak acids
- 5) Solubility product of sparingly soluble salts like Barium chromate and Lead sulphate.
- 6) Verification of Onsager equation for a strong electrolyte like NaCl and KCl.
- 7) Determination of relative strength of two acids.
- 8) Determination of degree of hydrolysis and hydrolysis constant of a substance.

B) Potentiometry

- 1) Acid- alkali titrations.
- 2) Precipitation titrations.
- 3) Redox titrations.
- 4) Determination of dissociation constant of weak acids
- 5) Determination of solubility product of silver salts.
- 6) Determination of activity and activity coefficient of ions.

C) pH-Metry

- 1) Titration of ortho-phosphoric acid.
- 2) To determine the pH of a buffer solution using a quinhydrone electrode-Henderson's equation.

- 1. Yadav J. B, Advanced Practical Physical Chemistry, 20th Edition (2001), GOEL Publishing House
- 2. Levitt B. P., Findlay's Practical Physical Chemistry; 9th Edition, 1985, Longman.
- 3. Gurtur J. N and Kapoor R, Advanced Experimental Physical Chemistry, S. Chand and Co.

Vol. 1- 1997

Reference Books

- 1. Das R.C and Behera Experimental Physical Chemistry Tata McGraw Hill, 1983
- Shoemaker and Gerland, Advanced Physical Chemistry Experiments, McGraw –Hill Higher Education 2009

Web References

- 1. https://www.youtube.com/watch?v=-GS6uoFf3qQ
- 2. <u>https://www.youtube.com/watch?v=j_Fk3X3YNww</u>
- 3. <u>https://www.youtube.com/watch?v=gd1YQr-74sw</u>
- 4. <u>https://www.youtube.com/watch?v=JhKUEM29k94</u>
- 5. https://www.youtube.com/watch?v=YWBZuOgvPWE

Pedagogy

Chalk and talk, PPT, Discussion, Demo, Quiz, Seminar

Course Designers

Dr. K Shenbagam

Semester IV	Internal Marks:	External Marks: 75			
COURSE	COURSE TITLE	CATEGORY	Hrs. /	CREDITS	
CODE			Week		
22PCH4GEC2	CORROSION AND	GENERIC	3	2	
	POLLUTION	ELECTIVE			
	MANAGEMENT	COURSE			

- > To describe the forms, mechanism, and kinetics of corrosion.
- To determine the probable corrosion, corrosion rate, and corrosion mechanism of the metallic material in the given environment.
- > To recommend a suitable corrosion protection method for sustainable materials use.

Prerequisites

Corrosion, pollution, solid waste, e-waste

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement						
Number	On the successful completion of the course, students will be able to						
CO1	Recall the basic concept of corrosion and pollutions.	K1					
	Understand the types of corrosion and objectives of pollution management.	K2					
CO3	Illustrate the significance of corrosion inhibition and pollution control.						
CO4	Analyze the methods to prevent corrosion and pollution.						
CO5	Propose a way to avoid corrosion and pollution.	K5					

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Basic aspects of corrosion:	09	CO1,	K1, K2, K3, K4,
	Importance of corrosion studies - EMF and		CO2,	K5
	galvanic series - categorization of corrosion - dry		CO3,	
	corrosion and electrochemical corrosion -		CO4,	
	difference between chemical and		CO5	
	electrochemical corrosion - factors influencing			
	corrosion.			
II	Types of corrosion:	09	CO1,	K1, K2, K3, K4,
	Pitting, inter-granular, waterline corrosion, stress		CO2,	K5
	corrosion, erosion corrosion, galvanic corrosion,		CO3,	
	dezincification - atmospheric corrosion -		CO4,	
	classification, factors influencing atmospheric		CO5	
	corrosion - microbiological corrosion - soil			
	corrosion.			
III	Effective Coatings:	09	CO1,	K1, K2, K3, K4,
	Introduction - classification - metallic coating,		CO2,	K5
	non - metallic coating - organic coatings - pre-		CO3,	
	treatment of the surface - metallic coatings - hot		CO4,	
	dipping, spraying, cladding inorganic non-		CO5	
	metallic coating - chromate coating, phosphate			
	coating and oxide coating - organic coatings -			
	paints - requirements of good paint.			
IV	Control Measures of air and soil pollution:	09	CO1,	K1, K2, K3, K4,
	Control of particulate emissions - gravitational		CO2,	K5
	settling chambers - cyclone separators - fabric		CO3,	
	filters - electrostatic precipitators - wet scrubbers		CO4,	
	- control of gaseous pollutants - control of		CO5	
	nitrogen oxides pollution - control of SOx			
	pollution - control measures to prevent soil			
	pollution - integrated plant nutrient management			

	- integrated pest management - bioremediation -			
	phytoremediation.			
V	Solid and e-waste management:	09	CO1,	K1, K2, K3, K4,
	Objectives of solid waste management -		CO2,	K5
	municipal solid waste treatment - dumping -		CO3,	
	composting - vermi composting - sanitary land fill		CO4,	
	- incineration of municipal solid waste - industrial		CO5	
	solid waste treatment - recycling techniques - e-			
	waste - composition - recovery of metals and			
	recycling.			
VI	Self-Study for Enrichment:	-	CO1,	K1, K2
	(Not to be included for External Examination)		CO2	
	Forms of metallic corrosion, corrosion failure			
	analysis, corrosion testing and monitoring -			
	control of pollutant emission from mobile			
	sources - biodegradability of organic matter,			
	cellulosic waste and lignin - solid waste			
	management by biotechnology.			

- 1. Pletcher, D., & Walsh, F. C. (1993) Industrial Electrochemistry, Vol. II, Blakrid Academic Professional, London.
- Jones, D. (1992) Principles and prevention of corrosion, Macmillan Publications, New York.
- 3. Meketta, J. J. (1993) Cathodic protection Theory and practice, Marcel Dekker Publication, New York.
- 4. Kaur, H. (2016). Environmental Chemistry, A Pragati Prakashan Meerut Publication.

Reference Books

- 1. Schweitzer, P. A. (2009). Fundamentals of Corrosion, CRC Press, 1st Edition.
- R. Winston Revie, R., & Uhlig, H. H. (2008). Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, Wiley, 4th Edition.
- 3. Washington, D. C. (2011). Research Opportunities in Corrosion Science and Engineering, National Academic Press.
- 4. De, A. K. (2018). Environmental Chemistry. 9th Edition, New Age International

Publishers, New Delhi.

Web References

- 1. https://www.slideshare.net/rayhan_u01/corrosion-engineering-54230652.
- https://www.usna.edu/NAOE/_files/documents/Courses/EN380/Course_Notes/Ch05_ Corrosion_Types.pdf.
- 3. <u>https://www.slideshare.net/Faisal419/coating-chemistry.</u>
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963874/
- 5. <u>https://ec.europa.eu/echo/files/evaluation/watsan2005/annex_files/WEDC/es/ES07CD</u> .pdf
- 6. <u>https://cpcb.nic.in/displaypdf.php?id=em9iZW5nYWx1cnUvQVBDRHMucGRm</u>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

- 1. Dr. K. Uma Sivakami
- 2. Dr. S. Devi