CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC

TIRUCHIRAPPALLI

PG AND RESEARCH DEPARTMENT OF CHEMISTRY

B.Sc., Chemistry Syllabus 2022-2023 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG DEPARTMENT OF CHEMISTRY

VISION

 To progress into a centre of superiority in Chemistry that will blend state-of-the-art practices in professional teaching in a communally enriching way, with the holistic progress of the students as its prime emphasis.

MISSION

- To produce graduates committed to integrity, professionalism and lifelong learning by widening their knowledge horizons in range and depth.
- To awaken the young minds and discover talents to achieve personal academic potential by creating an environment that promotes frequent interactions, independent thought, innovations, modern technologies and increased opportunities.
- To enhance the quality through basic and applied research frameworks, and encourage the students to take part in entrance and competitive examinations for higher studies and career.
- To enhance services to the community and build partnerships with the industry.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT
	To facilitate value-based holistic and comprehensive learning by integrating innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to nurture the spirit of critical thinking and encourage them to achieve their goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing global scenario and gain access to versatile career opportunities in multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity to transform students into committed professionals with a strong attitude towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and environmental contexts and demonstrate the knowledge for an overall sustainable development.

PROGRAMME OUTCOMES FOR B.Sc., Mathematics, B.Sc., Physics, B.Sc., Chemistry PROGRAMME

	Programme Outcome
PO No.	On completion of B.Sc., Mathematics, B.Sc., Physics, B.Sc. Chemistry
	Programme, the students will be able to
PO1	Domain knowledge:
	Analyze, design and develop solutions by applying firm fundamental concepts
	of basic sciences and expertise in discipline.
PO2	Problem solving:
	Ability to think rationally, analyse and solve problems adequately with practical
	knowledge to assess the environmental issues
PO3	Creative thinking and Team Work:
	Develop prudent decision-making skills and mobility to work in teams to solve
	multifaceted problems.
PO4	Employability:
	Self-study acclimatize them to observe effective interactive practices for
	practical learning enabling them to be a successful science graduate.
PO5	Life Long Learning:
	Assure consistent improvement in the performance and arouse interest to pursue
	higher studies in premium institutions.

CAUVERYCOLLEGEFORWOMEN(AUTONOMOUS) PG AND RESEARCH DEPARTMENTOF CHEMISTRY

B.Sc. CHEMISTRY

(For the Candidates admitted from the Academic year 2022 -2023 and onwards)

er					S./	ts		Exam		
lest	Part	Course	Course Title	Course Code	st.Hrs. Week	Credits	s.	Marks		Total
Semester	Ρ				Inst.Hrs. Week	Cr	Hrs.	Int.	Ext	Ĕ
		Language	2	22ULT1	6	3	3	25	75	100
		Course-I(LC)	Hindi Literature & Grammar – I	22ULH1						
	Ι		Literature and Sanskrit Story	22ULS1						
				22ULF1						
	п	English Language Course-I (ELC)	Functional English for Effective Communication–I	22UE1	6	3	3	25	75	100
		Core Course-I (CC)	General Chemistry	22UCH1CC1	5	5	3	25	75	100
		· /	General Chemistry(P)	22UCH1CC1P	3	3	3	40	60	100
т		First Allied	Calculus and Fourier Series	22UCH1AC1A	4	3	3	25	75	100
I	Ш	Course-I(AC)	Biochemistry– I	22UCH1AC1B						
		First Allied Course - II (AC)	Algebra, Analytical Geometry of 3D &Trigonometry	22UCH1AC2A	4	3	3	25	75	100
		~ /	Biochemistry(P)	22UCH1AC2BP				40	60	
	IV	Ability Enhancement Compulsory Course - I (AECC)	UGC Jeevan Kaushal – Universal Human Values	22UGVE	2	2	-	100	-	100
		(/		Total	30	22				700
		Language Course-II(LC)	Idaikala Illakiyamum Puthinamum	22ULT2	5	3	3	25	75	100
	Ι	× /	Hindi Literature &Grammar – II	22ULH2						
			Poetry Textual Grammar and Alankara							
				22ULF2				• -		100
Π	п	English Language Course-II (ELC)	Functional English for Effective Communication– II	22UE2	6	3	3	25	75	100
		· /	Inorganic and Physical Chemistry	22UCH2CC2	5	5	3	25	75	100

		1	1	I		r	1	1	r	
		Core Practical- II (CP)	Preparation and Analysis of Industrial Compounds (P)	22UCH2CC2P	3	3	3	40	60	100
		Core Course- III (CC)	Material Science	22UCH2CC3	3	3	3	25	75	100
		First Allied Course-III	ODE, Laplace Transforms and Statistics	22UCH2AC3A	4	3	3	25	75	100
		(AC)	Biochemistry– II	22UCH2AC3B						
		Ability Enhancement Compulsory Course - II (AECC)	Environmental Studies	22UGEVS	2	2	-	100	-	100
	IV	Ability Enhancement Compulsory Course - III (AECC)	Innovation and Entrepreneurship	22UGIE	2	1	-	100	-	100
		Extra Credit Course	SWAYAM		As po	er UG	C Re	comm	henda	ation
	Tot				30	23				800
		Language	Kappiyamum Nadagamum	22ULT3	5	3	3	25	75	100
	Ι		Hindi Literature & Grammar – III							
	1		Prose Textual Grammar and Vakyarchana							
		F 1' 1	Intermediate French– I	22ULF3		2	2	25	75	100
	II	English Language Course-III (ELC)	Learning Grammar through Literature – I	22UE3	6	3	3	25	75	100
		Core Course- IV (CC)	Organic and Analytical Chemistry	22UCH3CC4	6	6	3	25	75	100
		III(CP)	Analysis and Preparation of Organic Compounds (P)	22UCH3CC3P	3	3	3	40	60	100
Ш	III	Second Allied Course-I(AC)	Physics – I	22UCH3AC4	4	3	3	25	75	100
		Second Allied Course-II(AP)	Physics-I (P)	22UCH3AC5P	4	3	3	40	60	100
		Generic	Chemistry in Everyday life	22UCH3GEC1	2	2	3	25	75	100
	IV	Elective Course		22ULC3BT1						
	- '	- I (GEC)	Special Tamil-I	22ULC3ST1				~~~		
		Extra Credit	SWAYAM		D	As p				
		Course		Total	8 30	lecomi 23	menc	lation	r	700
			15DoveINITED	NSHIPduringSemeste						700
				2ULT4	6 F Holl	ays 3	3	25	75	100
			Urainadaiyum		0	5	5	23	15	100
IV	I Language			2ULH4						
		Course- IV (LC)		2ULS4						
			Intermediate French– II 22	2ULF4						
						i				

		English Language Course - IV	Learning Grammar through Literature–II	22UE4	6	3	3	25	75	100
	-	(ELC)								
		Core Course- V(CC)	Inorganic and Organic Chemistry	22UCH4CC5	6	6	3	25	75	100
		Core Practical- IV(CP)	Inorganic Qualitative Analysis (P)	22UCH4CC4P	4	4	3	40	60	100
		Second Allied Course - III (AC)	Physics – II	22UCH4AC6	4	3	3	25	75	100
		Internship	Internship	22UCH4INT	-	2	-	-	-	100
		Generic Elective Course- II (GEC)	Food Adulterants and Health Care	22UCH4GEC2	2	2	3	25	75	100
			Basic Tamil-II	22ULC4BT2						
	IV		Special Tamil-II	22ULC4ST2						
		Skill Enhancement Course - I (SEC)	Chemistry of Consumer Products (P)	22UCH4SEC1P	2	2	3	40	60	100
		Extra Credit Course	SWAYAM		-	er UG	C Re	comn	nenda	ation
				Total	30	25				800
		Core Course- VI(CC)	Inorganic Chemistry–I	22UCH5CC6	6	6	3	25	75	100
		Core Practical- V(CP)		22UCH5CC5P	3	3	3	40	60	100
		Core Course- VII(CC)		22UCH5CC7	6	6	3	25	75	100
		Core Course- VIII(CC)		22UCH5CC8	6	6	3	25	75	100
		Discipline Specific Elective - I (DSE)	A. Nuclear and Industrial Chemistry	22UCH5DSE1A	5	4	3	25	75	100
V			B. Basics of Nanoscience and Nanotechnology	22UCH5DSE1B						
			C. Polymer Chemistry	22UCH5DSE1C						
		Ability Enhancement Compulsory Course-IV(AECC)	UGC Jeevan Kaushal- Professional Skills	22UGPS	2	2	-	100	-	100
		Skill Enhancement Course - II (SEC)	Water Analysis (P)	22UCH5SEC2P	2	2	3	40	60	100
		Extra Credit Course	SWAYAM		-	er UG	C Re	comn	nenda	
				Total	30	29				700
		Core Course- IX(CC)	Organic Chemistry– II	22UCH6CC9	5	5	3	25	75	100
T 7 T		Core Course-X	Physical Chemistry–II	22UCH6CC10	6	5	3	25	75	100
VI	Ш	(CC) Core Course-XI	Cyber Security	22UGCS	5		3	25	75	100

	(CC)								
		Gravimetric Analysis and Physical Parameter (P)	22UCH6CC6P	4	4	4	40	60	100
	Discipline Specific Elective - II	A. Analytical Techniques(P)	22UCH6DSE2AP	4	4	3	40	60	100
	(DSE)	B. Cosmetic Chemistry (P)	22UCH6DSE2BP						
		C. Analysis of Herbal Products (P)	22UCH6DSE2CP						
	Project	Project Work	22UCH6PW	5	4	-	-	100	100
v	Gender Studies	Gender Studies	22UGGS	1	1	-	100	-	100
v	Extension activity		22UGEA	0	1	0	-	-	-
			Total	30	28				700
			Grand Total	180	150				4400

Part	Course	No. of Courses	Credits	Total Credits
Ι	Tamil/Other Language	4	12	12
II	English	4	12	12
	Core (Theory &Practical)	17	77	
	Project Work	1	4	
	Internship	1	2	100
III	First Allied	3	9	109
	Second Allied	3	9	
	DSE	2	8	
	GEC	2	4	
	SEC	2	4	
IV	AECC-I-Universal Human	1	2	15
	Values			
	AECC-II-Environmental	1	2	
	Studies			
	AECC-III-Innovation and	1	1	
	Entrepreneurship			
	AECC-IV Professional Skills	1	2	
V	Gender Studies	1	1	02
	Extension Activities	_	1	
		44		150

Courses & Credits for UG Science Programmes

*For BSc Mathematics & BCA

The Internal and external marks for theory and practical papers are as follows:

Subject	Internal Marks	External Marks
Theory	25	75
Practical	40	60

For Theory:

- a) ThepassingminimumforCIAshallbe40%outof25 marks(i.e. 10marks)
- b) ThepassingminimumforEndSemesterExaminationsshallbe40%outof75marks (i.e.30 marks)

For Practical:

- a) The passing minimum for CIA shallbe40% outof 40 marks (i.e. 16 marks)
- b) ThepassingminimumforEndSemesterExaminationsshallbe40%outof60marks (i.e 24 marks)

Internal Component (Theory)

Component	Marks
Library	05
Assignment	10
&Seminar	
CIA-I	05
CIA-II	05
Total	25

Internal Component (Practical)

Component	Marks
Observation	05
Record	10
Continual performance	10
Model	15
Total	40

Question Paper Pattern

Answer all the questions PART A (20X1=20)

Answer all the questions PART B (5X5=25)

Answer any three questions PART C (3X10=30)

Semester I	Internal Marks: 25	External Marks: 75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS		
22UCH1CC1	GENERAL CHEMISTRY	CORE	5	5		

Course Objectives

- > The course reviews the structure of the atom, which is a necessary pre-requisite in understanding the nature of chemical bonding in compounds.
- It discusses the periodicity in properties with reference to the s and p block, which is necessary in understanding their group chemistry.
- It provides basic knowledge about ionic, covalent, metallic bonding and reactive intermediates.
- To understand the crystal structures of ionic compounds and the theoretical aspects of volumetric and qualitative inorganic analysis

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recognize and report the fundamental principles of various field of chemistry	K1&K2
CO2	Illustrate the knowledge on atomic structure, bonding, isomerism, reaction intermediates, solid state and analytical techniques.	K3
CO3	Examine the reaction intermediates, solid state and analytical techniques.	K3
CO4	Categorize the quantum numbers, elements, hybridization, stability of intermediates, crystal structure, titrations and acid radicals.	K4
CO5	Interpret the periodic properties, geometry of molecules and electronic displacement Effects	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	1	2	3	2	3	3	2	1	2

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation "2" – Moderate (Medium) Correlation

"-" indicates there is no correlation.

	Syllabus			
UNIT	CONTENT	HOURS	COs	COGNI TIVE LEVEL
I	Atomic Structure and Periodic Properties: Atomic orbitals, quantum, numbers - Principal, azimuthal, magnetic and spin quantum numbers and their significance. Principles governing the occupancy of electrons in various quantum levels-Pauli's exclusion- principle, Hund's rule, Aufbau Principle, (n+1) rule, stability of half-filled and fully filled orbitals Classification as s, p, d & f block elements - variation of periodic properties along period and group - Electronegativity scale - Pauling's scale, Allred and Rochow's scale - Mulliken's scale -variation of	15	CO1, CO2, CO3, CO4	LEVEL K1, K2, K3, K4, K5
	metallic characters - Factors influencing the periodic properties.			
Π	Chemical Bonding-I: Chemical Bond- definition - types of chemical bond - Illustration. Intermolecular forces - dipole - dipole interaction, induced dipole-induced dipole interaction. Hybridisation - Bond length - Bond energy- Bond angle - factors influencing BL, BE and BA. VB Theory - sp, sp ² , sp ³ hybridisation - geometry of NH ₃ , H ₂ O, ClF ₃ , IF ₃ . VSEPR theory - Molecular Orbital Theory - Homonuclear (H ₂ , He ₂ , O ₂ , O ₂ ⁺ , O ₂ , N ₂ , F ₂) and Heteronuclear molecules (CO, NO, HF).	15	CO1, CO2, CO3, CO4	K1, K2, K3, K4, K5
Ш	Basics of Organic Compounds: IUPAC nomenclature of compounds- classification – isomerism - types - structural and stereo isomerism - cleavage of bonds: homolytic and heterolytic cleavages – Inductive- electromeric – mesomeric (resonance)-hyperconjugation and steric effects. Reaction intermediates-carbocation, carbanion, free radicals, carbenes and nitrenes – generation- properties - structure and stability.	15	CO1, CO2, CO3, CO4	K1, K2, K3, K4, K5
IV	Structure of Solids: Crystal Structure - open and closed packed structures – covalent network- ionic and molecular structure - packing of ions in ccp and hcp - radius ratio - coordination number in ionic crystals - crystal structures-sodium chloride, zinc blende, wurtzite, rutile, cesium chloride, fluorite (unit cell diagrams). Crystal defects - Schottky and Frenkel defects.	15	CO1, CO2, CO3	K1, K2, K3, K4
V	Analytical Methods-I: Storage and handling of chemicals - handling of acids, ethers, toxic and poisonous chemicals and first aid procedure - Volumetric analysis - methods of expressing	15	CO1, CO2, CO3	K1, K2, K3, K4

	concentration - Primary and Secondary standards- Different types of titrations – Acid - Base Titrations, Tritimetric method, Iodimetry method - Iodometry Method, Complexometric Titration and Precipitation Titration. Qualitative Inorganic Analysis - Dry Test - Flame Test - Interfering acid radicals - Eliminating of Interfering acid radicals.			
VI	Self-Study for Enrichment (Not to be included for External Examination) Electronic configuration of polyelectronic atoms, Calculation of screening constant and effective nuclear charge - Lewis electron dot structure - Oxidation State and valency of element - Comparison of reactive intermediates based on their stability - Difference between ionic and covalent crystals - Do and Don't in the Science Lab	-	CO1, CO2 ,CO3	K1, K2,K3, K4

Text Books

- Puri, B. R., Sharma, L. R. & Kalia, K. K. (2018). Principles of Inorganic Chemistry. 33rd edition. Shoban Lal Nagin Chand & Co., New Delhi.
- 2. Madan, R.D. (2019). Modern Inorganic Chemistry. 3rd edition. S. Chand & Company Ltd.
- Bahl, B. S. & Arun Bahl (2021). Text book of Organic Chemistry, 22nd revised edition.
 S. Chand & Company Ltd.
- 4. Puri, B. R., Sharma, L. R. & Pathania, M. S. (2022). Principles of Physical Chemistry. 48th edition. Shoban Lal Nagin Chand & Co, New Delhi.
- Gopalan, R., Subramanian, P. S. & Rengarajan, K. (2003). Elements of Analytical Chemistry. 2nd edition. Sultan Chand & Sons,

Reference Books

- 1. Soni, P. L. & Mohan Katyal. (2017). Text book of Inorganic Chemistry. 25th revised edition. Sultan Chand & Sons.
- 2. Vogel, A. I. (2000). Text Book of Quantitative Inorganic analysis including Elementary Instrumental Analysis. The English Language Book Society.

Web References

- 1. https://www.thoughtco.com/definition-of-quantum-number-604629
- 2. https://www.chemie-biologie.uni-siegen.de/ac/lehre/part1_solid_state.pdf
- 3. https://testbook.com/learn/chemistry-vsepr-theory/

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

- 1. Dr. P. Pungayee Alias Amirtham
- 2. Ms. A. Sharmila

Semester I	Internal Marks: 40		Exte	ernal Marks: 60
COURSECODE	COURSETITLE	CATEGORY	Hrs/Week	CREDITS
22UCH1CC1P	GENERAL CHEMISTRY(P)	CORE	3	3

Course Objectives

- > To learn the techniques of titrimetric analyses.
- To know the estimation of several cations and anions and to know the estimation of total hardness of water.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statements On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall the basic principles of volumetric analysis and estimation	K1
CO2	Demonstrate the experimental methods of volumetric analysis	K2
CO3	Estimate the chlorine content in bleaching powder and copper in brass	К3
CO4	Determine the hardness of water	К3
CO5	Determine saponification value of oil	K3

Mapping of CO with PO and PSO

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	-	2	3	3	2
CO2	2	2	2	3	2	3	3	3	3	2
CO3	2	3	3	1	2	2	3	3	2	1
CO4	2	3	3	1	2	2	3	3	2	2
CO5	2	3	3	1	2	2	3	3	2	2

"1"–Slight(Low) Correlation "3"–Substantial(High) Correlation

"2"-Moderate(Medium)Correlation

"-"indicates there is no correlation.

Syllabus

I Titrimetric Quantitative Analysis

- 1. Estimation of HCl using NaOH as link and standard oxalic acid solution
- 2. Estimation of Na2CO3using HCl as link and standard Na2CO3solution
- 3. Estimation of oxalic acid using KMnO4 as link and standard oxalic acid solution
- 4.Estimation of Iron(II) sulphate using KMnO4 as link and standard Mohr's salt solution
- 5. Estimation of KMnO4 using thio as link and standard K2Cr2O7solution.
- 6. Estimation of copper(II) sulphate using K2Cr2O7solution
- 7. Estimation of Mg(II) by EDTA solution
- 8. Estimation of Ca(II) by EDTA solution
- 9. Estimation of chloride ion

II. Applied Experiments

- 1. Estimation of total hardness of water
- 2. Estimation of bleaching powder
- 3. Estimation of saponification value of an oil
- 4. Estimation of copper in brass

Text Books

- 1. Venkateswaran, V. & Veeraswamy, R.& Kuandaivelu. (1997). Basic Principles of Practical Chemistry. 2nd edition. New Delhi, Sultan Chand & Sons.
- 2. Bassett, J. (1985). Text Book of Quantitative Inorganic Analysis. 4th edition. ELBS Longman.

Reference Book

1. Vogel A. I. (2000) Text book of quantitative inorganic analysis. The English language book Society.

Web References

- 1. https://www.youtube.com/watch?v=wh6-cYjNNiA
- 2. <u>https://chemlab.truman.edu/files/2015/07/edta.pdf</u>
- 3. <u>https://www.slideshare.net/mithilfaldesai/estimation-of-feii-ions-by-titrating-against-k2-cr2o7-using-internal-indicator</u>
- 4. https://byjus.com/chemistry/titration-of-oxalic-acid-with-kmno4/
- 5. http://www.titrations.info/EDTA-titration-calcium
- 6. <u>https://www.youtube.com/watch?v=qmVQs6Q7tso</u>

Pedagogy

Demonstration and Practical sessions

Course Designer

Dr. C. Rajarajeswari

FIRST ALLIED COURSE-I (AC)

CALCULUS AND FOURIER SERIES

(For B.Sc Physics & Chemistry)

(2022-2023 and Onwards)

Semester I	Internal Marks: 25	ExternalMarks:75			
COURSECODE	COURSETITLE	CATEGORY	Hrs / Week	CREDITS	
22UPH1AC1/	CALCULUS AND FOURIER			2	
22UCH1AC1A	SERIES	ALLIED	4	3	

Course Objective

- Explore the students with mathematical methods formatted for their major concepts and train them in basic Integrations.
- Analyze mathematical statements and expressions.
- Evaluate the fundamental concepts of Differentiation and Integration.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number		
CO1	Explain the concepts of Calculus and Fourier series	K1,K2
CO2	Classify the problem models in the respective area.	K3
CO3	Solve various types of problems in the corresponding stream.	K3
CO4	Identify the properties of solutions in the core area.	K3
CO5	Discover the applications of Calculus and Fourier series.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	3	2	2	2	2
CO2	3	2	2	2	2	3	2	2	2	2
CO3	3	2	2	2	2	3	2	2	2	2
CO4	3	2	2	2	2	3	2	2	2	2
CO5	3	2	2	2	2	3	2	2	2	2

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation – "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Successive Differentiation: The n^{th} derivative – Standard results – Method of splitting the fractional expressions into partial fractions – Trigonometrical transformation – Formation of equations involving derivatives – Leibnitz formula for the n^{th} derivative of a product(proof not needed) –A completeformal proof by induction (proof not needed) - Curvature- Circle, radius and center of curvature - Cartesian formula for the radius of curvature–Simple problems in all these.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
Π	Evaluation of integrals: Integration of Rational algebraic functions– Rule (a)– Rule (b) Integration of the form $\int \frac{lx+m}{dx}$ – Rule $ax^2 + bx + c$ (c)- Integration of Irrational functions : Integration of the form $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ –Integration of the form $\int \frac{dx}{(x+p)\sqrt{ax^2+bx+c}}$ - Integration of the form $\int \frac{dx}{a+b\cos x}$.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
Ш	Reduction Formula:Properties of definite integrals –Reduction formula(when n is a positive integer) for1] $\int e^{ax} x^n dx$ 2] $\int x^n \cos ax dx$ 1] $\int e^{ax} x^n dx$ 2] $\int x^n \cos ax dx$ 2] $\int x^n \cos ax dx$ 3] $\int \sin^n x dx$ $\frac{\pi}{2}$ $\int \sin^n x \cos^m dx$ (without proof) and illustrations.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Double and Triple Integrals: Definition of the double integral-Evaluation of Double integral(Problems Only)-Changeof order and evaluation of the double integral (Problems only).	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Fourier Series: Definition of Fourier Series – Finding the Fourier	10	CO1, CO2, CO3,	K1, K2, K3,

	Coefficients for a given periodic function with period 2π - Even and Odd functions–Half range Fourier series.	CO4, CO5	K4
VI	Self-Study for Enrichment : (Not to be included for External examination) Radius of curvature when the curve is in Polar co- ordinates - (i) $\int \frac{dx}{ax^2 + bx + c}$ (ii) $\int \frac{dx}{\sqrt{ax^2 + bx + c}}$ - (1) $\int \frac{\pi}{2}$ $\int \cos^n x dx$ (2) $\int \cos^n dx$ -Triple Integrals in simple cases(Problems Only)- Development in cosine series - Development in sine series.	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Books

- Narayanan, S & Manichavasagam Pillai, T.K. (2015). *Calculus Volume I.S.* Viswanathan Pvt Limited.
- Narayanan, S & Manichavasagam Pillai, T.K. (2015). *Calculus Volume II*. S. Viswanathan Pvt Limited.
- Narayanan, S & Manichavasagam Pillai, T.K. (2015). *Calculus Volume III*. S. Viswanathan Pvt Limited.

UNIT–I	Chapter 3:Sections 1.1 to 1.6,2.1,2.2[1]
	Chapter 10:Sections 2.1 to 2.3 [1]
UNIT-II	Chapter 1:Sections 7.1,7.3,7.4,8(CASE II, CASE V), 9 [2]
UNIT-III Chapte	er 1:Sections 11,13.1 to 13.5 [2]
UNIT-IV Chapte	r 5:Sections 2.1,2.2,4 [2]
UNIT-V	Chapter 6:Sections 1to 4[3]

Reference Books

- Sankarappan, S. Arulmozhi, G. (2006). Vector Calculus, Fourier series and Fourier Transforms. Vijay Nicole Imprints Private Limited.
- 2. Vittal, P.R.(2014). Allied Mathematics. Margham Publications.
- 3. Singaravelu, A.(2003). Differential Calculus and Trigonometry. R Publication.

Web Links

- 1. <u>https://www.youtube.com/watch?v=tBtF3Lr-VLk&t=64s</u>
- 2. <u>https://www.youtube.com/watch?v=Z4oSGuAZrZM</u>
- 3. <u>https://www.youtube.com/watch?v=w6llnAOX_f8</u>
- 4. <u>https://www.youtube.com/watch?v=LMci8o0ERNE</u>
- 5. <u>https://www.youtube.com/watch?v= GAwOGCyWy0</u>
- 6. <u>https://www.voutube.com/watch?v=9X3ggehcFII</u>

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designers

- 1. Dr. P. Saranya
- 2. Ms. L. Mahalakshmi
- 3. Ms. P. Geethanjali

Semester I	Internal Marks: 25	External Marks: 75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS		
22UCH1AC1B	BIOCHEMISTRY-I	ALLIED	4	3		

Course Objectives

- > To describe the chemistry of carbohydrates, proteins and lipids.
- > To understand the importance of biomolecules in living organisms.
- > To gain knowledge about the diseases occurring due to alterations in the levels of biomolecules.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall the basic concepts and understand the structure, functions of the biomolecules in living organisms	K1&K2
CO2	Describe the functions of the biomolecules in living organisms	K2
CO3	Apply the concepts to illustrate the role of biomolecules in various metabolic pathways	К3
CO4	Analyze the results of routine biochemical analysis using theoretical Concepts	K4
CO5	Evaluate the dimensions of diseases associated with the metabolic Disorders	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	2	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	2	3	3
CO5	3	3	3	2	3	3	3	2	3	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Carbohydrates: Definition of carbohydrate - Digestion and absorption of Glucose - Fate of glucose after absorption (preliminary idea). Intermediary metabolism of carbohydrates -glycogenesis, glycogenolysis, glycolysis, gluconeogenesis. Regulation of blood sugar - normal range - Hypoglycaemia and Hyperglycaemia - glucose tolerance	13	CO1, CO2, CO3, CO4	K1, K2, K3, K4, K5
II	tests - Diabetic Mellitus - Types and symptoms - glycosuria. Proteins : Proteins - Definition - Peptide bond formation - classification of proteins based on its physical properties - structure of proteins: primary structure - secondarystructure - tertiary structure - denaturation. Absorption- metabolic pool - general pathway of protein metabolism- in born errors of amino acid metabolism - Phenylketonuria, Alkaptonuria (Black urine syndrome) and albinism.	13	CO1, CO2, CO3, CO4	K1, K2, K3, K4, K5
III	Lipids: Definition – lipids - oxidation of fatty acids - β- oxidation cycle of saturated fatty acids. Ketogenesis,Ketosis – Ketolysis - role of liver in fat metabolism - Cholesterol – absorption - factors influencing absorption. Lipid profile – cholesterol – Triglycerides- lipoproteins - HDL and LDL. Fatty liver - Inborn errors of lipid metabolism.	12	CO1, CO2, CO3, CO4	K1, K2, K3, K4, K5
IV	Enzymes: Definition- classification- examples - Glucose oxidase - mechanism of enzyme action- Factors influencing enzyme action. Digestive enzymes and their action - salivary digestion - gastric digestion - pancreatic and intestinal digestion- Thyroxine - agents interfering with the synthesis of thyroid hormone - Diseases associated with abnormal metabolism of thyroxin.	12	CO1, CO2, CO3, CO4	K1, K2, K3, K4, K5
V	Blood and Bile Pigments: Blood - functions of plasma proteins - blood groups and Rh factor - coagulation of blood mechanism. Haemoglobin - structure and properties of Hb – metabolism -Bile pigments - examples - Types of Jaundice (preliminary idea).	10	CO1, CO2, CO3, CO4	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment be included for External Examination) Structure and classification of carbohydrates - Categories of amino acids - Types and functions of lipids - Properties and uses of enzymes - Properties and examples of bile pigments.	-	CO1	K1, K2

Text Books

- Ambika, S. (2012). Fundamentals of Biochemistry for Medical Students. (7th ed.). Iippincott Williams & Wilkins.
- 2. Fatima, D., Nallasingam, K., Narayanan, L. M., Arumugam, N., Meyyan, R. P., &Prasanna Kumar, S. (2019). Biochemistry. (7th ed.). Saras Publication.
- 3. Jain, J. L., Jain, S., &Jain, N. (2016). Fundamentals of Biochemistry.(Revised ed.). S Chand & Co Ltd.

Reference Books

- 1. Annie Ragland, & Arumugam, N. (2015). Biochemistry and Biophysics. (3rd ed.). Saras Publication.
- 2. Nelson, D. L., & Cox. M. M. (2017). Lehninger Principles of Biochemistry. (7thed.). WH Freeman.
- 3. Voet, D., Pratt,C. W., &Voet, J. G. (2012). Principles of Biochemistry. (4th ed.). John Wiley & Sons.
- 4. Berg, J. M., Stryer, L., Tymoczko, J., & Gatto, G. (2019). Biochemistry. (9th ed.). WH Freeman.
- 5. Mathews, C. K., Van Holde, K. E., & Ahern, K. G. (2000). Biochemistry. (3rd ed.). Pearson.

Web References

- 1. https://www.biologie.ens.fr/~mthomas/L3/intro_biologie/2-sucres-lipides-acides-nucleiques.pdf
- 2. <u>https://bio.libretexts.org/@go/page/1861</u>
- 3. <u>https://bio.libretexts.org/@go/page/16827</u>
- 4. https://bio.libretexts.org/@go/page/16101
- 5. https://bio.libretexts.org/@go/page/16828

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

1. Dr. S. Saranya

FIRST ALLIED COURSE-II (AC)

ALGEBRA, ANALYTICAL GEOMETRY OF 3D & TRIGONOMETRY

(For B.Sc Physics & Chemistry)

(2022-2023 and Onwards)

Semester I	Internal Marks: 25	ExternalMarks:75		
COURSECODE	COURSETITLE	CATEGORY	Hrs / Week	CREDITS
22UPH1AC2/ 22UCH1AC2A	ALGEBRA, ANALYTICAL GEOMETRY OF 3D & TRIGONOMETRYs	ALLIED	4	3

Course Objective

- Analyze the mathematical methods formatted for their major concepts.
- Evaluate the problems in Algebra and Trigonometry.
- Explain the basics of Three-Dimensional geometry.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Explain various notions in Algebra, Analytical Geometry of 3D& Trigonometry.	K1,K2
CO2	Identify the problem models.	K3
CO3	Apply the concepts of Algebra, Analytical Geometry of 3D& Trigonometry.	К3
CO4	Solve the given problems in the respective stream.	K3
CO5	Analyze the applications of the core area.	K4

Mapping of CO withPO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
C01	2	2	2	3	2	3	2	2	2	2
CO2	2	2	2	3	2	3	2	2	2	2
CO3	2	2	2	3	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	3	2	3	2	2	2	2

"1" – Slight (Low) Correlation ¬ "2" – Moderate (Medium) Correlation ¬

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	Series Expansion:			
Ι	Application of Binomial Theorem to summation of series – Approximate values – Summation of seriesby Exponential series - Summation of series by Logarithmic series (Formulae only).	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.
	Matrices:			
Π	Matrix-Special types of Matrices –Scalar multiplication of a matrix-Equality of matrices-Addition of matrices-Subtraction of matrices- Symmetric matrix- Skew symmetric matrix-Hermitian and Skew Hermitian matrix –Multiplication of matrix – Inverse matrix-Inner product-Solution of simultaneous equations-Rank of a matrix-Elementary transformation of a matrix-A system of <i>m</i> homogeneous linear equations in <i>n</i> unknowns- Linear dependence and independence of vectors-System of non-homogeneous linear equations - Eigen values and Eigenvectors.(Applications only)	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.
	Three Dimensional Geometry:			
Ш	The Sphere – Definition- The equation of a sphere when the center and radius are given-The equation of a sphere to find its center and radius- The length of the Tangent Plane from a point to the sphere – The Plane Section of a sphere – Equation of a circle on a sphere – Intersection of two spheres in a circle.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.
	Expansion of Trigonometric functions:			
IV	Expansions of $cos \ n\theta$ and $sinn\theta$ - Expansion of tan($A + B + C + \dots$) (omitting examples on formation of equations) –Powers of sines and cosines of θ in terms of functions of multiples of θ – Expansions of $cos \ n\theta$ when n is a positive integer – Expansions of $sin \ n\theta$ when n is a positive integer – Expansions of $sin\theta$ and $cos \ \theta$ in a series of ascending powers of θ - The expansions of $sin\theta$ and $cos \ \theta$ to find the limits of certain expressions.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.

v	Hyperbolic functions: Hyperbolic functions – Relation between hyperbolic functions – Relations between hyperbolic	12	CO1, CO2, CO3,	K1, K2, K3,
	functions and circular functions - Inverse hyperbolic functions.		CO4, CO5	K4.
VI	 Self-Study for Enrichment : (Not to be included for External examination) Series which can be summed up by the Logarithmic series - Simple applications of Matrices- The equation of the tangent plane to the sphere at apoint. (Only problems) - Expansion of tanθ in terms of powers of θ- Separation of real and imaginary parts of tanh(x+iy). 	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4.

Text Books

- Manichavasagam Pillai, T.K. Natarajan, T.& Ganapathy, K.S. (2015). *Algebra, Volume I.S.* Viswanathan Pvt Limited.
- 2. Manichavasagam Pillai, T.K. (2015). Algebra, Volume II. S.Viswanathan Pvt Limited.
- Manichavasagam Pillai, T.K. &Natarajan, T. (2016). A Text book of Analytical Geometry Part-II 3D. New Gamma Publishers.
- 4. Manichavasagam Pillai, T.K. & Narayanan, S. (2013). *Trigonometry*. S. Viswanathan Pvt Limited.
- UNIT-I Chapter 3:Sections 10,14[1] Chapter 4:Sections 3,7,9 [1]
- UNIT-II Chapter 2:Sections 1 to 16 [2]
- UNIT-III Chapter 4:Sections 1-5,6,6.1,7,8 [3]
- UNIT-IV Chapter 3:Sections 1 to 4, 4.1,5,5.1[4]
- UNIT-V Chapter 4:Sections 1,2,2.1 to 2.3[4]

Reference Books

- 1. Arumugam, S. Issac, A. (2017). Analytical Geometry 3D and Vector calculus. New Gamma Publishing house.
- Pandey, H.D. Khan, M.Q. & Gupta, B.N.(2011). A Text Book of Analytical Geometry and Vector Analysis. Wisdom Press.
- 3. Singaravelu, A. (2003). Differential Calculus and Trigonometry. R Publication.

Web Links

- 1. https://www.youtube.com/watch?v=JayFh5EJHcU
- 2. <u>https://www.youtube.com/watch?v=h5urBuE4Xhg</u>
- 3. <u>https://www.youtube.com/watch?v=59z6eBynJuw</u>
- 4. <u>https://www.voutube.com/watch?v=9DyPvJb2N9g</u>
- 5. <u>https://www.youtube.com/watch?v=HOk2XLeFPDk</u>
- 6. https://www.youtube.com/watch?v=G1C1Z5aTZSO

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

Course Designers

- 1. Dr. P. Saranya
- 2. Dr. L. Mahalakshmi
- 3. Ms. P. Geethanjali

Semester I	Internal Marks:	External Marks: 60		
COURSE CODE	COURSETITLE	CATEGORY	Hrs / Week	CREDITS
22UCH1AC2BP	BIOCHEMISTRY(P)	ALLIED	4	3

Course Objective

> To expertise the student for analysis of any biological sample for identification of its chemical composition

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Identify and classify the given compounds of carbohydrates, amino acids and lipids based on the characteristic reactions	K1&K2
CO2	Analysis of the compounds	K2
CO3	Prepare and isolate the biomolecules present in food products	К3
CO4	Estimate the amount of carbohydrate and protein present in the given solution	K4
CO5	Assess the quality and quantity of biomolecules by analytical methods	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation

"2" - Moderate (Medium) Correlation "-" indicates there is no correlation.

Syllabus

I QUALITATIVE ANALYSIS

(i) Preparation

- 1. Preparation of buffers (acidic, neutral and alkaline) and determination of pH.
- 2. Preparation of osazones.
- (ii) Qualitative Identification
- 3. Qualitative identification of carbohydrates
 - Monosaccharides : Pentose, Glucose, Fructose, Mannose
 - Disaccharides : Sucrose. Maltose, Lactose
 - Polysaccharides : Starch, Dextrin and Glycogen
- 4. Qualitative identification of amino acids
 - Aliphatic : Histidine, Arginine, & Proline
 - Aromatic : Tyrosine, Tryptophan, Phenylalanine
 - Sulphur containing amino acids: Cystein, Cystine & Methionine
- 5. Qualitative identification of lipids solubility, saponification, acrolein test, Salkowski test, Lieberman-Burchard test.

(iii) Isolation

- 6. Isolation of casein from milk.
- 7. Isolation of egg albumin from egg white.
- 8. Isolation of starch from potato.

II QUANTITATIVE ANALYSIS

- 1. Estimation of glucose.
- 2. Estimation of protein.

III DEMONSTRATION

1. Blood group test

Text Books

- 1. Rajan, S., & Selvi Christy. R. (2018). Experimental Procedures in Life Sciences. CBS Publishers & Distributors.
- 2. Gnanpragasam, N. S., & Ramamurthy. G. (2013). Organic Chemistry Lab Manual. Viswanathan, S., Printers & Publishers.

Reference Books

- 1. Zubay, C. (1986). Biochemistry. Addison Wesley.
- 2. Wood, W. B. (1981). Biochemistry- A problem Approach. Addison Wesley.

Web References

- 1. http://nec.edu.np/Publications/Chemistry_LAB_Manual/Experiment%204.pdf
- 2. https://microbenotes.com/osazone-test/
- 3. https://www.mlsu.ac.in/econtents/1616_Biochemical%20Tests%20of%20Carbohydrate,%20protein,%

20lipids%20and%20salivary%20amylase.pdf

- 4. https://vlab.amrita.edu/?sub=2&brch=191&sim=692&cnt=2
- 5. https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/files/2%20ESTIMATION%20OF%20PR OTEIN%20BY%20LOWRY.pdf

Pedagogy

Demonstration and practical sessions

Course Designer

1. Dr. S. Saranya

Semester II	Internal Marks: 25	External Marks: 75					
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS			
22UCH2CC2	INORGANIC AND PHYSICAL CHEMISTRY	CORE	5	5			

Course Objectives

- > The course reviews the chemical bonding, which is a necessary pre-requisite in understanding the nature of chemical bonding existing in compounds.
- Discusses about the sand p block elements.
- > Provides basic knowledge about liquid and colloidal state of matter.
- > Deliberates the basic concepts of thermochemistry.
- Stretches the knowledge about the different techniques involved in metallurgy.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recognize and account the fundamental ideas of bonding, s, p block elements, thermochemistry, metallurgy and colloidal state	K1&K2
CO2	Exemplify the knowledge on bonding, periodic elements, liquids, colloids, enthalpies and refining process	K3
CO3	Categorize the types of bonding, s block elements, liquid and colloidal state of compounds and their properties.	K4
CO4	Interpret the percent ionic character, dipole moment	K4
CO5	Interpret Hess's law andtechniques used in metallurgy.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	1	2	3	2	3	3	2	1	2

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation "2" – Moderate (Medium) Correlation "-" indicates there is no correlation.

Syllabus

UNIT	CONTENT	HOURS	Cos	COGNITIVE LEVEL
Ι	Chemical Bonding – II Ionic Bond – Lattice Energy- Born-Haber Cycle- polarity in covalent bonds – covalent character of Ionic bond - Fajan's rule - effects of Polarisation- percent ionic character- electronegativity difference. Dipole moment and structure of molecules- Hydrogen bonding - properties, types and consequences.	15	CO1, CO2, CO3, CO4	K1, K2, K3, K4, K5
Π	 s and p- Block Elements s- block elements: General characteristics, comparative study of alkali and alkaline earth metals - oxides. Diagonal relationship between Li and Mg, Be and Al. p-Block Elements: General characteristic of groups 13-17, Boron and its compounds-Boric acid- Borax - Boron nitride Boron trihalide – diborane - compounds of silicon silicates, silicones and SiCl4. 	15	CO1, CO2, CO3, CO4	· · · ·
III	Metallurgy Introduction to Transition metals-Metallurgy-various steps in metallurgy – grinding -pulverizing - concentration (ore dressing)-hand picking - gravity separation - froth floatation, electromagnetic separation, chemical separation - calcinations and roasting - smelting, alumino thermic process- purification of metals - zone refining- vapour phase and electrolytic refining.	15	CO1, CO2, CO3, CO4	
IV	Liquid and colloidal State: Liquid State - physical properties of liquids – vapour pressure- surface tension- viscosity - refraction- their determination. Liquid Crystals - classification of thermotropic liquid crystals – Smectic - Nematric -Cholesteric Liquid	15	CO1, CO2, CO3	K1, K2, K3, K4

V	Crystals- Disc-shaped Liquid Crystals- Polymer LiquidCrystals. Colloids – types of colloidal solutions –classification – preparation – purification – properties –determination of size of particles – gels and theirapplications –application of colloids.ThermochemistryChange of internal energy in chemical reaction-change ofenthalpy in chemical reaction-enthalpy of reaction atconstant volume and constant pressure- enthalpy ofneutralization- enthalpy of dissociation- enthalpy offormation-enthalpies of compounds-enthalpies offormation of ions- Kirchoff's equation-Hesse's law and itsApplication	15	 K1, K2, K3, K4
VI	Self-Study for Enrichment(Not to be included for External Examination)Bond characteristics- periodic table-general properties ofstates of matter- exothermic- endothermic changes - freeenergy change in chemical reactions- minerals and ores.	-	 K1, K2, K3, K4

Text Books

- Puri, B. R., Sharma, L. R.& Kalia, K. K. (2018).Principles of Inorganic Chemistry. Shoban Lal Nagin Chand & Co., 33rd edition, New Delhi,.
- 2. Madan, R.D. (2019). Modern Inorganic Chemistry. 3rd edition, S. Chand & Company Ltd,
- 3. J. D. Lee, (2014). New Concise Inorganic Chemistry^{II},5th edition, Oxford Publishers.
- 4. Puri, B.R., Sharma, L.R. & Pathania, M.S. (2022). Principles of Physical Chemistry. Shoban Lal 48th edition. Nagin Chand & Co, New Delhi.

Reference Books

- 1. Soni, P.L.& Mohan Katyal. (2017). Text book of Inorganic Chemistry. 25th revised edition, Sultan Chand & Sons.
- 2. Peter Atkins, Julio de Paula, and James Keeler, (2017). Atkins' Physical Chemistry^{II}, 11th Edition, Oxford University Press, UK.

Web Reference

- 1. <u>Chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Mod</u> <u>ules_and_Websites_(Inorganic_Chemistry).</u>
- 2. https://www.chemie-biologie.uni-siegen.de/ac/lehre/part1_liquid_state.pdf
- 3. https://byjus.com/jee/colloids

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

1. Dr. K. Uma Sivakami

Semester II	Internal Marks: 4	0 Exte	ternal Marks: 60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS	
22UCH2CC2P	PREPARATION AND	CORE	3	3	
	ANALYSIS OF INDUSTRIAL	PRACTICAL			
	COMPOUNDS (P)				

Course Objectives

- > Learn to the diverse roles of inorganic materials in the industry
- ➢ Gain knowledge on fertilizers.
- > Explain the principle, working and applications of volumetric analysis.
- > Perform quantitative analytical methods by titrations.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Provide graduates with the skills, information and learning tools required to carry out professional research, and development and production activities in the field of chemistry.	K1
CO2	Explain the suitability of fertilizers for different kinds of crops and soil.	K2
CO3	Prepare students for professional participation in Chemical industries so as to adapt themselves to jobs which are problem Solving	K3
CO4	Infer the students to be result-oriented in the chemical, biochemical and applied technological fields.	K4
CO5	Apply the concept of volumetric analysis in industrial analysis	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	2	3	3	3	3
CO2	2	2	2	2	2	2	2	3	2	2
CO3	3	2	2	2	2	2	2	2	2	2
CO4	3	2	3	2	2	3	2	2	2	3
CO5	2	3	2	3	3	3	2	2	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

Syllabus

Quantitative Analysis

- 1. Analysis of sodium bicarbonate present in a commercial sample of soda mint tablet.
- 2. Determination of total alkali content of a commercial detergent.
- 3. Determination of free acidity in ammonium sulphate fertilizer.
- 4. Estimation of phosphoric acid in superphosphate fertilizer.
- 5. Estimation of calcium in chalk Permanganometry
- 6. Estimation of citric acid in orange or lemon

Qualitative Analysis

- 1. Limit test for sulphate, chloride, barium, iron and magnesium ions.
- 2. Assay of inorganic compounds
- 3. Purity checking of compounds

Preparation

- 1. Preparation of Ferric alum
- 2. Preparation of Potash alum
- 3. Preparation of Mohr's salt
- 4. Preparation of tetrammine copper (II) sulphate
- 5. Preparation of soap
- 6. Preparation of Talcum powder
- 7. Preparation of Caprolactam.

Text Books

- 1. Svehla, G. (1996). Vogel's Qualitative Inorganic Analysis: Prentice Hall.
- 2. Satinder, K. Juneja ., Dr. Aran, K. (2020). Inorganic Materials of Industrial Importance: S Vinesh & Co.

Reference Books

- 1. Kingery, W. D., Bowen H. K.; Uhlmann, D. R. (1976). Introduction to Ceramics, Wiley Publishers: New Delhi.
- 2. Gopalan, R., Venkappayya, D., Nagarajan, S. (2004). Engineering Chemistry: Vikas Publications.

Web References

- 1. <u>https://eusalt.com/_library/_files/EuSalt_AS007-2005_Potassium_-Sodium_</u> Tetraphenylborate__Volumetric_Method.pdf
- 2. http://www.chem.uwimona.edu.jm/lab_manuals/c10expt3.html
- 3. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016112814
- 4. <u>https://www.google.com/search?q=Determination+of+free+acidity+in+ammonium+s</u> <u>ulphate+fertilizer.</u>
- 5. <u>https://www.researchgate.net/publication/344350736_Determination_of_alkali_conte_nt_total_fatty_matter_in_cleansing_agents</u>
- 6. https://www.tifr.res.in/~pkjoshi/articles/sodamint.pdf

Pedagogy

Table Work

Course Designers

- 1. Dr. P. Pungayee Alias Amirtham
- 2. Dr. G. Sivasankari.

Semester II	Internal Mark	s: 25	ExternalMarks:75		
COURSECODE	COURSETITLE CATEGORY		Hrs / Week	CREDITS	
22UCH2CC3	MATERIAL SCIENCE	CORE	3	3	

- > To describe the structure of ceramics and magnetic materials.
- > To understand the importance of energy storage materials.
- > To gain knowledge about the fuel cell power plant.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall the basic concepts of magnetic, conductors and understand the energy storage materials.	K1&K2
CO2	Apply the concepts to illustrate the role of energy in various materials.	K3
CO3	Analyze the results of different materials using theoretical concepts.	K4
CO4	Evaluate the applications of magnetic, semiconductors,	K4
CO5	Evaluate the applications LED, batteries and fuel cell power plant.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	2	3	3
CO5	3	3	2	2	3	3	3	2	3	3

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Conductors and Insulators: Introduction -			
	semiconductors - classification of semiconductors -		CO1,	K1, K2, K3,
	intrinsic and extrinsic - n-type and p-type - crystal	9	CO2,	K4, K5
	structure and bonding in Si and Ge - elemental and		СО3,	
	compound semiconductors - applications -		CO4	
	Insulators.			
Π	Magnetic Materials: Magnetic dipole - dipole			
	moment - magnetic field strength - magnetic		CO1,	K1, K2, K3,
	susceptibility - diamagnetic - paramagnetic -	9	CO2,	K4, K5
	ferromagnetic - curie temperature - hysteresis curve		СОЗ,	
	- antiferromagnetic - ferrimagnetic - hardand soft		CO4	
	magnetic materials - properties - examples			
	- applications.			
Ш	Ceramics and Display Devices: Classification of			
	ceramics - structure of the ceramics- compounds with	9	CO1,	K1, K2, K3,
	NaCl, Fluorite and Perovskite structure - properties of		CO2,	K4, K5
	ceramics- applications - active display devices- Light		СОЗ,	
	Emitting Diode (LED) - passive display devices -		CO4	
	Liquid Crystal Display (LCD)- applications.			
IV	Materials for Energy Storage: Batteries – primary			
	and secondary batteries - lithium-lead acid batteries -		CO1,	
	nickel cadmium batteries - advanced batteries - super	9	CO2,	K1, K2, K3,
	capacitors for energy storage - role of carbon		CO3,	K4, K5
	nanomaterials as electrodes in batteries and super		CO4	
	capacitors.			
V	Fuel cells: Introduction - difference between batteries			
	and fuel cells - components of fuel cells - principle of		CO1,	
	working of fuel cell - performance characteristics of	9	CO2,	K1, K2, K3,
	fuel cells - efficiency of fuel cell - fuel cell power		CO3,	K4, K5

	plant - fuel processor - fuel cell power section - power conditioner - Advantages and disadvantages of fuel cell power plant.		CO4	
VI	Self Study for Enrichment (Not to be included for External Examination) Bonding in metals and semi-conductors - reason for ferromagnetic spin alignment are contrasted with superconducting spin pairing - ceramic processing - fuel cell stack – hydrogen production and storage.	-	CO1	K1, K2

Text Books

1. Rajendran, V. & Marikani, A. (2009). Materials Science. (9th ed.). Tata McGraw-Hill Publishing Company Limited.

2. VanVlack, L. H., (1975). Elements of materials science and engineering. (6th ed.). Addison-Wesley.

3. Jain, P.C., & Jain, M., (2013). Engineering Chemistry. (6th ed.). DhanpatRai &Sons.

Reference Books

1. Callister, W.D., & Rethwisch, G.D., (2018). Materials Science and Engineering: An Introduction. (10th ed.). Wiley.

2. Kingery, W.D., Bowen, & H.K., Ulhmann, D.R., (1976). Introduction to Ceramics. (2nded.). Wiley.

3. Sharma, B.K., (1997). Industrial Chemistry. (8th ed.). Goel Publishing.

Web References

- 1. https://www.britannica.com/science/semiconductor
- 2. https://advancedmagnetsource.com/2018/09/03/types-magnetic-materials/
- 3. https://mse.umd.edu/about/what-is-mse/ceramics
- 4. https://www.european-mrs.com/battery-and-energy-storage-devices-materials-eco-design-emrs
- 5. https://georgiasouthern.libguides.com/c.php?g=943952&p=6804654

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

1. Ms. P. Thamizhini

ALLIED COURSE - III

(For Chemistry)

ODE, LAPLACE TRANSFORMS AND STATISTICS

(2022-2023 Onwards)

Semester II	Internal Marks: 25	Ex	ternalMa	rks: 75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDIT S
22UCH2AC3A	ODE,LAPLACE TRANSFORMS AND STATISTICS	ALLIED	4	3

Course Objective

- **Explain** the basics of Ordinary Differential Equations.
- **Explore** the mathematical methods formatted for major concepts.
- **Emphasize** them in the field of Statistics.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Knowledge Level
CO1	Explain various notions in ODE, Laplace transforms & Statistics.	K1,K2
CO2	Classify the problem models in the respective area.	К3
CO3	Identify the properties of solutions in the core area.	К3
CO4	Solve various types of problems in the corresponding stream.	К3
CO5	Analyze the applications of the core area.	K4

Mapping of COwithPO and PSO

Os	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	2	2	3	2	3	3
CO2	3	2	2	2	2	2	3	2	3	3
CO3	3	2	2	2	2	2	3	2	3	3
CO4	3	2	2	2	2	2	3	2	3	3
CO5	3	2	2	2	2	2	3	2	3	3

"1" – Slight (Low) Correlation – "2" – Moderate (Medium) Correlation –

"3" – Substantial (High) Correlation \neg "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNI TIVE LEVEL
Ι	Ordinary Differential Equations: Equations of the first order but of higher degree – TypeA:Equations solvable for $\frac{dy}{dx}$ - Type B:Equations solvable for y - Equations solvable for x -Clairaut's Form (simple cases only).Linear equations with constant coefficients: Definitions – The operator D- Complementary function of a linear equation with constant coefficients - Particular integral: General method of finding P.I- Special methods for finding P.I.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
П	Laplace Transforms: Laplace Transforms – Definition -Sufficient conditions for the existence of Laplace transform-Basic results-Laplace transform of periodic functions-Some general theorems- Evaluation of integrals using Laplace transform.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
III	Inverse Laplace Transform: The Inverse Transform –Modification of results obtained in finding Laplace transforms to get the inverse transforms of functions- Laplace Transforms to solve ordinary differential equations with constant co-efficients.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
IV	Measures of Central Tendency: Arithmetic Mean Median Mode Geometric Mean Harmonic Mean. (Simple Problems Only) Measures of Dispersion: Standard Deviation (Simple Problems Only)	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4
V	Correlation: Introduction-Meaning of Correlation-Scatter Diagram Karl Pearson's Co-efficient of Correlation – Rank Correlation (Derivations not needed and Simple Problems Only). Linear Regression: Introduction-Linear Regression-Regression Coefficients- Properties of Regression Coefficients(Derivations not needed and Simple Problems Only)	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

	Self -Study for Enrichment:			
VI	(Not included for End Semester Examination) Equations that do not contain <i>x</i> and <i>y</i> for explicitly- Piecewise continuity- Laplace Transforms to solve ordinary differential equations with variable co-efficients - Range-Quartile Deviation– RankCorrelation(RepeatedRanks)	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4

Text Book

- 1. Narayanan. S, Manicavachagam Pillai. T. K. (2016). *Differential Equations and its applications*. S. Viswanathan Pvt Limited.
- 2. Gupta. S. C, Kapoor. V. K. (2014). *Fundamentals of Mathematical Statistics*. Sultan Chand & Sons,New Delhi.

Chapters and Sections

UNIT-I	UNIT-I Chapter 4: Sections 1-3 [1] Chapter 5: Sections 1-4 [1]						
UNIT-II	UNIT-II Chapter 9: Sections 1-5 [1]						
UNIT-III	Chapter 9: Sections 6-8 [1]						
UNIT- IV	Chapter 2:Sections 2.5-2.9,2.13(2.13.4 Only) [2]						
UNIT- V	Chapter 10: Sections 10.1 to 10.4 and 10.7.1[2] Chapter 11: Sections 11.1 to 11.2(11.2.1 and 11.2.2 only)[2]						

Reference Books

- Narayanan. S, Manicavachagam Pillai. T.K. (2003). *Calculus, Vol. III*. S.Viswanathan Pvt Limited.
- Pillai Bagavathi. R. S. N. (2019). *Statistics Theory and Practice*. S Chand and Company Limited.
 - 3. Gupta. S.C. &Kapoor. V.K.(2004). *Elements ofMathematical Statistics*. Sultan Chand &

Sons, New Delhi.

Web References

- 1. <u>https://www.youtube.com/watch?v=OM01KTc0_9w</u>
- 2. https://www.youtube.com/watch?v=dCVBZbebl8Y
- 3. https://www.youtube.com/watch?v=Y8GXpS31CGI
- 4. <u>https://www.youtube.com/watch?v=IVJjm5FE4x8</u>
- 5. https://www.youtube.com/watch?v=YGObRCEZiC8
- 6. <u>https://www.youtube.com/watch?v=dLJp6DrPArk</u>
- 7. <u>https://www.youtube.com/watch?v=nk2CQITm_eo</u>
- 8. <u>https://rcub.ac.in/econtent/ug/bcom/sem4/Business%20Statistics%20Unit%204%20C</u> <u>orrelation%20and%20Regression.pdf</u>

Pedagogy

Power point presentation, Group Discussion, Seminar, Assignment.

Course Designer

1. Dr. P. Geethanjali

Semester II	Internal Marks: 25	External Marks: 75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs/Week	CREDITS		
22UCH2AC3B	BIOCHEMISTRY-II	ALLIED	4	3		

- To gain knowledge about the various analytical techniques in separation and isolation of cells and tissues for studying their functional abnormalities.
- > To understand the principles and methodologies involved in biochemical analysis.
- To acquire knowledge on nutritional importance of proteins, carbohydrates, lipids, vitamins and minerals in diet.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recall and understand the basic tools in biochemistry	
CO2	Recollect the techniques involved in the analysis of biomolecules	K2
CO3	Describe the metabolicabnormalities and importance of nutrients in diet.	K3
CO4	Apply various methodologies to analyze biomolecules.	К3
CO5	Investigate the biomolecules using various bio-analytical techniques.	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	2	3	2
CO4	3	3	2	3	3	3	3	3	3	3
CO5	3	3	3	3	2	3	3	2	3	3

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation "2" – Moderate (Medium) Correlation "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Basic Techniques in Biochemistry:			
	Purification – centrifugation – filtration –			
	dialysis - homogenization – adsorption –	15	CO1,	K1, K2, K3,
	absorption- partition - centrifuge- types of		CO2,	K4
	rotors & application - density gradient		CO3	
	centrifugation, sedimentation - sedimentation			
	coefficient- electrophoresis – types.			
II	Analytical Techniques in Biochemistry:			
	Concept of buffer – preparation- Henderson-			
	Hasselbach equation - working principle of a			
	pH meter. Microscopy: Light microscopy-	15	CO1,	K1, K2, K3,
	phase contrast - electron microscope and		CO2,	K4
	fluorescent microscope-principle -		CO3	
	instrumentation and their applications. UV-			
	visible and fluorescence spectroscopy-			
	principle and instrumentation. Determination of			
	absorption maxima and molar extinction			
	coefficient (of a relevant organic molecule).			
III	Clinical Biochemistry:			
	Collection of blood – Anticoagulant -			
	preservation - Estimation of Hb - PCV, WBC,	15	CO1,	K1, K2, K3,
	RBC - Platelets - ESR. Clotting time - bleeding		CO2,	K4
	time - normal value - clinical interpretation.		CO3	
	Urine Analysis: Composition – collection –			
	preservation - gross examination - interfering			
	factors - chemical examination - Ketone bodies			
	in urine - bile pigments – hematuria - uric acid			
	- microscopic examination of the urinary			
	sediment.			

IV	Nutritional Biochemistry:			
	Definition of food and Nutrition - balanced diet.		CO1,	
	basic five food groups - calorific values offoods	15	CO2,	K1, K2, K3,
	- determination by bomb calorimeter - BMR and		CO3	K4
	factors affecting - energy requirements -			
	recommended dietary allowance (RDA) for			
	children - adults - pregnant and lactating women			
	- sources of complete and incomplete proteins.			
	Biological value of			
	proteins.			
V	Metabolic and Lifestyle Disorders:			
	Obesity - eating disorders like anorexia, nervosa			
	and bullemia. Diabetes mellitus as metabolic	15	CO1,	K1, K2, K3,
	syndrome - relationship with hypertension,		CO2,	K4
	obesity, hypothyroidism and stress. Cardio		CO3	
	vascular disorders - Irritable bowel syndrome-			
	influence of diet - stress and			
	environment on the condition.			
VI	Self Study for Enrichment (Not to be included for External Examination) Types of buffer- Significance of sugar in urine-		CO1	K1, K2
	Specific dynamic action of foods-Types of life style disorder.	-		

Text Books

- 1. Swaminathan, M. (2014). Advanced Text Book on Food & Nutrition. (2nd ed.).
- 2. The Bangalore Press.
- 3. Chatterjea, M. N., & Rana Shinde. (2012). Textbook of Medical Biochemistry, (8th ed.). Jaypee Brothers Medical Publishers.
- 4. Plummer, D. T. (1998). An Introduction to Practical Biochemistry. (3rd ed.). Tata McGraw Hill Education Pvt. Ltd.
- 5. Srilakshmi. B. (2019). Dietetics. (8th ed.). New Age International, New Delhi.

6. Ambika, S. (2012). Fundamentals of Biochemistry for Medical Students. (7th ed.).Iippincott Williams & Wilkins.

7. Jain, J. L., Jain, S., & Jain, N. (2016). Fundamentals of Biochemistry. (Revised ed.). SChand & Co Ltd.

Reference Books

- Upadhyay, Upadhyay & Nath (2020). Biophysical Chemistry - Principles andTechniques. (4th ed.). Himalaya Publishing House.
- 2. Annie Ragland, & Arumugam, N. (2015). Biochemistry and Biophysics. (3rd ed.).Saras Publication.
- Nelson, D. L., & Cox. M. M. (2017). Lehninger Principles of Biochemistry. (7thed.).WH Freeman.
- Voet, D.,Pratt, C. W., & Voet, J. G. (2012). Principles of Biochemistry. (4th ed.). JohnWiley & Sons.

Web References

- 1. https://nptel.ac.in/courses/102103044
- 2. https://nptel.ac.in/courses/102103044
- 3. https://pubmed.ncbi.nlm.nih.gov/27881259/
- 4. https://www.nhs.uk/conditions/metabolic-syndrome/
- 5. <u>https://www.upstate.edu/gch/pdf/services/ibd-read-lab-results.pdf</u>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

1. Dr. S. Saranya

Semester III	Internal Marks: 25	External Marks: 75			
COURSE	COURSE TITLE	CATEGORY	Hrs. /	CREDITS	
CODE			Week		
22UCH3CC4	ORGANIC AND ANALYTICAL	CORE	6	6	
	CHEMISTRY				

- > To understand the basics of alkanes and cycloalkanes.
- > To learn about the chemistry of alkenes and alkynes.
- > To learn about concept of aromaticity and reactivity of benzene.
- > To understand the aspects of data analyses.
- > To learn the techniques of thermoanalytical methods.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recall and understand the fundamental concepts of organic	K1
	compounds and analytical techniques.	
CO2	Describe the nature of hydrocarbons, errors and different thermo	K2
	analytical methods.	
CO3	Interpret the chemical reactions of hydrocarbons and thermogram.	K3
CO4	Analysis different reactions of organic molecules and analytical data.	K4
CO5	Explain the stability of organic molecules and application of	K5
	thermograms.	

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	2	2	2	3	3	2	2	2
CO3	3	2	1	2	2	3	3	1	1	2
CO4	3	2	2	3	3	3	3	2	2	3
CO5	3	1	2	3	2	3	3	2	1	2

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

UNIT		HOUR	Cos	COGNITIVE
		S		LEVEL
Ι	Alkanes and cycloalkanes:	18	CO1,	K1, K2, K3,
	Introduction - preparation - catalytic		CO2,	K4, K5
	hydrogenation of alkenes and alkynes from		CO3,	
	haloalkanes, carbonyl compounds and		CO4,	
	sodium salts of carboxylic acids - physical		CO5	
	properties and chemical properties -			
	halogenation, nitration, sulfonation, chloro			
	sulfonation, oxidation reaction.			
	Cycloalkanes - strain in ring compounds:			
	Baeyer's Strain theory - preparation of			
	cycloalkanes - chemical properties of			
	cycloalkanes.			
II	Alkenes and Alkynes:	18	CO1,	K1, K2, K3,
	Introduction - preparation of alkenes -		CO2,	K4, K5
	reduction of alkynes - elimination reaction -		CO3,	
	physical properties - chemical properties -		CO4,	
	stability of alkenes, electrophilic addition		CO5	
	reactions, free radical addition reactions -			
	oxidation reactions, allylic substitution			
	reactions, polymerization reactions.			
	Alkynes - Introduction - preparation of			
	alkynes - physical properties - addition of			
	hydrogen, electrophilic and nucleophilic			
	addition reactions - oxidation reactions -			
	isomerization - polymerization reactions.			
III	Concept of aromaticity and benzene:	18	CO1,	K1, K2, K3,
	Introduction - structure of benzene - Kekule		CO2,	K4, K5
	structure - resonance structure - orbital		CO3,	
	picture of benzene - resonance energy,		CO4,	
	stability of benzene - Huckels rule and		CO5	

	aromaticity - aromaticity in benzene-			
	preparation and chemical properties of			
	benzene - Electrophilic substitution			
	reactions of benzene - halogenation,			
	nitration, alkylation, acylation and			
	sulfonation and their mechanism -			
	orientation and reactivity in monosubstituted			
	and disubstituted benzene.			
IV	Data Analysis:	18	CO1,	K1, K2, K3,
	Definition for analytical chemistry and		CO2,	K4, K5
	chemical analysis - qualitative and		CO3,	
	quantitative analysis - classification of		CO4,	
	chemical analysis - error - definition -		CO5	
	classification of errors - accuracy and			
	precision - minimization of errors - limiting			
	of reduction - significant figure - mean -			
	median - standard deviation - distribution of			
	random errors - reliability of results (Q-test)			
	- confidence interval limit - comparison of			
	results - students t-test - F-test.			
V	Thermoanalytical Methods:	18	CO1	K1, K2, K3,
	Introduction - various techniques of thermal		CO2,	K4, K5
	analysis - thermal gravimetric analysis -		CO3,	
	principle, thermogram, factors affecting		CO4,	
	thermogram, instrumentation and		CO5	
	applications. Differential thermal analysis -			
	factors affecting DTA curve -			
	instrumentation - application of DTA -			
	Differential scanning calorimetry -			
	instrumentation for DSC - factors affecting			
	DSC curves - application of DSC -			
	comparison of DSC with DTA -			
	Thermometric titration - theory -			
L				

	instrumentation - applications.			
VI	Self-Study for Enrichment:	-	CO1,	K1, K2, K3,
	(Not to be included for External		CO2,	K4
	Examination)		CO3	
	IUPAC name of organic molecules,			
	distinguish electrophile and nucleophile -			
	types of cleavages - types of hybridization -			
	resonance - exothermic and endothermic			
	reaction.			

Text Books

- Bhupinder, M., & Manju, M. (2015). Organic chemistry. (2nd edition), Delhi, PHI Learning Private Limited.
- Bahl, B.S., & Bahl, A. (2010) Advanced Organic Chemistry. (12th edition), New Delhi, Sultan Chand & Co.
- Soni, P.L., & Chawla, H. M. (1983) Textbook of Organic chemistry. Sultan Chand & Sons.
- Gopalan, R., Subramanian, P. S., & Rengarajan, K. (2003). Elements of Analytical Chemistry. 2nd edition, Sultan Chand & Sons.
- Chatwal, G. R., & Anand, S. K. (2005). Instrumental methods of chemical analysis. Himalaya publishing house.

Reference Books

- Finar, I. L. (1996) Organic Chemistry. Vol 1 & 2, (6th edition) England, Addison Wesley Longman Ltd.
- Morrison, R.T., Boyd, R. N., & Bhattacharjee, S. K. (2011) Organic Chemistry (7th edition), Pearson India.
- 3. Vogel A. I. (1978). Text Book of Quantitative Inorganic analysis, The English Language Book Society, Fourth edition.
- 4. Skoog, D. A., West, D. M., & Holler, F. J. (1995). Fundamentals of Analytical chemistry, 7th edition, Harcourt College Publishers.

Web References

- 1. <u>https://www.khanacademy.org/science/organic-chemistry/bond-line-structures.</u>
- 2. <u>https://kpu.pressbooks.pub/organicchemistry/chapter/1-3-resonance-structures.</u>
- 3. <u>https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules.</u>
- 4. https://chemistryhall.com/basic-organic-chemistry-.
- 5. <u>https://ams.uokerbala.edu.iq/wp/wp-content/uploads/2017/11/analytical-chemistry-2.pdf.</u>

- 6. <u>https://www.tutorialsduniya.com/notes/basic-analytical-chemistry-notes/.</u>
- 7. <u>https://www.studocu.com/in/document/mgm-institute-of-health-sciences/analytical-chemistry-lecture-notes/23655112.</u>
- 8. https://pdfs.semanticscholar.org/4297/626dad995612a5bec4cbd9c41d2a2f6f0146.pdf.
- 9. https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/621%20Unit%202. pdf.
- 10. https://www.brainkart.com/article/Thermoanalytical-Analysis_30855/.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

> Dr. C. Rajarajeswari

Semester III	Internal Marks: 40	External Marks: 60			
COURSE	COURSE TITLE	CATEGORY	Hrs./	CREDITS	
CODE			Week		
22UCH3CC3P	ANALYSIS AND	CORE	3	3	
	PREPARATION OF ORGANIC				
	COMPOUNDS (P)				

- > To learn the techniques of methods of different organic compounds through functional group identification with elemental analysis.
- > To exhibit the derivative for functional group.
- > To prepare organic compounds using various reactions.

Course outcomes Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive		
Number	On the successful completion of the course, students will be able to	Level		
CO1	Observe the physical state, odour, colour and solubility of the given	K1		
	organic compounds.			
CO2	Detect the presence of special elements in an unknown organic	K2		
	compound performing a systematic analysis.			
CO3	Identify the presence of various functional groups in the given	K3		
	organic compounds.			
CO4	Exhibit the solid derivative with respect to the identified functional	K4		
	group.			
CO5	Prepare organic compounds and exhibit their crude and	K5		
	recrystallized sample.			

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	2	2	2	2	2	2
CO5	3	2	1	1	2	3	2	2	1	2

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

SYLLABUS

I. ANALYSIS OF SIMPLE ORGANIC COMPOUNDS

- > Identification of acidic, basic, phenolic and neutral organic compounds.
- > Test for aliphatic/aromatic nature of the compound.
- > Test for saturation / unsaturation.
- Detection of element present.
- Identification of functional groups.
- > Confirmation by preparation of solid derivatives / characteristic color reactions,
- **Note:** Mono –functional compounds are given for analysis. (Carboxylic acid, phenols, carbohydrates, amides, amines, aldehydes, ketones and esters).

II. PREPARATION OF ORGANIC COMPOUNDS (SINGLE STAGE)

- 1. Salicylic acid from methyl salicylate (Hydrolysis).
- 2. Acetanilide from aniline (acetylation).
- 3. m-Dinitrobenzene from Nitrobenzene (Nitration).
- 4. Benzoic acid from Benzaldehyde (Oxidation).
- 5. 2, 4, 6, tribromoaniline from aniline (Bromination)

Text Book

- Venkateswaran, V., Veerasamy, R., & Kulandaivelu, A. R. (1997). Basic principles of Practical Chemistry. 2nd edition, New Delhi, Sultan Chand & Sons.
- Ganapragasam, N.S., & Ramamurthy, G. (1998). Organic Chemistry Lab Manual. Viswanathan Co. Pvt. Ltd.

Reference book

Gurtur, J. R., & Kapoor, R. (1997). Advanced Experimental Chemistry. S. Chand and Co. Ltd. New Delhi.

Web References

- 1. <u>https://iscnagpur.ac.in/study_material/dept_chemistry/3.1_MIS_and_NJS_Manual_fo</u> r_Qrganic_Qualitative_Analysis.pdf.
- 2. <u>https://www.vedantu.com/iit-jee/qualitative-analysis-of-organic-compounds</u>.
- 3. <u>http://amrita.olabs.edu.in/?sub=73&brch=8&sim=116&cnt=2</u>.
- 4. <u>http://home.miracosta.edu/dlr/211exp3.htm#:~:text=Methyl%20salicylate%20(an%20</u> ester)%20can,which%20is%20released%20by%20hydrolysis.
- 5. <u>https://www.youtube.com/watch?v=wsXFYgCWzvg</u>.

Pedagogy

Demonstration and Practical Sessions.

Course Designer

Dr. C. Rajarajeswari

Semester- III	Internal Marks: 25		External Marks: 75					
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEKCREDITS43					
22UCH3AC4	PHYSICS-I	SECOND ALLIED	4	3				
		COURSE-I (AC)						

- To understand the behavior of matter in everyday life.
- To know the basic concepts of properties of matter.
- To acquire the knowledge in thermodynamics and heat conduction.
- To impart the ideas of semiconductors.

Pre-Requisites

- Get depth knowledge of physics in day today life
- Understand the fundamentals of elasticity and elastic nature of materials.
- Knowledge about the concepts of viscosity.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the Course, the Student will be able to,	Cognitive Level
CO 1	Recall the basic concepts of elasticity, viscosity and surface tension to solve problems encountered in everyday life.	K1
CO 2	Understand the concepts of the centre of gravity, states of equilibrium of rigid bodies and also stability of floating bodies.	K2
CO 3	Apply the behavior of the laws of thermodynamics, thermal conductivity and black body radiation.	K3
CO 4	Analyse the theories and experiments on interference and diffraction using air wedge, Newton's ring.	K4
CO 5	Evaluate the formation, characteristics and applications of diodes and transistor.	K5, K6

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	3	3	3	3	3	3	3	2	3
CO 2	2	3	3	3	3	3	3	2	2	3
CO 3	2	3	3	3	3	3	3	3	2	3
CO 4	2	3	3	2	3	3	3	3	3	3
CO 5	2	3	3	2	3	3	3	3	3	3

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation

"-" – indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	PROPERTIES OF MATTER	15	CO1,	K1,
-	Introduction - Stress – Strain – Young's	10	CO2,	K2,
	modulus- Rigidity modulus – Bulk modulus –		CO3,	K3,
	Relations between elastic constants and		CO4,	K4,
	Poisson's Ratio (definition alone).		CO5	K5,
	Viscosity: Viscous force - Co-efficient of			K6
	Viscosity - Streamline flow and Turbulent			
	flow – critical velocity - Poiseuille's formula			
	for co-efficient of viscosity of a liquid			
	(Stoke's Method)			
II	MECHANICS	12	CO1,	K1,
	Basic concepts- Centre of Gravity- solid		CO2,	K2,
	hemisphere – Hollow hemisphere.		CO3,	K3,
	States of Equilibrium: Equilibrium of a rigid		CO4,	K4,
	body –Stable, unstable, and neutral equilibrium – Example Stability of Floating		CO5	K5, K6
	bodies – Metacentre – Determination of			K0
	Metacentric height of a ship.			
III	THERMAL PHYSICS	12	CO1,	K1,
	Thermodynamics: Definitions - Significance	12	CO2,	K2,
	and limitations of thermodynamic Processes		CO3,	K3,
	such as reversible and irreversible, adiabatic,		CO4,	K4,
	isothermal, isobaric, isochoric, and cyclic		CO5	K5,
	process - Laws of thermodynamics - enthalpy,			K6
	entropy and heat capacity. Relationship			
	between Cp and Cv - Joule -Thomson effect.			
IV	OPTICS	12	CO1,	K1,
	Interference: Introduction – Superposition of		CO2,	K2,
	waves –Principle of interference-Air wedge –		CO3,	K3,
	Newton's rings.		CO4,	K4,
	Polarization: Nicol Prism – Nicol Prism as		CO5	K5,
	Polarizer and Analyzer – Laurent's half Shade Polari meter.			K6
V	ELECTRONICS	11	CO1,	K1,
•	Semiconductors: Classification of materials	11	CO1, CO2,	K1, K2,
	based on energy band (Conductors,		CO2, CO3,	K2, K3,
	semiconductors and insulators) - Intrinsic and		CO4,	K4,
	extrinsic semiconductor.		CO5	K5,
	Diodes : PN Junction diode – Biasing of PN			Kó
	junction-V-I characteristics of junction diode			
	-Zener diode - Characteristics of Zener diode.			
VI	SELF STUDY FOR ENRICHMENT	-	CO1,	K1,
	(Not to be included for External		CO2,	K2,

Examination)	СОЗ,	КЗ,
Applications of Elasticity-Low Viscous	CO4,	K4,
silicon liquid immersed transformers- Rigid	CO5	K5,
body of solid systems - Kinetic theory of		K6
matter-Properties of optical materials-		
Characteristics, Working and Applications of		
LED.		

Text Books

- 1. Murugeshan R, (2017), Properties of matter, S. Chand & Co. Pvt. Ltd., Revised Edition
- 2. Narayanamoorthy and Nagarathinam N, (2005), *Mechanics Part II*, The National Publishing Company, Chennai.
- 3. BrijLal, Subrahmanyam N, Hemne P S, (2021), *Heat and Thermodynamics and Statistical Physics*, S. Chand & Co. Pvt. Ltd., Revised edition
- 4. Dr. Subramaniyam N, Brijlal and Dr. Avathanulu M N, (2015), *Optics*, S. Chand & Co. Pvt. Ltd. 5th Edition, New Delhi.
- 5. Mehta V K and Rohit Mehta, (2015), Principles of Electronics, S. Chand and company Ltd

Reference Books

- 1. Brijlal and Subramaniyan, (2005), Properties of Matter, S. Chand & Co. Pvt. Ltd.
- 2. Mathur D S, (2006), *Mechanics*, S. Chand & Co. Reprint Edition.
- 3. Brijlal and Subramaniyan, (2001), *Thermal Physics*, S. Chand & Co.
- 4. Murugeshan R and Kiruthiga Sivaprasath, (2014), *A Text Book of Optics*, S. Chand & Co. Pvt. Ltd.- 9th revised edition Ramnagar, New Delhi.
- 5. Vijayendran V, Viswanathan S, (2004), *Digital Fundamentals*, Printers & Publishers Private Ltd, Chennai.

Web References

- 1. https://byjus.com
- 2. https://digitalcommons.unl.edu/cgi/viewcontent
- 3. <u>https://sciencing.com</u>
- 4. https://nptel.ac.in/courses/122106025

Pedagogy

Chalk and Talk, Seminars, Power Point Presentation, Quiz, Assignment and Group discussion.

Course Designer

Dr.R.Mekala

Semester III	Internal Marks: 40	External Marks: 60						
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS				
22UCH3AC5P	PHYSICS -I (P)	SECOND ALLIED COURSE- II (AP)	4	3				

- To acquire a general foundational knowledge of physics experiments.
- To identify and solve problems at the frontier of physics knowledge.
- To get hands-on experience with practical skills.

Pre-requisites

• Basic knowledge on usage of scientific apparatus.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the Course, the Student will be able to	Level
CO 1	Find applications of physics experiments in real world appliances	K1
CO 2	Construct the experiment by arranging and assembling the equipment.	K2
CO 3	Build practical hands-on experience by various techniques.	K3
CO 4	Compare the experimental values with standard values.	К3
CO 5	Apply the physics theory to design basic electrical circuits and develop	K4
	practical understanding	

Mapping of CO with PO and PSO

Cos	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	1	1	1	2	1	3	2	1	2	1
CO 2	2	2	2	2	2	3	3	1	2	1
CO 3	1	3	2	3	1	3	2	1	3	1
CO 4	2	1	3	3	2	1	3	1	3	2
CO 5	3	2	3	3	3	1	3	2	3	2

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation

LIST OF EXPERIMENTS (Any 8)

- 1. Young's modulus Uniform bending (Pin and Microscope).
- 2. Acceleration due to gravity- Compound Pendulum.
- 3. Viscosity of liquid Stoke's method.
- 4. Surface Tension and Interfacial Surface Tension Drop weight method.
- 5. Specific Heat Capacity of liquid Newton's law of Cooling.
- 6. Air wedge thickness of thin wire.
- 7. Meter Bridge Specific Resistance of a coil.
- 8. Carey Foster's Bridge Specific Resistance of a coil.
- 9. Post office Box- Determination of Temperature Coefficient.
- 10. Potentiometer Low range voltmeter Calibration.
- 11. Characteristics of Junction diode.
- 12. Characteristics of Zener diode.
- 13. Basic Logic gates
- 14. Comparison of EMF between Leclanche and Daniel cells.
- 15. Internal resistance of the Leclanche using Potentiometer.

Text Books

- 1. Somasundaram. S, (2012). Practical Physics, Apsara Publications, Tiruchirappalli.
- 2. Sasikumar. R, (2011), A Book for Practical Physics. PHI LearningPvt. Ltd, NewDelhi

Reference Books

- 1. Srinivasan.S, (2011) A Text Book of Practical physics, Sultans and publications, New Delhi.
- Prof. Namboodiri pad, M.N., Prof.Daniel, P.A., (1982). B.Sc., Practical Physics. G.B.C. Publications, Cochin.

Web References

- 1. https://vlab.amrita.edu/?sub=1&brch=280&sim=550&cnt=1
- 2. https://vlab.amrita.edu/index.php?sub=1&brch=280&sim=1518&cnt=4
- 3. http://amrita.olabs.edu.in/?sub=1&brch=5&sim=225&cnt=4

Pedagogy

Demonstration, practical sessions, and viva voce

Course Designer

Dr. K. Kannagi

Semester III	Internal Marks: 25	External Marks: 75					
COURSE CODE	COURSE TITLE	CATEGORY	Hrs./	CREDITS			
			Week				
22UCH3GEC1	CHEMISTRY IN	GENERIC ELECTIVE	2	2			
	EVERYDAY LIFE	COURSE					

- > To know about the importance of Chemistry in everyday life.
- > To gain knowledge in food and nutrition.
- > To learn the Chemistry of building materials and plastics.
- > To learn about the role of chemicals in cosmetics.
- > To gain knowledge about dyeing processes.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recognize and account the importance of role of chemistry in	K1 & K2
	industry and pollution control.	
CO2	Exemplify the chemistry of materials used in everyday life.	К3
CO3	Categorize the chemistry of materials used in everyday life.	K4
CO4	Interpret the uses of chemicals in day today life and its impact.	K5
CO5	Illustrate and classify the importance of chemistry used in commercial	K6
	and daily life.	

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	1	2	3	2	3	3	2	1	2

"1" – Slight (Low) Correlation "2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation "-" Indicates there is No Correlation.

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Chemistry of Air and Water:	15	CO1,	K1, K2, K3,
	Air - components and their importance;		CO2,	K4, K5
	photosynthetic reaction, air pollution, green -		CO3,	
	house effect, ozone layer depletion and the impact		CO4	
	on our life style. Water - sources of water, qualities			
	of potable water, soft and hard water, methods of			
	removal of hardness - water pollution.			
II	Food and Nutrition:	15	CO1,	K1, K2, K3,
	Carbohydrates, proteins, fats - definition and their		CO2,	K4, K5
	importance as food constituents - balanced diet -		CO3,	
	calories minerals and vitamins (sources and their		CO4	
	physiological importance). Chemicals in food			
	production - fertilizers - need, natural sources;			
	urea - NPK fertilizers and super phosphate.			
III	Building materials:	15	CO1,	K1, K2, K3,
	Cement, ceramics, glass and refractories -		CO2,	K4
	definition - composition and application - plastics		CO3	
	- polythene - PVC - bakelite - polyesters -			
	melamine - formaldehyde resins - preparation and			
	uses - merits and demerits of plastics -			
	environmental impact and awareness.			
	Biodegradable polymers.			
IV	Chemistry of Cosmetics:	15	CO1,	K1, K2, K3,
	Cosmetics - tooth paste - face powder - face cream		CO2,	K4, K5
	- lip stick - hair dye - soaps (natural soaps, baby		CO3,	
	soap, and transparent soap) and detergents -		CO4	
	shampoos, nail polish - perfumes - general			
	formulation and preparations - possible hazards of			
	cosmetic use.			

V	Dye Chemistry:	15	CO1,	K1, K2, K3,
	Dyes - classification of dyes - based on mode of		CO2,	K4
	application - acid - basic - direct - mordant - vat -		CO3	
	sulphur. Pigment - solvent and food dye - based on			
	chemical constitution - nitroso dye - nitro dye - azo			
	dye - thiazole dye - methods of dyeing - direct			
	dyeing - vat dyeing - mordant dyeing and disperse			
	dyeing.			
VI	Self-Study for Enrichment	-	CO1,	K1, K2, K3,
	(Not to be included for External Examination)		CO2,	K4
	Reverse osmosis - desalination of water - refining		CO3	
	and bleaching agents - types of dyes and pigments			
	- importance of pollution control.			

Text Books

- 1. Vaithyanathan, S. (2006). Textbook of Ancillary Chemistry; Priya Publications, Karur.
- 2. Sharma, B. K. (2014). Industrial Chemistry; GOEL publishing house, Meerut, 16th edition.
- Jayashree Ghosh. (2006). Fundamental Concepts of Applied Chemistry, S. Chand & Co. Publishers, 2nd edition.

Reference Books

- 1. Billmeyer, F. N. (1971). Textbook of Polymer Science, Wiley Interscience.
- 2. Prakash. (2011). Comprehensive Industrial Chemistry, Pragati Prakashan, Meerut.
- 3. Poucher, W. A., Joseph, A., & Brink. (2000). Jr. Perfumes, Cosmetics and Soaps, Springer.
- 4. De, A. K. (1990). Environmental Chemistry, New Age International Public Co.

Web References

- 1. <u>https://www.educationusingpowerpoint.co.uk/preview-278-Chemistry_1_Air_and_Water.html.</u>
- 2. <u>https://www.slideshare.net/harikafle944/food-and-nutrition-general-concept.</u>
- 3. https://slideplayer.com/slide/261357/.
- 4. <u>https://www.slideshare.net/amirhamza1234/presentation-on-dye.</u>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

Dr. K. Uma Sivakami

Semester IV	Internal Marks: 25	Ε	xternal Marks:	75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22UCH4CC5	INORGANIC AND ORGANIC CHEMISTRY	CORE	6	6

- 1. To learn the general characteristics of d and f block elements.
- 2. To understand the reactions of organometallic compounds.
- 3. To study about the preparation and properties of alcohols, phenols and ethers.
- 4. To understand the arrangement of atoms in space, isomers and the nomenclature.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Outline the synthesis of organometallics and oxygen containing functional groups and symmetry elements.	K1, K2
CO2	Describe the general characteristics of d and f block elements, organic compounds and stereoisomers.	K3
CO3	Analyze the trends of the periodic properties, reactions and types of stereoisomers.	K4
CO4	Distinguish between 3d, 4d and 5d elements, functional isomers and	K5
CO5	Predict the properties of transition, inner tansition elements and configuration of organic compounds	K6

Mapping of CO with PO and PSO

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	2	3	3	3	3	3	2	2	2

"1" – Slight (Low) Correlation "3" – Substantial (High) Correlation "2" – Moderate (Medium) Correlation "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	CONGNITIVE LEVEL
Ι	Chemistry of d-Block Elements: Position of	18	CO1,	K1, K2, K3, K4,
	d-block element-electronic configuration-		CO2, CO3,	K5
	classification-general characteristics -atomic		CO3, CO4,	
	radii-ionic radii-metallic character-melting		CO5	
	point and boiling point-atomic volume -			
	densities-ionization energies-standard			
	oxidation potential - reducing properties-			
	variable oxidation state-catalytic properties-			
	color of transition metal complexes-			
	Magnetic properties-formation of complex			
	compounds-formation of interstitial			
	compounds-alloy formation. comparison			
	between elements of 3d series with 4d and			
	5d series.			
II	Chemistry of f-Block Elements: General	18	CO1,	K1, K2, K3, K4,
	characteristics of f block elements-		CO2, CO3,	К5
	comparative account of lanthanides and		CO4,	
	actinides-occurrence-oxidation state-		CO5	
	magnetic properties-color and spectra-			
	lanthanides - actinides-separation by ion			
	exchange - solvent exchange methods-			
	lanthanide and actinide contraction -			
	chemistry of thorium - uranium-occurrence-			
	ores- extraction and uses-compounds of			
	uranium and thorium-preparation-properties-			
	uses.			
III	Chemistry of Organometallic compounds:	18	CO1,	K1, K2, K3, K4,
	Introduction-classification-preparation		CO2, CO3,	К5
	properties and uses of organo magnesium		CO4,	
	compounds, organozinc compounds,		CO5	

	organolithium, organocopper, organolead,			
	organophosphorus and organoboron			
	compounds			
IV	Chemistry of Alcohols, phenols and	18	CO1,	
1 V	Ethers: Nomenclature- preparation of	10	CO1, CO2,	
	alcohols-industrial source of alcohols-		CO3,	
			CO4, CO5	
	physical properties -chemical properties-			
	uses-chemistry of glycols and glycerols-			
	uses-preparation of phenols including di and			
	tri hydric phenols - physical and chemical			
	properties-uses-aromatic electrophilic			
	substitution mechanism-theory of orientation			
	and reactivity- preparation of ether -			
	epoxides - physical properties-			
	chemical properties-uses.			
V	Stereochemistry: Stereoisomers - types-	18	CO1, CO2,	K1, K2, K3, K4, K5, K6
	concept of chirality- elements of symmetry -		CO3,	110, 110
	enantiomers - diastereomers –fisher		CO4, CO5	
	projection representation -R, S configuration-		005	
	sequence rule-D and L- nomenclature-			
	erythro and threo nomenclature. Compounds			
	with two stereogenic centre-optical isomers			
	of lactic acid, tartaric acid. geometrical			
	isomers – <i>cis- trans</i> system- <i>E</i> -Z system.			
	Racemic mixture- resolution of racemic			
	mixture – Walden Inversion –			
	conformational analysis of methane, ethane			
	and n-butane and			
	cyclohexane.			
X7T	Self-Study for Enrichment: (Not to be		COL	
VI	included for External Examination)		CO1, CO2 CO3	K1, K2, K3, K4
	Periodic table- classification of elements-			
	periodic properties - types of organic			

Text books

- 1. PuriB. R, Sharma L. R, Kalia K. K. Principles of Inorganic Chemistry, 23rd edition, New Delhi, Shoban Lal Nagin Chand & Co., (1993).
- 2. Madan R. D. Modern Inorganic Chemistry, 2nd edition, S. Chand & Company Ltd., 2000.
- 3. Bhupinder M. Manju M., Organic chemistry, (2 nd edition), Delhi, PHI Learning Private Limited.
- 4. Bahl, B.S. and Bahl, A., Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (2010).
- 5. Soni P.L. Chawla H.M., Text book of Organic chemistry, Sultan Chand & Sons.

Reference books

- 1. Malik W.U, Tuli G.D, Madan R.D, selected topics in Inorganic chemistry, S Chand and Company limited, New Delhi.
- Lee J. D. Concise Inorganic Chemistry, 20th revised edition, Sultan Chand& Sons, 2000.
- Finar I.L., Organic Chemistry, Vol 1&2, (6th edition) England, Addison Wesley Longman Ltd. (1996).
- Morrison R.T. and Boyd R.N., Bhattacharjee S. K. Organic Chemistry (7th edition), Pearson India, (2011)

Web References:

- 1. https://unacademy.com/content/cbse-class-12/study-material/chemistry/d-block-elements/
- 2. https://study.com/learn/lesson/d-block-elements-properties-electron-configuration.html
- 3. https://www.aakash.ac.in/important-concepts/chemistry/actinides
- 4. https://www.usb.ac.ir/FileStaff/2896_2019-4-18-0-9-32.pdf
- 5. https://colapret.cm.utexas.edu/courses/Chapter%2015.pdf
- 6. https://www.askiitians.com/revision-notes/chemistry/alcohols-phenols-and-ether/

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. C. Rajarajeswari

Semester IV	Internal Marks: 40	0 External Marks: 60		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22UCH4CC4P	INORGANIC QUALITATIVE ANALYSIS (P)	CORE	4	4

Objectives

- To learn the techniques of semi micro qualitative analysis.
- To know the nature of acidic and basic radicals.
- To learn the separation of groups.

Course outcomes

On the successful completion of the course, students will be able to

СО	CO Statements	Knowledge Level
C01	Recall the nature of acidic and basic radicals	K1
CO2	Identify the cations and anions present in the mixture	K2
CO3	Analyze the principles of inorganic qualitative analysis.	К3
CO4	Demonstrate the experimental methods of group separation	K4
CO5	Plan, execute and record all the experimental results.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	2	2	2	3	1	2	2	2	1	1
CO5		3	3	1	3	2	3	3	3	1

"1" - Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" indicates there is no correlation.

SYLLABUS INORGANIC QUALITATIVE ANALYSIS (P)

Analysis of a mixture containing two cations and two anions of which one will be an interfering acid radical.

Semi micro methods using the conventional method with sodium sulphide may be adopted.

Cations to be studied:

Lead, copper, bismuth, iron, aluminium, zinc, manganese, cobalt, nickel, barium, calcium, strontium, magnesium and ammonium.

Anions to be studied:

Carbonate, Sulphate, Nitrate, Chloride, Fluoride, Borate, Oxalate and Phosphate.

Text Books

1. Venkateswaran V. Veerasamy R. Kulandaivelu A.R., Basic principles of Practical Chemistry,

2nd edition, New Delhi, Sultan Chand & sons (1997)

Reference book

1. Svehla G. Sivasankar B. Vogels Qualitative Inorganic Analysis, 7th Edition, Pearson Education

Web References

1. <u>http://rbmcollege.ac.in/sites/default/files/files/reading%20material/inorganic-</u> <u>qualitative-analysis.pdf</u>

- 2. <u>https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules</u>
- 3. https://byjus.com/chemistry/salt-analysis/
- 4. https://chemlab.truman.edu/files/2015/07/Inorganic-Qualitative-Analysis.pdf
- 5. https://www.teachmint.com/tfile/studymaterial/b-

sc/inorganicchemistry/qualitativeanalysis/a9301386-a267-44c7-886a-09c64f439dcb

Pedagogy

Demonstration and practical sessions

Course Designers

***** Dr. C. RAJARAJESWARI

Semester IV	Internal Marks: 25 External Marks: 75				
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22UCH4AC6	PHYSICS - II	SECOND ALLIED COURSE – III	4	3	

- To provide the basic knowledge about the concepts of current electricity.
- To introduce the basic concepts of magnetostatics.
- To understand modern wave mechanics, which are basic for modern physics.
- To apply the principles of electronics in day to life.
- To understand the modern lasers and digitization of computers.

Pre-Requisites

- Basic laws of electricity.
- Fundamental knowledge in modern physics.
- Get in-depth knowledge about the concepts of digital electronics.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number	On the successful completion of the Course, the Students will be able	Level
	to,	
CO 1	Acquire knowledge on elementary ideas of electricity, magnetism, modern and laser physics, digital electronics.	K1, K2
CO 2	Able to understand the knowledge on basic laws of current electricity, different types of magnetism, wave mechanics and modern laser, electronics.	K2
CO 3	Recall the of elementary ideas of electricity and magnetism, modern wave mechanics and digitization of computers.	K3
CO 4	Analyze the behavior of laser physics and modern physics in our day-to-day life.	K4
CO 5	Discuss the characteristics of Kirchoff's law and Specific resistance, photoelectric effect, types of lasers and modern electronics.	K5

Mapping of CO with PO and PSO

COs	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PO 1	PO 2	PO 3	PO 4	PO 5
CO 1	2	3	3	3	3	3	3	3	3	3
CO 2	2	3	3	3	3	3	3	2	2	3
CO 3	2	3	3	3	3	3	3	3	3	3
CO 4	2	3	3	2	3	3	3	3	2	3
CO 5	2	3	3	2	3	3	3	3	2	3

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" - indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	CURRENT ELECTRICITY Ohm's law–Law of resistance in series and parallel– Specific resistance–capacitor–capacitors in serial and parallel–Kirchoff's laws–Wheatstone's network – condition for balance. Carey Foster's bridge – measurement of resistance– measurement of specific resistance–determination of temperature coefficient of resistance–Potentiometer– calibration of Voltmeter.	14	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
П	MAGNETISM Intensity of magnetization-Susceptibility-Types of magnetic materials-Properties of para, dia and ferromagnetic materials-ferrimagnets and their applications-Hysteresis-Experiment to draw M-H curve (Horizontal Method)-energy loss in hysteresis.	10	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
Ш	MODERN PHYSICS Photo electric effect–Laws of photo electric effect – Einstein's photo electric equation–verification of Einstein's photo electric equation by Millikan's experiment–photo electric cells–applications. Wave mechanics: De Broglie concept of matter waves – characteristics and calculation of De Broglie wave length -Study of De Broglie matter wave by G. P. Thomson Experiment.	14	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	LASER PHYSICS Laser: Basics of Lasers-Principle of Laser-Stimulated Absorption-Stimulated Emission-Spontaneous Emission- population inversion-meta stable state – conditions for laser actions-Types-Ruby laser-He-Ne laser-applications of lasers-Raman effect-Raman shift -stokes and anti stokes lines.	10	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

V	DIGITAL ELECTRONICS Number systems-conversion of binary into decimal– conversion of decimal to Binary–binary addition and subtraction-Basic logic gates-AND, OR, NOT gates- NAND and NOR as an universal logic gates-Boolean Algebra–Laws of Boolean Algebra-De Morgan's theorems- verifications using truth tables.	12	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
VI	SELF STUDY FOR ENRICHMENT (Not to be included for External Examination) Meter bridge-B-H Curve-Atomic & Nuclear Physics- Fiber optics-Artificial intelligence–Electronic School books.	-	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

Text Books

- 1. Murugeshan R (2001), Electricity and Magnetism, S. Chand & Co. Pvt. Ltd, Thirdedition.
- 2. Murugeshan R, Kiruthiga Sivaprasath (2017), *Modern Physics*, S. Chand & Co. Pvt.Ltd, Sixteenth Revised color edition.
- 3. Brijlal & Subramanian, (1995), *Electricity and Magnetism*, Ratan Prakashan Mandir.
- 4. Sedha R. S. (2004), A text book of Digital Electronics, S. Chand & Co. Pvt. Ltd, Firstedition.

Reference Books

- 1. Murugesan R, (2010), Allied Physics Paper I and II, S.Chand & Co, New Delhi, Revised Edition.
- 2. Narayanamurthi R, (1988), *Electricity and Magnetism*, The National Publishing Co,First Edition.
- 3. Arthur Beiser, Mahajan, Choudhury, (2015), *Concepts of Modern Physics*, Pustakkosh Pubications, India.
- 4. Donald P.Leach, Albert Paul Malvino, Goutam Saha, (2008), *Digital principle andApplications*, Mc Graw-Hill Publishing Company, 6th Editions, New York.
- 5. Vijayendran V, Viswanathan S, (2004), *Digital Fundamentals*, S. Viswanathan Printers Pvt. Ltd, Revised edition.

Web References

- 1. <u>https://wepdf.com/al/allied-physics</u>
- 2. <u>https://archive.nptel.ac.in/courses</u>
- 3. <u>https://nptel.ac.in/courses</u>
- 4. https://www.askiitians.com/revision-notes/physics/atomic-physics/

Pedagogy

Chalk and talk, PPT, Quiz, Assignment and Group discussion

Course Designer

Dr. R. Mekala

Semester IV	nternal Marks: 25 ExternalMarks:75									
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS						
22UCH4GEC2	FOOD ADULTERANTS	GENERIC	2	2						
	AND HEALTH CARE	ELECTIVE								
		COURSE-II								

Course Objective

- > To provide an understanding of food and nutrition
- To provide an understanding of the chemical basis of food preservation and the effects of processing

and storage on food quality

- To familiarize the student with common experimental methods used in the study of the major food adulterant
- > To know various types of health care, balanced diet and role of water balance in health.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Know the outline about the importance of health, sources of food, hazards of food additives and food poisoning.	K1&K2
CO2	Classify and identify common adulterants in different foods, food poisoning and impacts on health.	К3
CO3	Understand the common Food additives in food products, its prevention laws and importance of water balance in health care.	K4
CO4	Recognize the significance of nutrients, balanced diet and types of health care.	K5
CO5	Predict the nutrient, functions, sources of non-adulterants food and water for health care.	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	1	2	3	2	3	3	2	1	2

"1" – Slight (Low) Correlation "2" – Moderate (Medium) Correlation "3" – Substantial (High) Correlation "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Food and food poisoning: Sources of food - types - advantages and disadvantages -		CO1,	
	constituents of food - carbohydrate - protein -fats and oils - vitamins and minerals - natural toxicants - food Poisoning: sources - causes and remedy - causes and remedies for acidity-gastritis-indigestion and constipation.		CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,K6
Π	Food adulterants:			
	Adulterants- common adulterants in different foods - milk and dairy products - vegetable oils – fats - spices – condiments - cereals pulses - sweetening agents and beverages- contamination with toxic chemicals - pesticides and insecticides - Laws of prevention of food adulteration - Methods for detection of common adulterants in milk- milk products- oils and fats -sweetening agents - grains - spices - coriander powder - turmeric powder - coffee powder - tea dust and asafoetida.	06	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,K6
III	Food additives:			
	Food additives: artificial sweeteners- saccharin - cyclamate and aspartame- food flavors: esters - aldehydes and heterocyclic compounds- antioxidants: permitted - non- permitted food colors- stabilizers - thickeners and emulsifiers -other functional additives- soft drinks- formulation health drinks- preservatives- baking powder - yeast.	06	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,K6

IV	Health:			
	Definition of Health- WHO standard - balanced diet-	06	CO1 CO2	
	Primary health care - secondary and tertiary health care-		CO1, CO2, CO3, CO4,	K1, K2, K3, K4,
	Primitive health care: preventive - curative - rehabilitative		CO5	K5,K6
	health care - spiritual health care- concepts of social			
	medicine -preventive medicine and community			
	medicine.			
V	Water Balance in health:			
	As a nutrient- functions- sources- requirements-		CO1 CO2	
	distribution of water in the body- exchange of water in the		CO1, CO2, CO3, CO4,	K1, K2, K3, K4,
	body- composition of body fluids- water exchange		CO5	K5,K6
	between plasma and interstitial fluid-Water imbalance –	06		
	dehydration- water intoxication.			
VI	Self-Study for Enrichment			
	(Not to be included for External Examination)		CO1, CO2,	K1, K2, K3, K4,
	Preservation of food by use of chemicals-Preservation by	-	CO3, CO4, CO5	K5,K6
	use of sugar-pickling-principles of Food Preservation-			
	diet for children and adults-role of water in			
	health.			

Text Books:

- 1. Seema Yadav, Food Chemistry, Anmol publishing (P) Ltd., New Delhi, 2006.
- 2. Alex Ramani, Food Chemistry, MJP publishers, Chennai., 2009.
- Jayashree Ghosh, Text book of Pharmaceutical Chemistry S. Chand & Co. Publishers, New Delhi, 2003.
- 4. S. Lakshmi, Pharmaceutical Chemistry, S. Chand& Sons, New Delhi, 2004.

Reference Books:

- 1. Thomas M. Devlin, Textbook of Biochemistry with Clinical Correlations, John Wiley & Sons; 7th edition, 2010.
- 2. Ashutosh Kar, Medicinal Chemistry, New Age International, 2007.
- 3. Joshi A.S., Nutrition & Dietetics, Tata Mcgraw hill, New Delhi, 1998.

Web Reference

https://www.slideshare.net/HiwrHastear/food-poisoning-60301801. https://www.slideshare.net/swatishikha10/food-adulteration-96507428. https://www.slideshare.net/bhambieannmalacas/food-additives-ppt. https://www.slideshare.net/sivanandareddy52/definition-concept-of-health. https://www.slideshare.net/rajud521/balance-water.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

Dr. K. Uma Sivakami.

Semester IV	Internal Marks:40	External Marks:60		
COURSE CODE	COURSE TITLE	CATERGORY	HRS./	CREDITS
			WEEK	
22UCH4SEC1P	CHEMISTRY OF	SKILL	2	2
	CONSUMER PRODUCTS (P)	ENHANCEMENT		
		COURSE		

Course Objectives

- To know the basic knowledge in chemistry of consumer products and modern trends in the industry.
- > To provide the practical training to the students in consumer product analysis

Course outcomes

Course Outcome and Cognitive Level Mapping

CO	CO Statements	Knowledge Level
Number	On the successful completion of the course, students will be able to	
CO 1	Outline the various adulterants in food products.	K1
CO 2	Explain the procedures for detecting the adulterants.	K2
CO 3	Identify the nature of adulterants added to consumer products.	K2
CO 4	Differentiate the pure and impure food samples.	K2
CO 5	Calculate the percentage composition of food colorant in food and beverages.	K3

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	2	2	2	2	2	2
CO5	3	2	1	1	2	3	2	2	1	2

"1" – Slight (Low) Correlation

"3" – Substantial (High) Correlation

"2" – Moderate (Medium) Correlation "-" Indicates there is No Correlation

- 01. Detection of adulterants in milk and milk products.
- 02. Detection of adulterants in oil
- 03, Detection of adulterants in spices and condiments.
- 04. Detection of adulterants in food products.
- 05. Estimation of food colors. (Colorimetric analysis)

Text Books

 Sally A. Henrie, (2015), Green Chemistry Laboratory Manual for Green Chemistry, Press Taylor & Francis Group and Informa Business.

Reference book

1. Gajanan Shrike, (2022), Food & Beverage Adulteration and its Implications theory and Practice, Notion Press.

Web References

1. https://dfda.goa.gov.in/images/PDF-DOCUMENTS/quciktestforsomeadullterantsinfood-

fssaiinitiative.pdf

- 2. https://www.hansshodhsudha.com/first-second-issues/New%20Hansraj%20College%20Book-1-20-26.pdf
- 3. https://www.fssai.gov.in/book-details.php?bkid=201

Pedagogy

Demonstration and Practical Sessions

Course Designer

Dr. A.Sharmila

Semester V	InternalMarks:25	ExternalMarks:75				
COURSECODE	COURSETITLE	CATEGORY	Hrs /Week	CREDITS		
22UCH5CC6	INORGANIC CHEMISTRY -I	Core Course	6	6		

Course Objective:

- > To understand the concept of metallurgy
- > To impart basics and theories of coordination compounds.
- > To study biologically important coordination compounds.

Course Outcome and Cognitive Level Manning

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Explain the process of metallurgy and reactions of complexes.	K1, K2
CO2	Recognize the Ellingham diagram and basic concepts of co-ordination chemistry.	К3
CO3	Examine the purification process, Werner theory, 10Dq and MO diagram of octahedral complexes.	K3
CO4	Analyze calcination, roasting, Sidgewick theory, stability and magnetic property of metal complexes.	K4
CO5	Criticize metallurgical process, VB, CFSE, MO theories and reactions of coordination compounds.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	3	3	3	3
CO2	3	2	2	3	2	2	3	3	3	2
CO3	3	3	3	2	2	3	2	2	2	3
CO4	3	3	3	2	3	3	2	2	2	3
CO5	3	3	2	3	3	3	3	2	3	3

"1"–Slight (Low)Correlation "3"–Substantial (High)Correlation

"2"–Moderate(Medium)Correlation "-"indicates there is no correlation

UNIT	CONTENT	HOURS	Cos	CONGNI
				TIVELE
I	UNIT-I Metallurgy	18	CO1	VEL K1
	Minerals and ores - process - ore dressing - gravity	-	CO1	K1 K2
	separation - froth flotation magnetic separation -		CO3	K3
	chemical separation- calcination and roasting.		CO4	K4
	Extraction of metal-chemical reduction-auto reduction-		CO5	
	electrolytic reduction-metal displacement. Refining			
	methods - Van Arkel method - electrolytic refining -			
	vapour phase refining-ion exchange method-			
	Thermodynamic principles of metallurgy-Ellingham			
	diagram - observations - applications.			
II	UNIT-II Coordination Compounds –I	18	CO1	K1
	Introduction – classification of ligands – uses of		CO2	K2
	chelates -nomenclature of coordination compounds-		CO3	K3
	isomerism- structural isomerism – stereo isomerism -		CO4 CO5	
	bonding theories - Werner's theory -Sidgwick's		005	
	concept of coordination - Valence bond theory –			
	postulates - geometries of tetrahedral - square planar			
	and octahedral complexes - limitations.			
III	UNIT-III: Coordination Compounds –II	18	CO1	K1
111	_	10	CO1 CO2	KI K2
	Crystal filed theory - shapes of d orbitals-		CO3	K3
	assumptions- splitting of d-orbitals in octahedral-		CO4	K4
	tetrahedral and square-planar complexes - crystal field		CO5	K5
	stabilization energy- factors affecting magnitude of			
	10Dq – color of the transition metal complexes –			
	number of unpaired electron - magnetic properties of			
	octahedral complexes- spectro			
TX 7	chemical series – Jahn -Teller theorem.	10	001	171
IV	UNIT -IV: Stability of Metal Complex	18	CO1 CO2	K1 K2
	Labile and inert complexes - thermodynamic		CO2 CO3	K2 K3
	stability and kinetic stability-stepwise and overall		CO4	K4

	formation constant- Relation between β_n and $K_n\text{-}$		CO5	
	factors affecting stability of metal complexes-			
	chelate effect - Experimental determination of			
	stability constant and composition of complex.			
V	UNIT-V: Ligand substitution reactions	18	CO1	K1
	Types of substitution reaction – Nucleophilic –		CO2	K2
	Electrophilic substitution reactions – hydrolysis		CO3	K3
	reaction – Acid hydrolysis - base hydrolysis of		CO4 CO5	K4
			COS	
	octahedral complexes – Anation reaction-			
	Substitution reaction in square planar complexes -			
	trans effect – Theories of trans effect - applications.			
	Mechanism of substitution reaction in Pt(II)			
	complexes- Factors affecting rate of			
	substitution.			
	Self-study: (Not included for End Semester		CO1	K1
VI	Examination)		CO2	K2
	Diagonal, trigonal and tetragonal distortion,		CO3	K3
	instability constant – John Teller Distortion		CO4	
	stabilization Energy		CO5	

Text Books:

- Malik, W. U., Tuli, G. D., & Madan, R. D. (1998). Selected topics in inorganic chemistry. S. Chand Publishing.
- 2. Housecroft, C. E., & Sharpe, A. G. (2008). Inorganic chemistry (Vol. 1). Pearson Education.
- 3. Cotton, F. A., Wilkinson, G., Murillo, C. A., & Bochmann, M. (1999). *Advanced inorganic chemistry*. John Wiley & Sons.
- 4. Madan, R. D. (2019). Satya Prakash's Modern Inorganic Chemistry. S. Chand Publishing.
- Prakash, S., Tuli, G. O., Basu, S. K., & Madan, R. D. (2000). Advanced Inorganic Chemistry, Vol 2, S. Chand Group, New Delhi, India.

Reference Books:

- 1. Chhatwal, G. R., & Mehra, H. (1974). Advanced inorganic chemistry.
- 2. Sharma, R. K. (2007). Text Book of Coordination Chemistry. Discovery publishing house.
- 3. Gopalan, R. (2001). Concise coordination chemistry. Vikas publishing house.

- 4. Srivastva, A. N. (Ed.). (2020). *Stability and Applications of Coordination Compounds*. BoD–Books on Demand.
- 5. Raj, G. (2010). Advanced Inorganic Chemistry: Vollume II. Krishna Prakashan Media.

Web Reference:

- 1. <u>https://download.e-bookshelf.de/download/0000/5777/25/L-G-0000577725-0002359455.pdf</u>
- 2. https://www2.chemistry.msu.edu/courses/cem151/chap24lect_2019.pdf
- 3. <u>https://www.scribd.com/document/464488620/INTRODUCTION-TO-COORDINATION-CHEMISTRY</u>
- 4. https://egyankosh.ac.in/bitstream/123456789/71758/3/Unit-4.pdf
- https://teachmint.storage.googleapis.com/public/555766642/StudyMaterial/4730da7d-1f2a-4a70a473-0cc7cd84dc13.pdf

Pedagogy

Chalk and talk, PPT, You tube, E-content, Group Discussion, Assignment, Quiz and

Seminar

Course Designers

Dr.P. Pungayee Alias Amirtham

Semester V	Internal Marks: 25	Ex	ternal Ma	rks: 75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs./	CREDITS
			Week	
22UCH5CC5P	PHYSICAL	CORE	3	3
	CHEMISTRY (P)	PRACTICAL - V		
		I NACIICAL - V		

Course Objectives

- > To learn the methods of finding CST, TT, Molecular weight and rate constant.
- > To understand the fundamentals of conductometric and potentiometric titrations.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recall the basic principles related to physical chemistry experiments.	K1 & K2
CO2	Scientifically plan and perform kinetics, rast and adsorption experiments.	K3 & K4
CO3	Relate the effect of impurity on phenol water system and identify the molecular weight of unknown compound.	K4 &K5
CO4	Calculate and process the experimentally measured values and compare with graphical data.	K5
CO5	Examine the concentration of ions using potentiometer, conductometer and interpret the data scientifically	K6

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	1	2	3	2	3	3	2	1	2

"1" - Slight (Low) Correlation

"2"-Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" Indicates there is No Correlation.

SYLLABUS

- 1. Determination of rate constant for acid catalyzed ester hydrolysis.
- 2. Critical Solution Temperature Phenol-Water system.
- 3. Effect of impurity (NaCl) on Critical Solution Temperature.
- 4. Rast Method Determination of molecular weight of unknown solute.
- 5. Transition temperature of a salt hydrate determination of molecular weight.
- 6. Phase Diagram of simple eutectic system.
- 7. Adsorption of acetic acid on activated charcoal, verification of Freundlich isotherm.
- 8. Kinetics of Persulphate-Iodide Reaction.
- 9. Preparation of buffer solutions at different pH
 - i) Sodium acetate-acetic acid ii) Ammonium chloride-ammonium hydroxide
- 10. Conductometric Acid-Base Titration (HCl vs NaOH).
- 11. Potentiometric Redox Titration (FAS vs KMnO4).
- 12. Determination of equivalent conductance of a strong electrolyte (NaCl/KCl).

Text Books

- 1. Viswanathan B and Raghavan P.S, Practical Physical Chemistry (2009), Viva Books, New Delhi.
- 2. Sundaram, Krishnan (1996), Raghavan, Practical Chemistry (Part II), Viswanathan Co. Pvt.
- Athawale and Parul Mathur (2008), Experimental Physical Chemistry, New Age International (P)Ltd., New Delhi.
- 4. Lewers E.G (2011), Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2nd Ed., Springer, New York.

Reference Books

- 1. Yadav J.B, (2001), Advanced Practical Physical Chemistry, Goel Publishing House,
- 2. Gurthu J.N and Kapoor R (1987), Advanced Experimental Chemistry, S. Chand & amp; Co.,

Web References

- 1. https://www.slideshare.net/mohdsakharkar/acid-base-catalysed-ester-hydrolysis.
- 2. <u>https://www.slideshare.net/sandeepkumaryadav4/critical-solution-temperature-of-phenolwater-system</u>.
- 3. https://davjalandhar.com/dbt/chemistry/SOP%20LabManuals/B.Sc.%20SEM%20V.pdf.
- 4. https://ncert.nic.in/pdf/publication/sciencelaboratorymanuals/classXII/chemistry/lelm106.pdf.
- 5. <u>https://www.slideshare.net/adujoy/triiodide</u>.

Pedagogy

Chalk and talk, E-content, Demo, Hands on training, Quiz, Assignments. **Course Designer**

Dr. K. Uma Sivakami

Semester V	Internal Marks: 25	External Marks: 75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS		
22UCH5CC7	ORGANIC CHEMISTRY-I	CORE	6	6		

Course Objectives

- > This course helps to learn the reactions of carboxylic acids, amines, carbonyl compounds
- and Heterocyclic compounds. \succ
- > To recognize the mechanism of rearrangements.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On successful completion of the course, the student will be able to	Knowledge level
C01	Recognize the nature of organic compounds and rearrangements	K1
CO2	Discuss about synthesis of organic compounds.	K2
CO3	Demonstrate various reactions of different functional group with mechanism.	K3
CO4	Distinguish the reactivity of organic substances and rearrangements.	K4
CO5	Predict the appropriate method for separation of amines and pathways of rearrangements.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PO4	PO5	PO1	PO2	PO3	PO4	PO5
CO 1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	2	3	1	2	3	3	2	3	3

"2" – Moderate (Medium) Correlation "-" indicates there is no correlation

1" – Slight (Low) Correlation "3" – Substantial (High) Correlation

UNIT	CONTENT	HOURS	COs	COGNIT IVE LEVEL
I	Carboxylic Acid and Their Derivatives Aliphatic acids: Saturated monocarboxylic acid – resonance structure – relative strength of carboxylic acids (effect of substituents) - Reactive methylene compounds: Preparation-	18	CO1 CO2 CO3 CO4	K1, K2, K3, K4
	properties - uses of ethyl acetoacetate - diethyl malonate. Aromatic acids: Monocarboxylic acids – general methods of preparation - properties - reactions of benzoic acid - salicylic acid. Dicarboxylic acid: Preparation - properties - uses of phthalic acid - terephthalic acid.			
Π	Chemistry of Nitrogen Compounds Amines: aliphatic and aromatic amines - classification – general methods of preparation- properties and reactions - separation of mixture of amines - Basicity of amines - effect of substituents - distinction between primary, secondary and tertiary amine - Aliphatic diazo compounds: Preparation - properties of diazomethane-Diazonium compounds: Benzene diazonium chloride – structure - reactions - synthetic applications of diazo coupling reaction.	18	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5
III	Carbonyl Compounds - Aldehydes and Ketones Structure - acidity of α-hydrogen – methods of preparation- physical properties - chemical properties – reactivity of carbonyl group- nucleophilic addition - addition of HCN - addition of derivatives of ammonia - addition of sodium bisulphate - addition of Grignard reagent - Reformatsky - Wittig reaction - oxidation and reduction reactions - Aldol condensation - Benzoin condensation - Cannizzaro reaction – Iodoform reaction.	18	CO1 CO2 CO3 CO4	K1, K2, K3, K4
IV	Heterocyclic Compounds and Dyes Heterocyclic Compounds: Nomenclature – Chemistry of	18	CO1 CO2	K1, K2, K3, K4

	furan- thiophene - pyrrole – pyridine- Fused ring heterocyclic compounds: Quinolone - isoquinoline - indole. Dyes: Introduction – colour - constitution - classification based on structure - application. Preparation and applications of the following dyes – methyl orange- Congo red- malachite green and indigo.		CO3 CO4	
V	Molecular Rearrangements: Types of rearrangement (nucleophilic and electrophilic) – mechanism with evidence for the following re-arrangements - Pinacol – Pinacolone. Benzil - Benzilic acid, Benzidine, Claisen, Fries, Hofmann, Curtius, Lossen, Beckmann and Dienone – phenol rearrangements.	18	CO1 CO2 CO4 CO5	K1, K2, K4, K5
VI	Self-Study for Enrichment (Not to be included for External Examination) Preparation of aliphatic carboxylic acids- nitro alkanes and alkyl nitrites - addition of oxygen nucleophiles - reactions of pyridine-N-Oxide.		CO1 CO2 CO3	K1, K2, K3

Text Books

- Bahl, B.S and Bahl .A. (2010), Advanced Organic Chemistry 12th edition, Sultan Chand &Co., New Delhi.
- 2. Soni. P.L, (2006), Text Book of Inorganic Chemistry, S. Chand & Co., New Delhi.
- 3. Bhupinder Mehta and Manju Mehta, (2015), Organic Chemistry, Prentice Hall of India Pvt Ltd., New Delhi.

Reference Books

1. Finar I.L. (1996), Organic Chemistry Volume 1&2 (6th edition), Addison Wesley Longman Ltd., England.

2. Morrison R.T. and Boyd R.N. and Bhattacharya S.K. (2011) Organic Chemistry (7th edition) Pearson India.

3. Tewari K.S., Vishil N.K. and Mehotra. S.N (2001), A text book of Organic Chemistry (1st

edition), Vikas Publishing House Pvt Ltd., New Delhi.

4. Pine.S.H, (1987), Organic Chemistry (5th edition), McGraw-Hill International Book Company, New Delhi.

5. Seyhan N. Ege., (2005)Organic Chemistry (5th edition), Houghton Mifflin Co., New Delhi

Web Reference

- 1. https://byjus.com/chemistry/carboxylic-acid-properties/
- 2. https://www.ch.ic.ac.uk/widdowson/teach_files/nitrogen/dw1.html
- 3. <u>https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/aldket1.htm</u>
- 4. https://www.chem.gla.ac.uk/staff/stephenc/teaching/HeterocycleLectures2011_2C12.pdf

Pedagogy

E-content, Lecture, Power Point Presentation, Seminar, Assignment, Quiz, Group

discussion, Video/Animation.

Course Designers

1. Dr. A. Sharmila

Semester V	Internal Marks: 25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs / Week	CREDITS
22UCH5CC8	PHYSICAL CHEMISTRY – I	CORE COURSE- VIII	6	6

Course Objective

- To understand laws of thermodynamics, photochemical process and types of electronic transitions,
- To learn the behaviors of dilute solutions and colligative properties, colloids, adsorption phenomena, phase rule and its significances.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
Tumber	On the successful completion of the course, students will be able to	Level
CO1	Find equilibrium constant and enthalpy of equilibrium reaction at different temperature	K1
CO2	Discuss thermodynamic conditions favoring chemical equilibrium.	K2
CO3	Evaluate physical and chemical adsorption phenomenon	K3
CO4	Explain phase rule and law of dilute solution to predict composition, molecular weight	K3
CO5	Analyse quantum yield and Identify types of electronic transition in organic molecules	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	2	3	2	1	2	3	2	2	2	3
CO4	3	3	2	2	3	2	2	1	2	3
CO5	3	3	2	3	3	3	3	2	1	3

"1" – Slight (Low) Correlation \neg

"3" – Substantial (High) Correlation \neg

"2" – Moderate (Medium) Correlation ¬ "-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Chemical Equilibrium, Zeroth and Third Law	18	CO1,	K1, K2,
	Thermodynamics		CO2, CO3,	K3,K4,
	Law of mass action - thermodynamic treatment -		CO4	K5
	Van't Hoff reaction isotherm- temperature			
	dependence of the equilibrium constant - Van't Hoff			
	equation- integrated form of Van'tHoff equation -			
	homogeneous-heterogeneous systems (NH3, PCl5			
	and CaCO3) - relationship between Kp and Kc-			
	Factors affecting chemical equilibrium - Le			
	- Chatlier principle (Haber's and Contact processes)			
	- Zeroth law of thermodynamics - absolute			
	temperature scale - statement of third law - Nernst			
	heat theorem.			
II	Molecular Thermodynamics	18	CO1,	K1,
	Thermodynamics of systems of variable composition		CO2, CO3,	K2,
	– partial molar properties – chemical potential –		CO4	КЗ,
	relationship between partial molar quantities – Gibbs			K4
	Duhem equation -applications- thermodynamic			,K5
	properties of real gases - fugacity concept -			
	calculation of fugacity of real gas – activity - activity			
	coefficient - concept - definition - standard states -			
	experimental determinations of activity and activity			
	coefficient of electrolytes.			
III	Surface Chemistry	18	CO1,	K1,
	Definition of colloids - solids in liquids (Sols) -		CO2, CO3,	K2,
	preparation - purification - properties - kinetic-		CO4,	K3,
	optical - electrical - stability of colloids - Hardy		CO5	

	Schule law - protective colloids - liquids in liquids			K4,
	(emulsions) – preparation - properties - uses - liquids			K5,
	in solids (gels) – preparation- properties - adsorption			
	- physical adsorption - chemisorption- Freundlich -			
	Langmuir adsorption isotherms -			
	applications of adsorption.			
IV	Phase Rule	18	<i>,</i>	K1,
	Concept of phase- component - degrees of freedom -		CO2, CO3,	K2,
	Gibb's phase rule - phase equilibrium - one component		CO4,CO5	КЗ,
	system – water system - sulphur system – two component			K4,
	system – solid liquid equilibrium. Simple eutectic			K5
	diagram of Pb-Ag system- simple eutectic diagram-			
	desilverisation of lead compound formation with			
	congruent melting point - (Mg-Zn) - incongruent			
	melting point (Na-K) - NaCl -water			
	system-freezing mixtures.			
V	. Electronic Spectroscopyand Photochemistry	18	CO1,	K1,
	Molecular spectra - Energy levels of molecular		CO2, CO3,	K2,
	orbitals - electronic spectroscopy - selection rules -		CO4,	K3,
	types of electronic transitions- concept of		CO5	K4,
	chromophore - auxochrome.			K5
	Photochemistry: Difference between thermal and			
	photochemical processes- laws of photochemistry -			
	Grothus-Draper's law - Stark-Einstein's law of			
	photochemical equivalence - quantum yield-			
	photochemical reaction mechanism- hydrogen-			
	chlorine, hydrogen- bromine reaction - energy			
	transfer processes - Jablonski diagram- qualitative			
	description of fluorescence - phosphorescence -			
	photosensitized reactions.			

	Self-Study for Enrichment:	-	CO1,	K1,
VI	(Not to be included for External Examination.		CO2 CO3	K2,
	First and second laws of thermodynamics, reduced			КЗ,
	phase rule equation, Critical solution temperature,			K4
	BET adsorption isotherm.			

Text Book

1. Puri B. R., Sharma, L. R. and Pathania, M. S. (2013). Principles of Physical Chemistry, Shoban Lal Nagin Chand & Co., New Delhi

2. S. Glasstone and D. Lewis, (2014). Elements of Physical Chemistry, Mac Millon Ltd, London

3. Banwell C.N, (1994). Fundamentals of Molecular Spectroscop, Mc GrawHill Education , Noida

Reference books

1. Puri B.R., Sharma L.R., and Kalia K.K (1993), Principles of Physical Chemistry 23rd edition, Shoban Lal Nagin Chand &Co.New Delhi.

2. Maron and Prutton, (1969). Physical Chemistry, Mac Millan, London

3. Atkins P.W., (1994). Physical Chemistry, 5th edition, Oxford Uiversity Press.

4. Gabor a Sobarjai and Yimin Li, (2010). Introduction to Surface Chemistry and Catalysis,

2nd edition, John Wiley & Sons, New Jersey

Web References

• <u>https://ocw.mit.edu/courses/5-61-physical-chemistry-fall-2017/resources/electronic-spectroscopy-and-photochemistry/</u>

• <u>https://www.chadsprep.com/chads-general-chemistry-videos/3-laws-of-thermodynamics-definition/</u>

• <u>https://www.slideshare.net/ImranNurManik/colligative-properties-of-dilute-solutions-</u> manik

• <u>https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.ssgopalganj.in%2F</u> online%2FOnline%2520Class%2520520PPT%2FClass%252012%2FChemistry%2Fch%25205%2520 ppt%2520surface%2520chemistry.pptx&wdOrigin=BROWSELINK

• <u>https://ccsuniversity.ac.in/bridge-library/pdf/Engg-AG-Engg-Chem-2nd-sem-subodh-Lecture-</u> 5.pdf

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

Dr. K. Shenbagam, Assistant Professor, Department of Chemistry

Semester V	InternalMarks:25	ExternalMarks:75				
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS		
22UCH5DSE1A	NUCLEAR AND INDUSTRIAL CHEMISTRY	DISCIPLINE SPECIFIC ELECTIVE - I	5	4		

Course Objective:

- To impart knowledge about radioactivity and nuclear chemistry.
- To provide knowledge about industrial chemistry.

Outcome and Cognitive Level Mapping

CO Number	er On the successful completion of the course, students will be able to								
CO1	Recall subatomic particles, isotopes, isobar, isotones, magic number, fuels and fertilizers.	K1, K2							
CO2	Interpret nuclear reaction, radioactive decay and types of hardness.	K3							
CO3	Analyze pesticides, insecticides, fertilizers, fuels and radioactive isotopes.	K3							
CO4	Describe stability of nucleus, radioactive series, DDT, BHC, LPG and zeolite process.	K3							
CO5	Illustrate nuclear models, radioactive series, characteristics of pesticides, fertilizers and estimation and removal of hardness	K3							

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	3	3	1	3
CO2	3	2	2	3	2	2	3	3	3	2
CO3	3	3	3	1	2	3	2	2	2	3
CO4	3	3	3	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	3	3

"1"-Slight (Low)Correlation

"2"-Moderate(Medium)Correlation

"3"-Substantial (High)Correlation

"-"indicates there is no correlation

UNIT	CONTENT	HOURS	Cos	CONGNITIV ELEVEL
I	UNIT-I: Introduction to nuclear chemistry: Nucleus-	15	CO1	K1
•	subatomic particles - nuclear forces (Meson theory)-	10	CO2	K2
			CO3	K3
	nuclear size – density -stability of nucleus- n/p ratio,		CO4	
	curves, stability belts - Whole number rule- binding		CO5	
	energy, mass defect -magic number-structure of nucleus-			
	Shell model and Liquid drop model- Nuclear reaction			
	(capturing, particle – particle and spallation reactions).			
	Nuclear fission - nuclear fusion reaction – theories -			
	characteristics features - comparison between			
	nuclear reaction and chemical reaction.			
II	UNIT-II: Radioactivity: Natural radioactivity -	15	CO1	K1
	Radioactive decay- α , β , γ decay, Detection and		CO2	K2
	measurement of radioactivity (Geiger Muller and		CO3 CO4	К3
	ionization counter) - radioactive series - group		CO4	
	displacement law Rate of disintegration and half - life			
	period - Average life period. Artificial radioactivity -			
	Artificial radioactivity - induced radioactivity - uses of			
	radioisotopes - hazards of radiations - nuclear reactors -			
	nuclear fusion - thermo nuclear reactions - energy			
	source of the sun and stars.			
III	UNIT-III: Agricultural Industries: Plant Nutrient-	15	CO1	K1
	Micro and macro nutrients. Fertilizer: manufacturing of		CO2	K2
	NPK- Complex fertilizers - mixed fertilizers –		CO3 CO4	K3
	manufacturing – composition - Pesticides- classification		CO4	
	based on origin -chemical structure - target pest -			
	General methods of application – toxicity - safety			
	measures in using pesticides - preparation properties -			
	uses of organic pesticides – DDT and BHC.			

	UNIT -IV: Industrial fuels: Coal power industries-	15	CO1	K1
	composition - manufacturing - applications of water gas		CO2	K2
137	and producer gas - petroleum refining - chemicals from		CO3	K3
IV	petroleum refining - natural gas - LPG - petrol - diesel -		CO4 CO5	
			0.05	
	air pollution problems due to automobiles - remedial			
	measures to control pollution - conversion of coal power			
	into petroleum oil by Fischer-Tropsch and			
	Bergius method - power alcohol -composition and uses.			
V	UNIT-V: Industrial water treatment: Hard water and	15	CO1	K1
	industries - industrial water treatment – problems due to		CO2	K2
	hardness in boiler feed water - determination of hardness		CO3	K3
	of water - Titration method - complexometric method		CO4 CO5	
	-		0.05	
	using EDTA - expressing hardness - equivalents of			
	calcium carbonate - water softening methods - Clark's			
	process - permutit or zeolite process			
	- ion exchange process and reverse osmosis.			
	Self-study: (Not included for End Semester		CO1	K1
VI	examination)		CO2	K2
	Toxicity, threshold limit, manufacturing of power		CO3	K3
	alcohol, case studies on nuclear accident, nuclear		CO4 CO5	
	bomb. Chemistry paper industries, engineering			
	materials used in industries.			

Text Book:

- 1. Stocchi, E. Lott, K.A.K. and Short, E.L. (1990). Industrial Chemistry, Vol-I, U.K, Ellis Horwood Ltd.
- Arnikar, J.H. (2022), Essentials of Nuclear chemistry (5th Ed), New Delhi, New Age International Private Limited.
- Sharma, B.K. (2014), Industrial Chemistry (17/e Ed), Goel Publishing House Reference Book:
- 1. Gurdeep Raj. (2016), Advanced Physical Chemistry, (4th Ed), Meerut, Krishna prakashan media.
- 2. Puri, Sharma & Pathania (2018) Principles of Physical Chemistry (47th Ed), Jalandhar, Vishal

publication.

3. Samir Sakar, (2009), Fuels and Combustion, (3rd Ed), India, Universities Press.

Web Reference:

- 1.https://onlinecourses.nptel.ac.in/noc23_cy21/preview
- 2. http://www.nou.ac.in/econtent/Msc%20chemistry%20paper%202/MSc%20Chemistry%20Paper-

II%20Unit-2.pdf

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo,

Quiz and Seminar

Course Designers

Dr. V. Sangu.

Semester V	Internal Marks: 25	External Marks: 75						
COURSE CODE	COURSETITLE	CATEGORY	Hrs/	CRED				
			Week	ITS				
22UCH5DSE1B	BASICS OF NANOSCIENCE AND NANOTECHNOLOGY	DISCIPLINE SPECIFIC ELECTIVE – I	5	4				

Course Objective

- > To know the synthetic methods of nanomaterials.
- > To understand the characterization of nanomaterials.
- > To understand carbon-based nanomaterials.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Recall the basic concept of nano scale, synthesis and carbon nanomaterials.	K1
CO2	Explicate the synthesis, properties, instrumentation techniques and carbon nanotube.	K2
CO3	Describe quantum materials, top down, bottom up approach, AFM, SEM CNT, CNF and CNB.	К3
CO4	Analyze the types, properties, size, structure and bonding in nano materials.	K4
CO5	Assess nanomaterials, CVD, TEM, arm chair and Zig zag pattern.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	2	3	3
CO5	3	3	3	2	3	3	3	2	3	3

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" indicates there is no correlation.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Fundamentals of Nanoscience and	15	CO1,	K1, K2, K3,
	Nanotechnology Historical perspectives - ancient		CO2,	K4, K5
	- medieval - modern periods in nanoscience and		СОЗ,	
	nanotechnology - terms and definitions - scale of		CO4,	
	material - macro - meso - micro and nanoscale - size		CO5	
	dependent- classification of nanomaterials -			
	properties of materials - surface and volume -			
	surface energy - band gap in metals - bulk vs nano			
	- quantum nanostructures - importance of			
	nanoscience.			
т	Dependenting of mon and the la	15	CO1	
II	Properties of nanomaterials	15	CO1,	K1, K2, K3,
	Thermal properties - melting point - heat capacity-		CO2,	K4, K5
	Curie temperature-coefficient of thermal		CO3,	
	expansion - electrical properties - lattice constant -		CO4,	
	phase transformation – mechanical properties -		CO5	
	elastic modulus - hardness and strength - toughness			
	- optical properties - magnetic properties -			
	biological properties - antimicrobial activity and			
	toxicity.			
III	Synthesis of nanomaterials	15	CO1,	K1, K2, K3,
	Synthesis of nanomaterials - top-down and bottom-		CO2,	K4, K5
	up approaches - principles and types - physical		СОЗ,	
	methods - milling - etching - sputtering - LASER		CO4,	
	ablation - chemical vapour deposition (CVD) -		CO5	
	chemical methods - chemical reduction -			
	precipitation - sol- gel method - solvothermal			

	synthesis - sonochemical synthesis - biological			
	methods - microbial synthesis - phytosynthesis.			
			~ ~ .	
IV	Characterization techniques of nanomaterials	15	CO1,	K1, K2, K3,
	Spectroscopic methods - UV-Visible absorption -		CO2,	K4, K5
			СОЗ,	
	emission spectroscopy - IR spectroscopy - scanning		CO4,	
	probe methods: AFM - electron probe methods -		CO5	
	SEM - TEM - X-ray methods - particle size			
	determination-Dynamic light scattering method.			
V	Carbon based nanomaterials	15	CO1,	K1, K2, K3,
	Structure - bonding in nano material - arm chair -		CO2,	K4, K5
	C C		CO3,	
	zig-zag - chiral patterns - theory of formation of		CO4,	
	different structures - growth process of CNT -		CO5	
	single walled carbon nano tubes - multi walled			
	carbon nano tubes - graphite - diamond - different			
	types of carbon nano materials - CNF- CNB -			
	structure - properties.			
VI	Self Study for Enrichment		CO1	K1, K2
VI		-	COI	K 1, K 2
	(Not to be included for External Examination)			
	Natural - man-made nanomaterial - significance of			
	nanoscale - synthesis using microorganisms -			
	thermal decomposition of complex precursors -			
	carbon based nano materials - fullerenes - structure			
	- properties of supramolecular assemblies.			

Text Books

1. Goyal, R.K., (2018). Nanomaterials and Nanocomposites: Synthesis, Properties, Characterization,

New York: Taylor & Francis Group. CRC Press.

- 2. Hornyak L.G., Tibbals H.F., Dutta J., and Moore J.J., (2009). Introduction to Nanoscience & Nanotechnology, New York: CRC press. Print.
- 3. Sharon M., Pandey S., & Oza G., (2012). Bionanomaterials: Concepts and Applications, New Delhi:Ane Books Pvt. Limited. Print.
- 4. Kumar N., & Kumbhat S., (2016). Essentials in nanoscience and nanotechnology, New Jersey: John Wiley & Sons., Inc.

Reference Books

- 1. Balaji, S., (2010). Nanobiotechnology, Chennai: MJP Publishers. Print.
- 2. Cao, G. & Wang, Y., (2011). Nanostructures and Nanomaterials:(Synthesis, Properties and Applications),
 - New Delhi: World Scientific Publishing Co. Pvt. Ltd. Print.
- 3. Poole, C.P., & Owens F.J., (2010). Introduction to Nanotechnology, New Delhi:

John Wiley and Sons (Asia) Pvt. Ltd. Print.

Web References

- 1. https://drive.google.com/file/d/1KXRsFv11_ydF02BG43kLyQ2cds1nKQ4Y/view
- 2. https://drive.google.com/file/d/10hqFlDLhatyUEl1wA4-Xvn_AuV3hQiz6/view
- 3. <u>https://drive.google.com/file/d/1vq9hJo_2znn9oxqkIasgwccsCyURzAnM/view</u>
- 4. <u>https://drive.google.com/file/d/1LUQswFQs60brycdtVd2uo1RHsEYGllfx/view</u>

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

Dr. P. Thamizhini

Semester V	Internal Marks:25	External Marks:75		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22UCH5DSE1C	POLYMER CHEMISTRY	DISCIPLINE SPECIFIC ELECTIVE	5	4

Course Objectives

- > To enrich the knowledge in the chemistry of polymers.
- > To study the concepts of polymerization and techniques
- > To emphasize the impact of less toxic polymers for sustainable development

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level		
CO1	Recall polymers terms, properties, glass transition temperature melting point of polymers.	K1		
CO2	Illustrate the preparation, properties and applications of Polymers	K2		
CO3	Acquaint various polymer processing technologies andmolding techniques.	K3		
CO4	Analyze the mechanisms of the reactions that lead to the formation of polymers	K4		
CO5	Implantation of polymer applications to improve socio economic facts	K5		

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	2	3
CO2	3	3	2	3	3	3	3	2	2	2
CO3	2	3	3	3	3	2	3	3	3	2
CO4	3	3	2	3	2	3	2	2	2	2
CO5	2	3	1	2	3	3	3	3	2	3

"1"-Slight (Low)Correlation

"2"-Moderate(Medium)Correlation

"3"-Substantial (High)Correlation

"-"indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Introduction to Polymers	15	CO1	K1
	Definition of monomer, polymer and		CO2	К2
	polymerization – classification of polymers		CO3	К3
	on the basis of sources and applications -		CO4	K4
	thermosetting and thermoplastics.		CO5	K5
	Functionality and degree of polymerization.			
	Types of polymerization reactions: Chain			
	polymerization - free radical and ionic			
	polymerization - coordination polymerization-			
	step polymerization polyaddition –			
	polycondensation - ring opening - group			
	transfer – electrochemical – metathetical			
	polymerization.			
II	Tacticity, Properties and Reactions of	15	CO1	K1
	Polymers		CO2	K2
	Tacticity in polymers- Isotactic, syndiotactic		CO3	K3
	and atactic polymers - Glass transition		CO4	K4
	temperature (T_g) -factors affecting T_g .		CO5	K5
	Relationship between T_g and M_n , T_g and T_m			
	-Importance of Tg. Molecular weight of			
	polymer - number average (Mn) - weight			
	average (Mw). sedimentation - viscosity			
	average molecular weights. Reactions -			
	Hydrolysis – hydrogenation – addition –			
	substitutions – cross linking and cyclisations			
	reaction. Polymer degradation- thermal,			
	photo and oxidation degradation of			
	polymers (basics			
	only)			

III	Polymerization Techniques and Moulding	15	CO1	K1
	Technique		CO2	K2
	Bulksolution - emulsion - melt condensation -		CO3	K3
	interfacial polycondensation – plasma		CO4	K4
	polymerization – polymerization in supercritical		CO5	K5
	fluids. Moulding techniques – Injection –			
	compression - extrusion - rotational -			
	calendaring.			
IV	Chemistry of Commercial Polymers	15	CO1	K1
	Preparation, properties and uses of the		CO2	K2
	polymers – polyethylene- polypropylene –		CO3	K3
	polystyrene – PVC – Teflon –		CO4	K4
	polymethylmethacrylate – polycarbonate –		CO5	K5
	polyurethanes - polyamides (Kevlar) -			
	phenol- formaldehyde - urea-formaldehyde			
	resin - epoxy resins - rubber-styrene -			
	neoprene rubbers.			
V	Biopolymers and Recycling of plastic waste	15	CO1	K1
	Biopolymer films – biodegradable mulching-		CO2	K2
	properties – uses - disadvantages of biodegradable		CO3	K3
	polymers- applications of biopolymers in horticulture		CO4	K4
	Food Packaging - nanocomposite films - coating -		CO5	K5
	preparation - uses of PHBV- PGA- PLA – PCL- steps			
	involved in recycling of plastics.			
	Self-Study for Enrichment	-	CO1	K1
VI	(Not to be included for External Examination)		CO2	K2
	Polydispersity and polydispersity index of polymers.		CO3	K3
	Examples of monodispersed and polydispersed		CO4	K4
	polymers. Molecular mass &			
	mechanical properties. Size of polymer molecules.			

Text Books

1. Gowariker V.R., Viswanathan N.V. and Jayadev Sreedhar, (1978). Polymer Science

Wiley Eastern Ltd., NewDelhi

- 2. Sharma, B.K, 1989, Polymer Chemistry, Goel Publishing House, Meerut.
- Premamoy Ghosh, 2011, Polymer Scienceand Technology, 3rd edition, Tata McGraw HillEducation Private Limited, New Delhi.
- 4. George Odian, 2004, Principles of Polymerization, 4th edition, John Wiley and Sons, New York.
- 5. F. W. Billmayer, Text book of Polymer Science, 3rd edition, John Wiley & Sons

Reference Books

- 1. Arora M.G., Singh, M. and Yadav M.S (1989), Polymer Chemistry, 2nd Revised edition, Anmol Publications Private Ltd., New Delhi.
- 2. Joel R. Fried, 2014, Polymer Scienceand Technology, 3rd Edition, Pearson.
- 3. Anilkumar & S.K. Gupta , 2020, Fundamentals of Polymer Science and Engineering, Tata McGraw Hill, New Delhi

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

Course Designer

1. Dr. R.Subha

Semester: V	InternalMarks:40	ExternalMarks:60				
COURSECODE	COURSETITLE	CATEGORY	Hrs /Week	CREDITS		
22UCH5SEC2P	WATER ANALYSIS (P)	SKILL ENHANCEMENT COURSE-II	2	2		

Course Objective:

- 1. To learn the techniques of titrimetric analyses.
- 2. To know the estimation of several cations and anions
- 3. To know the estimation of total hardness of water.

Course Outcome and Cognitive Level Mapping

СО		Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Recall the basic principles of volumetric analysis and estimation	K1, K2
CO2	Estimate water quality parameters such as dissolved oxygen content, chloride content of the water samples.	K3
CO3	Interpret quality of water from the experimentally measured values.	K3
CO4	Exhibit ethical principles in engineering practices	K3
CO5	scientifically plan and perform experiments to estimate water quality parameters.	К3

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

"1"–Slight (Low)Correlation

"3"-Substantial (High)Correlation

"2"-Moderate(Medium)Correlation "-"indicates there is no correlation

- 1. Determination of total hardness of water by EDTA method.
- 2. Determination of methyl orange alkalinity of water.
- 3. Determination of phenolphthalein alkalinity of water.
- 4. Determination of chloride content of water by argentometric method.
- 5. Estimation of dissolved oxygen in water by Winkler's method.
- 6. Estimation of chemical oxygen demand of water.
- 7. To determine the TDS of a given sample of water.
- 8. Determination of Phosphates in given water sample.
- 9. Determination of Sulphates in given water sample.

Text Book:

- Khanna, D.R. Bhutiani, R. Daya. (2008). Laboratory Mannual of Water and Wastewater Analysis, New Delhi, Publishing House.
- Venkateswaran, V. Veeraswamy, R. Kuandaivelu. (1997). Basic Principles of Practical Chemistry.
 2nd edition. New Delhi, Sultan Chand & Sons

Reference Book:

- Vogel A. I. (2000). Text book of quantitative inorganic analysis. The English language book Society.
 Web Reference:
- 1. http://www.titrations.info/EDTA-titration-calcium
- 2. <u>https://www.youtube.com/watch?v=qmVQs6Q7tso</u>
- 3. <u>https://srmvalliammai.ac.in/wp-content/uploads/2022/05/1903610-water-and-waste-water-analysis-laboratory-manual.pdf</u>
- 4. https://youtu.be/Lp_O8dolCXk
- 5. https://youtu.be/zXvEmlFqicw
- 6. <u>https://youtu.be/Sa0WfA9UGG0</u>
- 7. https://youtu.be/6QsRkG5jy90
- 8. https://youtu.be/ve53HN9za7E

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz and Seminar

Course Designers

Dr.V. Sangu.

Semester VI	Internal Marks: 25	External Marks: 75			
COURSE CODE	COURSETITLE	CATEGORY	Hrs / Week	CREDITS	
22UCH6CC9	ORGANICCHEMISTRY-II	CORE	5	5	

- This course helps to learn the Chemistry of carbohydrates, proteins, vitamins, alkaloids and terpenoids.
- To recognize the mechanism of various oxidizing and reducing reagents and spectroscopy techniques for the elucidation of structures.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On successful completion of the course, the student will be able to	Knowledge Level
C01	Recall the basic concepts of biomolecules, reagents and spectroscopy.	K1
CO2	Classify the types of amino acids, alkaloids, terpenoids, reagents and spectrum.	K2
CO3	Interpret the reactions of biomolecules, mechanism of redox reactions and instrumentations.	К3
CO4	Analyze the structure of carbohydrates, proteins, vitamins, properties of reagents and application of spectroscopic techniques.	K4
CO5	Deduce the λ_{max} , value, vibrational frequency and chemical shift of organic molecules.	K5

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PO4	PO5	PO1	PO2	PO3	PO4	PO5
CO 1	3	3	2	2	2	3	2	1	3	2
CO2	3	2	1	2	2	3	3	1	1	2
CO3	3	2	2	3	3	3	3	2	2	3
CO4	3	1	2	3	2	3	3	2	1	2
CO5	3	2	3	1	2	3	3	2	3	3

1" - Slight (Low) Correlation

"3" - Substantial (High) Correlation

"2"–Moderate(Medium)Correlation "-" indicates there is no correlation

Syllabus

UNIT	CONTENT CHEMISTRY OF CARBOHYDRATES Carbohydrate: Classification-properties of monosaccharides (glucose and fructose) - structure and configuration of mono saccharides- interconversion. Ascending and descending series-muta rotation - epimerization- cyclic structure - determination of size of sugar rings. Disaccharides: Sucrose, maltose - structure elucidation. Polysaccharide: Starch and cellulose (elementary treatment).	HOURS 15	COs CO1 CO2 CO3 CO4	COGNIT IVE LEVEL K1,K2, K3, K4
Π	CHEMISTRYOF PROTEINS ANDVITAMINS Aminoacids: Zwitterion –isoelectric point-general methods of preparation and reactions of aminoacids. Peptides: Peptide linkages. Proteins: Classification of proteins -structure of proteins - primary structure - end group analysis - Edman method-secondary structure-tertiary structure-denaturation - colour reactions of proteins. Nucleic acids: Elementary treatment of DNA and RNA. Vitamins: Classification, structure and biological importance of vitamins A,B1,B2,B6, B12 and C.	15	CO1 CO2 CO3 CO4	K1,K2, K3, K4
III	 CHEMISTRYOFALKALOIDSANDTERPENOIDS Alkaloids: Classification-isolation-methods for synthesis of coniine, piperine, nicotine and quinine. Terpenoids: Classification – isoprene-special isoprene rule- methods for synthesis of citral, limonene, menthol and camphor. OXIDATIONANDREDUCTION Oxidation: Osmium tetroxide – chromyl chloride – ozone – DDQ–dioxiranes- leadtetraacetate- seleniumdioxide–Dess- 	15	CO1 CO2 CO3 CO4 CO4 CO1 CO2 CO3 CO4	K1,K2, K3, K4 K1,K2, K3, K4
	Martin reagent. Reduction: Catalytic hydrogenation usingWilkinson Catalyst – reduction with LAH, NaBH4, tritertiarybutoxy aluminum hydride, NaCNBH3, hydrazines.		CO4	

V	ORGANIC SPECTROSCOPY UV - Vis spectroscopy: Types of electronic transitions – bathochromic shift- hypsochromic shift- hyperchromic shift and hypochromic shift. Instrumentation- solvent effects on λ max-Woodward-Fieser rules for calculation of λ_{max} : Dienes only. IR spectroscopy: Number and types of fundamental vibrations – selection rules- modes of vibrations - instrumentation - position of IR absorption frequencies for functional groups like aldehyde, ketone, alcohol, acid, amine and amide. NMR spectroscopy: Principle - chemical shift- factors affecting the chemical shift - inductive effect and hydrogen bonding - TMS, delta scales, splitting of signals - spin-spincoupling, NMR spectrum of EtOH,n-propyl Bromide and isopropyl bromide.	18	CO1 CO2 CO4 CO5	K1, K2, K3,K4, K5
VI	Self-Study for Enrichment (Notto be included for External Examination) Nomenclature and isomerism of carbohydrates, source of vitamins, oxidation with KMnO ₄ , wavelength and frequency of electromagnetic radiations.		CO1 CO2 CO3	K1,K2, K3

Text Books

- Bahl,B.S and Bahl.A.(2010),AdvancedOrganicChemistry12thedition,SultanChand &Co., New Delhi.
- 2. Soni.P.L, (2006), Text Bookof Inorganic Chemistry, S.Chand & Co., NewDelhi.
- Bhupinder Mehtaand Manju Mehta, (2015), OrganicChemistry, PrenticeHallofIndiaPvt Ltd., New Delhi.
- 4. Y.R. Sharma,(2007),Elementary Organic Spectroscopy,S .ChandPublishing, New Delhi.

ReferenceBooks

1. Finar I.L. (1996), Organic Chemistry Volume 1&2 (6th edition), Addison Wesley LongmanLtd., England.

2. Morrison R.T. and Boyd R.N. and Bhattacharya S.K. (2011) Organic Chemistry (7th edition) Pearson India.

3. TewariK.S., VishilN.K.andMehotra.S.N(2001), AtextbookofOrganicChemistry(1st edition), Vikas Publishing House Pvt Ltd., New Delhi.

4. Pine.S.H,(1987),OrganicChemistry(5thedition),McGraw-HillInternationalBookCompany, New Delhi.

5. SeyhanN.Ege .,(2005)OrganicChemistry (5th edition),Houghton Mifflin Co.,NewDelhi

Web Reference

1. https://www.jsscacs.edu.in/sites/default/files/Department%20Files/carbohydrates.pdf

- 2. <u>https://www.chips.ac.in/pages/downloads/PPTs/Pchemistry/Chemistry%20of%20Proteins.pdf</u>
- 3. https://www.bhu.ac.in/Content/Syllabus/Syllabus_3006312720200418020716.pdf
- 4. https://byjus.com/chemistry/infrared-spectroscopy/

Pedagogy

E-content,Lecture,PowerPointPresentation,Seminar,Assignment,Quiz,Group discussion, Video/Animation.

Course Designer

1. Dr.A.Sharmila

Semester VI	InternalMarks:	ExternalMarks:75		
COURSECODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS
22UCH6CC10	PHYSICAL CHEMISTRY-II	CORE CORSE	6	5

- > To understand theory of electrolyte and electrolytic conductance.
- > To apply measurements of conductance and EMF measurements.
- > To familiarize fundamentals of. NMR, IR and Raman spectroscopy
- > To understand law of solutions and types of liquid-liquid solutions.

Prerequisite::

Conductance, electrolytes, electromagnetic radiations, solvent and solute interactions.

Course Outcome and Cognitive Level Mapping

СО	CO Statement	Cognitive
Number	On the successful completion of the course, students will be able to	Level
CO1	Understand theories of electrolytes, electrodes, basics concepts of spectroscopy and laws of dilute solutions.	K1,K2
CO2	Apply measurements conductance and EMF measurements, spectroscopy and purification techniques.	К3
CO3	Explain Hittorf's method, working of reversible electrodes, Splitting patterns pattern of NMR signals, mode of vibration of diatomic molecules, purification techniques of solutions.	K4
CO4	Compare Raman and IR spectroscopy, strong and weak electrolyte, reversible and irreversible electrodes, Ideal and non-ideal solutions.	K5
CO5	Determine concentration by conductance and EMF measurements, predict number of fundamental modes of vibrations, Abnormal molecular weight.	K5

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	3	3	1	3
CO2	3	2	2	3	2	2	3	3	3	2
CO3	3	3	3	1	2	3	2	2	2	3
CO4	3	3	3	2	3	3	2	1	2	3
CO5	3	3	2	3	3	3	3	2	3	3

"1"–Slight (Low)Correlation

"2"-Moderate(Medium)Correlation

"3"-Substantial (High)Correlation

"-"indicates there is no correlation

UNIT	CONTENT	HOURS	Cos	CONGNITIVE LEVEL
I	Electrochemistry–I :Electrolyticconductance –specific, equivalent and molar conductance–Relations between them – measurement of conductance and cell constant. Factors affecting of conductance in solutions – Strong and weak electrolytes. Migration of ions – transport number–determination (Hittorf method only)– Kohlrausch's law – applications – Determination of equivalent conductance of weak electrolyte at infinite dilution - Ionic product of water - solubility of sparingly soluble salts and Ionic product of water. Ostwald's dilution law–Determinationofdegreeofdissociationof weak electrolytes. Theory of strong electrolytes –Debye – Huckel – Onsager theory-verification of Onsager equation – Relaxation and electrophoretic effects.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
П	Electrochemistry –II: Galvanic cells – Reversible and Irreversible cells – EMF and its measurement–Weston Standard cell–types of reversible single electrodes – standard Hydrogen electrode – Calomel electrode – Derivation of Nernst equation for single electrode potentials –Electro chemical series – significance. Application of thermodynamic application of emf measurements – calculation of thermodynamic quantities of Galvanic cell– Determination of pH of the solution using glass electrodes–potentiometric titrations.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
III	Dilute Solutions: Ideal solutions, Raoult's law - ideally dilute solutions- Henry's law – non-ideal solutions - vapour pressure - temperature curves – azeotropes – hydrochloric acid- water system- ethanol- water systems and fractional distillation - partially miscible liquids - phenol-water - tri methylamine-water, nicotine- water system- effect of impurity on consulate temperature - immiscible liquids and steam distillation – Nernst distribution law-applications of distribution law. Colligative Properties - elevation in boiling point, depression in freezing point-osmotic pressure (Definitions and their relationship with molecular weight of soluteonly. Abnormal molecular weight–Van'tHoff factor.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
IV	Spectroscopy-I: Introduction-various types of spectroscopy - Born-Oppenheimer approximation. Rotational spectroscopy: Rotation spectra of diatomic molecules-determination of bond length and moment of Inertia from rotational spectra-numerical problems IR	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

	spectroscopy: theory - stretching and bending vibrations (H ₂ O and CO ₂) -important spectral regions for the characterization of functional groups-fingerprint region- qualitative relation of force constant to vibrational frequency. Applications of vibrational spectroscopy.			
V	UNIT – V Spectroscopy- II: Raman spectroscopy: Principle - Rayleigh and Raman scattering - Stokes and Anti-stokes lines - differences between IR and Raman spectroscopy - mutual exclusion principle. NMR spectroscopy: Theory of NMR spectrum –Relaxation methods -chemical shift -shielded and de-shielded protons, spin-spin coupling pattern of n-butanol, 2- Butanolinaproticsolvent.Coupling constant and factors affecting coupling constant.	18	CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5
VI	Self-study:(Not for final examination) Eigen value , conductance, cell constant, glass electrode, Daniel cell, batteries, Factors influencing vibrational levels, liquid-solid, liquid -gas solutions.		CO1 CO2 CO3 CO4 CO5	K1 K2 K3 K4 K5

Text Books

1. PuriB.R., Sharma L.R. and Pathania M.S (2019), Principles of Physical Chemistry, Shoban Lal

Nagin Chand & Co., New Delhi.

- 2. Grutu ,J.N.& Grutu, A.(2015). Advanced Physical Chemistry. Pune, India. Pragathipublisher, 18th Edition
- 3. Akins, P. W.(2008). Physical Chemistry. Oxford, UK. Oxford UniversityPress,8th Edition.
- 4. AntropovL.I,(1977), Theoretical electrochemistry, Mir Publishers.
- 5. BanwellC.N(1994), Fundamentals of Molecular Spectroscopy, McGraw Hill Education, Noida.

ReferenceBooks

 $1.\ Gurdeep Raj Maron S. Hand Lando J. B (1974), Fundamental sof Physical Chemistry,$

Macmillan Publishers, New York.

2. Kaur.K,(2014),Spectroscopy, 16thedition,PragatiPrakashanEducationalPublisher.

3. SoniP.L, DharmarhaO.P.&DashU.N(2016), Textbook of Physical Chemistry, Sultan

Chand & Sons, New Delhi.

WebReferences

- 1. https://oms.bdu.ac.in/ec/admin/contents-n/148_20220208103603106.pdf
- 2. <u>https://www.slideshare.net/slideshow/form-4-chapter-6-electrochemistry/166214651</u>
- 3. <u>https://tmv.ac.in/ematerial/chemistry/pm/SEM%204%20NMRS.pdf</u>
- 4. https://uomustansiriyah.edu.iq/media/lectures/6/6_2020_10_09!12_07_57_AM.pdf
- 5. <u>https://www.youtube.com/watch?v=WTmj_9VT5oE</u>
- 6. https://microbenotes.com/electron-spin-resonance-esr-principle-instrumentation-applications/
- 7. https://www.youtube.com/watch?v=yd9GN51AxdQ

Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

Course Designers

Dr. V.Sangu,

Semester VI	Internal Marks: 40		Externa	al Marks: 60
COURSE CODE	COURSETITLE	CATEGORY	Hrs / Week	CREDITS
22UCH6CC6P	GRAVIMETRIC ANALYSISAND PHYSICALPARAMETER(P)	CORE	4	4

➤ To perform the gravimetric analysis and estimating the given compound.

> To provide the practical training to the students in physical parameter techniques.

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	List the various steps of gravimetric analysis.	K1
CO2	Know about the accuracy in Gravimetric estimations and its Significance	K1
CO3	Identify the types of impurities in precipitates.	K2
CO4	Demonstrate gravimetric analysis to different samples.	К3
CO5	Analyze the physical constants of the organic compounds	K4

Mapping of CO with PO and PSO

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	2	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	2	3	3	3	2	3	3
CO5	3	3	3	2	3	3	3	2	3	3

"1"-Slight(Low) Correlation

"3"-Substantial (High)Correlation

"2"–Moderate(Medium)Correlation "-"indicatesthereisno correlation.

Syllabus

I. GRAVIMETRIC ANALYSIS

- 1. Estimation of Lead as Lead chromate.
- 2. Estimation of Barium as Barium Chromate.
- 3. Estimation of Nickel as Nickel–DMG complex.
- 4. Estimation Calcium as Calcium oxalate monohydrate
- 5. Estimation of Barium as Barium Sulphate.
- 6. Estimation of Lead as Lead Sulphate.
- 7. Estimation of percentage of water of hydrationin barium chloride crystals.

II. PHYSICAL PARAMETERS

- 1. Determination of melting point of a solid.
- 2. Determination of boiling point of a liquid.

Text Books

 $1. \ Venkates waran, V. \& Veeras wary, R. \& Kuandai velu. (1997). Basic Principles of Practical Veracular Veracula$

Chemistry. 2nd edition. New Delhi, Sultan Chand & Sons.

2. Gnanaprakasam, N.S. & Ramamoorthi, G. (2007). Organic Chemistry Lab Manual, Newedition, SV printers.

ReferenceBooks

1. Furniss, B.S. (Ed.). (2011). Vogel'stextbook of practical organic chemistry. Pearson Education India. Web References

- 1. https://www.youtube.com/watch?v=vra0wtZVFkw
- 2. https://www.youtube.com/watch?v=DCLp6A8PMnI
- 3. <u>https://www.youtube.com/watch?v=xaQUTlruvFU</u>

Pedagogy

Demonstrationand Practicalsessions

Course Designer

Dr.P.Thamizhini

SemesterVI	InternalMarks: 40	ExternalMarks:60					
COURSECODE	COURSETITLE	CATEGORY	Hrs/Week	CREDITS			
22UCH6DSE2AP	ANALYTICAL TECHNIQUES(P)	DSE	4	4			

➤ To acquire knowledge about performing analytical experiments.

> To gain more insights on analytical methods such as chromatography, titrations and pH measurements

Course Outcomes

Course Outcome and Cognitive Level Mapping

CO Number							
CO1	List and separate the given compounds using various analytical methods.	K1					
CO2	Apply the theoretical concepts to perform experiments	K1					
CO3	Identifythequalityofthegivencompoundsusingmethodssuchaschromatography, Titrations and pH measurements.	K2					
CO4	Examine the quantity of the given compounds using methods such as chromatography, titrations and pH measurements.	K3					
CO5	Analyze the given samples using analytical techniques.	K4					

Mapping of CO with PO and PSO

СО	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	-	2	3	3	2
CO2	2	2	2	3	2	3	3	3	3	2
CO3	2	3	3	1	2	2	3	3	2	1
CO4	2	3	3	1	2	2	3	3	2	2
CO5	2	3	3	1	2	2	3	3	2	2

"1"-Slight(Low) Correlation

"2"-Moderate(Medium)Correlation "-"indicatesthereisnocorrelation.

"3"-Substantial(High)Correlation

Syllabus

1. Paper Chromatography–Separation of mixture:

- a) Sugars
- b) Amino Acids
- c) Dyes
- d) Metalions
- e) Indicators

2. Thin Layer Chromatography–Separation of mixture:

- a) Nitro compounds.
- b) Metalions

3. Separation of plant pigments using paper chromatography:

- a) Chlorophyll A
- b) Chlorophyll B
- c) Xanthophylls
- d) Carotenoids

4. Analysis of Milk of Magnesia.

5. Analysis of soil

- a) Determination of pH of soil.
- b) Determination of total soluble salts.
- c) Determination of carbonate and bicarbonate.
- d) Determination of calcium, magnesium and iron.
- 6. Determination of calcium ion concentration in eggshell/milk/lime stone samples.
- 7. Determination of caffeine in tea samples.

Text Books:

- 1. F.W.FifieldandD.Kealey(2000)PrinciplesandPracticeofAnalyticalChemistry, Blackwell Science Ltd.
- 2. R.V.Dilts(2010)AnalyticalChemistry:MethodsofSeparation,VanNostrand,NewYork.
- 3. Daniel, C. Harris (2015) Quantitative Chemical Analysis, WHF reeman.

Reference Books:

- $1. \hspace{0.1in} J. Mendham (2009) Vogel's Quantitative Chemical Analysis, Pearson Education.$
- V.Venkateswaran.&R.Veeraswamy&Kuandaivelu(1997)BasicPrinciplesofPractical Chemistry. 2nd edition. New Delhi, Sultan Chand & Sons.

Web References:

- 1. <u>https://www.youtube.com/watch?v=8wmQ_xWqZbo</u>
- 2. <u>https://www.youtube.com/watch?v=mz_xcNrTK_U</u>
- 3. https://byjus.com/biology/separation-of-plant-pigments-through-paper-chromatography
- 4. https://slideplayer.com/slide/10934323.
- 5. <u>https://www.slideshare.net/RAKSHITDOGRA1/determination-of-caffeine-in-tea-samplespdf</u>.

Pedagogy

Demonstration and Practical sessions

Course Designer

Dr. K. Uma Sivakami

Semester VI	Internal Marks: 40		ExternalMarks:60					
COURSECODE	COURSETITLE	CATEGORY	Hrs. / Week	CREDITS				
22UCH6DSE2BP	COSMETIC CHEMISTRY(P)	DSE	4	4				

- > To learn the chemistry involved in cosmetics.
- > To impart skills on the preparation of cosmetics.

Course Outcomes

Course Outcome and Cognitive Level Mapping

СО	CO Statements	Cognitive						
Number	On the successful completion of the course, students will be able to							
CO1	Identify the types of cosmetics and learn about their chemistry	K1						
CO2	Articulate the ingredients present in personal care products and Appl it in their preparation.	K2						
CO3	Explain the percentage composition of raw materials.	К3						
CO4	Interpret hemethods of preparation of cosmetics.	К3						
CO5	Formulate anhydrous and hydrous based cosmetic products.	К3						

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	1	3	3	2	3	3
CO2	2	3	2	3	1	3	3	2	3	1
CO3	3	3	2	3	1	3	3	2	2	1
CO4	3	3	3	3	1	3	3	2	2	2
CO5	3	3	2	3	1	3	3	2	2	2

"1"- Slight (Low) Correlation

"2"-Moderate(Medium)Correlation

"3"- Substantial (High) Correlation

"-" Indicates there is No Correlation.

SYLLABUS

- 1. Preparation of Talcum Powder.
- 2. Preparation of bath soap.
- 3. Preparation of nail polish remover.
- 4. Preparation of room freshener
- 5. Preparation of lip palm.
- 6. Preparation of hand wash.

Text Books

- Swarnlata.S.&Shailendra.S.(2019).Cosmetics:APracticalManual.3rdedition. BSP Books.
- Carli.B.(2020).CosmeticFormulations:ABeginnersGuide.InstituteofPersonal Care Science.

ReferenceBook

- 1) PerryRomanowski. (2009)Beginning CosmeticChemistry,Allured Pub Corp.
- 2) RameshKumari. (2018). Chemistryof Cosmetics, Prestige Publishers.

Web References

- 1. https://www.wikihow.com/Make-Your-Own-Body-Lotion
- 2. <u>https://byjus.com/question-answer/a-explain-the-process-of-preparation-of-soap-in-the-laboratory-b-why-is-common/</u>
- 3. <u>https://learncanyon.com/how-to-make-a-hydrating-lip-balm/</u>

Pedagogy

Demonstration and Practical Sessions.

Course Designer

> Dr. S. Devi

Semester VI	Internal Marks:	External Marks:60			
COURSECODE	COURSE TITLE	CATEGORY	Hrs /Week	CREDITS	
22UCH6DSE2CP	ANALYSIS OF HERBALPRODUCTS (P)	DSE	4	4	

- 1. To know estimate the phytochemical in medicinal herbs.
- 2. To learn methods to prepare lotion, cream, chrurna and table.

Prerequisites

medicinal herbs, phytochemical, lotion, cream, chrurna.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement On the successful completion of the course, students will be able to	Cognitive Level
CO1	Understand the principle and testing methods of Excipients of natural origins.	K1,K2
CO2	Isolate, identify and estimate alkaloids, phenol content, ald ehydes present in medicinal plant	K3,K4
CO3	Prepare and analyses herbal churna, tablet, lotion and shampoo.	K4,K5
CO4	Analysis chemical compounds present in the herbal medicines	K4
CO5	Predict the amount of chemical compounds in a given sample.	K5

Mappingof CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	3	2	3	1	1	1	3
CO2	3	2	1	3	2	2	3	1	1	2
CO3	3	3	1	1	2	3	2	2	2	3
CO4	3	3	2	2	3	3	3	3	3	3
CO5	3	3	2	2	3	3	3	3	3	3

"1"-Slight (Low)Correlation

"3"-Substantial (High)Correlation

"2"-Moderate(Medium)Correlation "-"indicates there is no correlation

SYLLABUS

Experiments:

Physical and chemical test for evaluation of herbal medicines:

I. Quantitative estimation

- 1. Determination of total alkaloids in cinchona extract.
- 2. Determination of acid value of castor oil.
- 3. Determination of aldehyde content in lemon oil.
- 4. Estimation of total phenol content powdered herbal drug.
- 5. Refractive index value of castor oil.

II. Qualitative test for preliminary phytochemicals:

1. Flavonoids, phenolic compounds, alkaloids, glycosides, carbohydrates, carotenoids, proteins, tannin, amino acids, sterols Screening of Aqueous Extract of Neem.

III. Preparation of drugs:

- 1. Preparation Turmeric Cream.
- 2. Preparation Herbal Lotion.
- 3. Preparation and Standardization of Methi-Shikakai Shampoo.
- 4. Preparation of Orange Syrup B.P.C.

Text Books

1.Willow J. H. Liu (2021), Traditional Herbal Medicine Research Methods: Identification, Analysis, Bioassay, and Pharmaceutical and Clinical Studies, Jon Wiley publication

Reference Books

1.Rajasekhar K.K, Kishore Band Bhavitha J(2021), Text book of herbal and cosmetic analysis, independent online publication, ISBN-13:979-8754102170.

Web References

http://www.sarajapharmacycollege.com/downloads/HDT.pdf

Pedagogy

E-content, Demo, Handson training

Course Designers

Dr.V.Sangu