# CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) NATIONALLY ACCREDITED WITH "A" GRADE BY NAAC TIRUCHIRAPPALLI

#### PG and RESEARCH DEPARTMENT OF CHEMISTRY



M.Sc. CHEMISTRY
SYLLABUS
2023 - 2024 and ONWARDS

## CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG and RESEARCH DEPARTMENT OF CHEMISTRY

#### **VISION**

• To progress into a centre of superiority in chemistry that will blend state-of-the-art practices in professional teaching in a communally enriching way, with the holistic progress of the students as its prime emphasis.

#### **MISSION**

- To produce graduates committed to integrity, professionalism and lifelong learning by widening their knowledge horizons in range and depth.
- To awaken the young minds and discover talents to achieve personal academic potential by creating an environment that promotes frequent interactions, independent thought, innovations, modern technologies and increased opportunities.
- To enhance the quality through basic and applied research frameworks, and encourage the students to take part in entrance and competitive examinations for higher studies and career.
  - To enhance services to the community and build partnerships with the industry.

## PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

| PEOs | STATEMENTS                                                                     |
|------|--------------------------------------------------------------------------------|
| PEO1 | LEARNING ENVIRONMENT                                                           |
|      | To facilitate value-based holistic and comprehensive learning by integrating   |
|      | innovative learning practices to match the highest quality standards and train |
|      | the students to be effective leaders in their chosen fields.                   |
| PEO2 | ACADEMIC EXCELLENCE                                                            |
|      | To provide a conducive environment to unleash their hidden talents and to      |
|      | nurture the spirit of critical thinking and encourage them to achieve their    |
|      | goal.                                                                          |
| PEO3 | EMPLOYABILITY                                                                  |
|      | To equip students with the required skills in order to adapt to the changing   |
|      | global scenario and gain access to versatile career opportunities in           |
|      | multidisciplinary domains.                                                     |
| PEO4 | PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY                                  |
|      | To develop a sense of social responsibility by formulating ethics and equity   |
|      | to transform students into committed professionals with a strong attitude      |
|      | towards the development of the nation.                                         |
| PEO5 | GREEN SUSTAINABILITY                                                           |
|      | To understand the impact of professional solutions in societal and             |
|      | environmental contexts and demonstrate the knowledge for an overall            |
|      | sustainable development.                                                       |

## PROGRAMME OUTCOMES FOR M.Sc. MATHEMATICS, M.Sc. PHYSICS, M.Sc. CHEMISTRY PROGRAMME

|        | Programme Outcome                                                                   |
|--------|-------------------------------------------------------------------------------------|
| PO No. | On completion of M.Sc. Programme, the students will be able to                      |
| PO1    | Problem analysis:                                                                   |
|        | Provide opportunities to develop innovative design skills, including the ability to |
|        | formulate problems, to think creatively, to synthesize information, and to          |
|        | communicate effectively.                                                            |
| PO2    | Scientific skills:                                                                  |
|        | Create and apply advanced techniques and tools to solve the societal                |
|        | environmental issues.                                                               |
| PO3    | Environment and Sustainability:                                                     |
|        | Ascertain eco-friendly approach for sustainable development and inculcate           |
|        | scientific temper in the society.                                                   |
| PO4    | Ethics:                                                                             |
|        | Imbibe ethical and social values aiming towards holistic development of             |
|        | learners.                                                                           |
| PO5    | Lifelong learning:                                                                  |
|        | Instill critical thinking, communicative knowledge which potentially leads to       |
|        | higher rate of employment and also for higher educational studies.                  |

#### PROGRAMME SPECIFIC OUTCOMES FOR M.Sc. CHEMISTRY

| PSO No. | Programme Specific Outcomes                                        | POs       |
|---------|--------------------------------------------------------------------|-----------|
|         | Students of M.Sc., Chemistry will be able to                       | Addressed |
| PSO1    | Acquire knowledge in basic concepts, fundamental principles,       | PO1       |
|         | and applications of chemical and scientific theories and their     | PO2       |
|         | relevancies in the day-to-day life.                                |           |
| PSO2    | Design experiments, analyze, synthesize and interpret data to      | PO1       |
|         | provide solutions to different industrial problems by working in   | PO2       |
|         | the pure, inter and multi-disciplinary areas of chemical sciences. | PO3       |
| PSO3    | Attain maneuver in diverse contexts with global Perspective.       | PO3       |
|         |                                                                    | PO4       |
| PSO4    | Gain a thorough Knowledge in the subject to be able to work in     | PO1       |
|         | projects at different research as well as academic institutions.   | PO2       |
|         |                                                                    | PO5       |
| PSO5    | Afford Global level research opportunities to pursue Ph.D.         | PO1       |
|         | programme targeted approach of CSIR - NET examination.             | PO2       |
|         |                                                                    | PO3       |
|         |                                                                    | PO4       |
|         |                                                                    | PO5       |



# CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF CHEMISTRY

#### M.Sc. CHEMISTRY

(For the Candidates admitted from the Academic year 2023 - 2024 and onwards)

| te      | Course                    | Course Title                                 | <b>Course Code</b>                   | rs.               | S             | Exam  |      |      |       |
|---------|---------------------------|----------------------------------------------|--------------------------------------|-------------------|---------------|-------|------|------|-------|
| ıesı    |                           |                                              |                                      | st. Hrs/<br>week  | Credits       | ý     | M    | arks | Total |
| Semeste |                           |                                              |                                      | Inst. Hrs. / week | $\mathbf{Cr}$ | Hrs.  | Int. | Ext. | Ĭ     |
|         | 2 2 2 (22)                |                                              | 222 6221 661                         |                   | _             |       |      |      | 100   |
|         | Core Course– I (CC)       | Organic Reaction                             | 23PCH1CC1                            | 6                 | 5             | 3     | 25   | 75   | 100   |
|         | Comp Course II (CC)       | Mechanism - I                                | 23PCH1CC2                            | 6                 | _             | 3     | 25   | 75   | 100   |
| I       | Core Course – II (CC)     | Structure and bonding in Inorganic compounds | 23PCHTCC2                            | 6                 | 5             | 3     | 25   | 13   | 100   |
| 1       | Core Course –III (CC)     | Molecular Spectroscopy                       | 23PCH1CC3                            | 6                 | 5             | 3     | 25   | 75   | 100   |
|         | Core Practical - I (CP)   |                                              | canic Chemistry - I (P) 23PCH1CC1P 6 |                   |               |       | 40   | 60   | 100   |
|         | Discipline Specific       | A. Analytical                                | ZSFCIIICCIF                          | U                 | 5             | 6     | 40   | 00   | 100   |
|         | Elective Course-I (DSE)   | Instrumentation                              | 23PCH1DSE1A                          |                   |               |       |      |      |       |
|         | Liective Course-1 (DSL)   | Techniques (P)                               | P                                    | 6                 | 3             | 6     | 40   | 60   | 100   |
|         |                           | B. Nanoscience and                           | 23PCH1DSE1B                          |                   |               |       |      |      | 100   |
|         |                           | Nanotechnology (P)                           | P                                    |                   |               |       |      |      |       |
|         |                           | C. Biochemistry (P)                          | 23PCH1DSE1C                          |                   |               |       |      |      |       |
|         |                           | (-,                                          | P                                    |                   |               |       |      |      |       |
|         | Total                     |                                              | <u> </u>                             | 30                | 23            |       |      |      | 500   |
|         | 1:                        | Days INTERNSHIP du                           | ring Semester Ho                     | liday             | S             | •     |      |      |       |
|         | Core Course– IV (CC)      | Physical Chemistry – I                       | 23PCH2CC4                            | 6                 | 5             | 3     | 25   | 75   | 100   |
|         | Core Practical – II (CP)  | Inorganic Chemistry – I                      | 23PCH2CC2P                           | 6                 | 5             | 6     | 40   | 60   | 100   |
|         |                           | (P)                                          |                                      |                   |               |       |      |      |       |
|         | Core Choice Course– I     | A. Organic Reaction                          | 23PCH2CCC1A                          |                   |               |       |      |      |       |
|         | (CCC)                     | Mechanism – II                               |                                      | _                 |               |       |      |      |       |
|         |                           | B. Chemistry of Natural                      | 23PCH2CCC1B                          | 6                 | 4             | 4 3   | 25   | 75   | 100   |
|         |                           | Products                                     |                                      |                   |               |       |      |      |       |
|         |                           | C. Molecular                                 | 23PCH2CCC1C                          |                   |               |       |      |      |       |
| II      | Comp Dragation 1 III (CD) | Rearrangement                                | 22DCH2CC2D                           | 6                 | 5             | -     | 40   | 60   | 100   |
| 11      | Core Practical – III (CP) | Physical Chemistry— I (P)                    | 23PCH2CC3P                           | 6                 | 3             | 6     | 40   | 60   | 100   |
|         | Discipline Specific       | A. Green Chemistry                           |                                      |                   |               |       |      |      |       |
|         | Elective Course-II (DSE)  | A. Green Chemistry                           | 23PCH2DSE2A                          | 6                 | 3             | 3     | 25   | 75   | 100   |
|         | Elective course if (BSE)  | B. Forensic Chemistry                        |                                      |                   |               |       | 23   | 75   | 100   |
|         |                           | B. I of chiste chemistry                     | 23PCH2DSE2B                          |                   |               |       |      |      |       |
|         |                           | C. Analytical Chemistry                      |                                      |                   |               |       |      |      |       |
|         |                           |                                              | 23PCH2DSE2C                          |                   |               |       |      |      |       |
|         | Internship                | Internship                                   | 23PCH2INT                            | -                 | 2             | -     | -    | 100  | 100   |
|         | _                         | -                                            |                                      |                   |               |       |      |      |       |
|         | Extra Credit Course       | SWAYAM                                       | As per UGC Reco                      | omme              | nda           | ition |      |      |       |
|         | Total                     |                                              |                                      | 20                | 24            |       |      |      | 600   |
|         | Total                     |                                              |                                      | 30                | 24            |       |      |      | 600   |
|         |                           |                                              |                                      |                   |               |       |      |      |       |
|         | L                         |                                              |                                      | l                 |               | l     |      |      |       |

|     | , ,                              | ,                                      | 23PCH3CC5             | 6  | 5    | 3     | 25    | 75        | 100 |
|-----|----------------------------------|----------------------------------------|-----------------------|----|------|-------|-------|-----------|-----|
|     | Core Course- VI (CC)             | Inorganic Chemistry                    | 23PCH3CC6             | 6  | 5    | 3     | 25    | 75        | 100 |
|     | Core Practical – IV (CP)         | Inorganic Chemistry –II                | 23PCH3CC4P            | 6  | 4    | 6     | 40    | 60        | 100 |
|     |                                  | (P)                                    |                       |    |      |       |       |           |     |
|     | Core Choice Course- II           | A. Cyber Security                      | 22PGCS3CCC2           |    |      |       |       |           |     |
|     | (CCC)                            |                                        | A                     |    |      |       |       |           |     |
|     |                                  | B. Photochemistry and                  | 22PCH3CCC2B           | 5  | 4    | 3     | 25    | 75        | 100 |
|     |                                  | Advanced Chemical                      |                       |    |      |       |       |           |     |
|     |                                  | Kinetics                               |                       |    |      |       |       |           |     |
| III |                                  | C. Electrochemistry                    | 22PCH3CCC2C           |    |      |       |       |           |     |
|     | Discipline Specific              | A. Chemistry for                       |                       |    |      |       |       |           |     |
|     | Elective Course-III (DSE)        | _                                      | npetitive 22PCH3DSE3A |    |      | 2     | -     | 100       |     |
|     |                                  | Examinations                           |                       | 4  | 3    |       |       |           | 100 |
|     |                                  | B. Bioorganic Chemistry                | 22PCH3DSE3B           |    |      |       |       |           |     |
|     |                                  | C. Pharmaceutical                      |                       |    |      | 3     | 25    | 75        |     |
|     |                                  | Chemistry                              | 22PCH3DSE3C           |    |      |       |       |           |     |
|     | Generic Elective Course -        | •                                      | 23PCH3GEC1            | 3  | 2    | 3     | 25    | 75        | 100 |
|     | I (GEC)                          | Energy Harvesting                      |                       |    |      |       |       |           |     |
|     | Extra Credit Course              | SWAYAM                                 | As per                | UG | C Re | ecomn | nenda | tion      |     |
|     | Total                            |                                        |                       | 30 | 23   |       |       |           | 600 |
|     | Core Course–VII (CC)             | Physical Methods in                    | 23PCH4CC7             | 6  | 5    | 3     | 25    | 75        | 100 |
|     | , ,                              | Chemistry                              |                       |    |      |       |       |           |     |
|     | Core Choice Course– III          | •                                      | 22DCH4CCC2 4          | 6  | 4    | 3     | 25    | 75        | 100 |
| IV  | (CCC)                            | Nanoscience                            | 22PCH4CCC3A           |    |      |       |       |           |     |
|     |                                  | B. Biofuels                            | 22PCH4CCC3B           |    |      |       |       |           |     |
|     |                                  | C. Bioinorganic                        | 22PCH4CCC3C           |    |      |       |       |           |     |
|     |                                  | Chemistry                              |                       |    |      |       |       |           |     |
|     |                                  | ·                                      |                       |    |      | _     | 40    | <b>CO</b> | 100 |
|     | Core Practical – V (CP)          | Physical Chemistry - II                | 23PCH4CC5P            | 6  | 5    | 6     | 40    | 60        | 100 |
|     | ` ,                              | (P)                                    |                       | 6  | 5    | 6     | 40    | 60        | 100 |
|     | ` ,                              | (P)                                    |                       | 3  | 2    | 3     | 25    | 75        | 100 |
|     | ` ,                              | "                                      |                       |    |      |       |       |           |     |
|     | Generic Elective Course-         | (P)<br>Corrosion and Pollution         |                       |    |      |       |       |           |     |
|     | Generic Elective Course-II (GEC) | (P) Corrosion and Pollution Management | 22PCH4GEC2            | 3  | 2    | 3     | 25    | 75        | 100 |

#### **Courses & Credits for PG Science Programmes**

| S. No | Courses                            | No. of  | No. of Credits | Marks |
|-------|------------------------------------|---------|----------------|-------|
|       |                                    | Courses |                |       |
| 1.    | Core Course – (CC)                 | 7       | 35             | 700   |
| 2.    | Core Choice Course– (CCC)          | 3       | 12             | 300   |
| 3.    | Core Practical - (CP)              | 5       | 24             | 600   |
| 4.    | Discipline Specific Elective-(DSE) | 3       | 09             | 300   |
| 5.    | Generic Elective Course - (GEC)    | 2       | 04             | 200   |
| 6.    | Project                            | 1       | 04             | 100   |
| 7.    | Internship                         | 1       | 02             | 100   |
|       | Total                              | 22      | 90             | 2200  |

The Internal and external marks for theory and practical papers are as follows:

| Subject   | Internal Marks | External Marks |
|-----------|----------------|----------------|
| Theory    | 25             | 75             |
| Practical | 40             | 60             |

Separate passing minimum is prescribed for Internal and External.

#### For Theory:

- a) The passing minimum for CIA shall be 40% out of 25 marks (i.e. 10 marks).
- b) The passing minimum for End Semester Examinations shall be 40 % out of 75 marks (i.e. 30 marks).
- c) The passing minimum not less than 50% in the aggregate.

#### For Practical:

- a) The passing minimum for CIA shall be 40 % out of 40 marks (i.e. 16 marks).
- b) The passing minimum for End Semester Examinations shall be 40 % out of 60 marks (i.e .24 marks).
- c) The passing minimum not less than 50% in the aggregate.

## For Project:

Marks for Dissertation: 80

Marks for Viva Voce : 20

Total marks : 100

#### **Internal Component (Theory)**

| Component    | Marks |
|--------------|-------|
| Library      | 05    |
| Assignment & | 10    |
| Seminar      |       |
| CIA -I       | 05    |
| CIA-II       | 05    |
| Total        | 25    |

#### **Question Paper Pattern**

**PART A**  $(10 \times 2 = 20)$ 

Answer all the questions

**PART B**  $(5 \times 5 = 25)$ 

Answer all the questions

**PART C**  $(3 \times 10 = 30)$ 

Answer any three questions

#### **Internal Component (Practical)**

| Component             | Marks |
|-----------------------|-------|
| Observation           | 05    |
| Record                | 10    |
| Continual performance | 10    |
| Model                 | 15    |
| Total                 | 40    |

| Semester I | Internal Mark | Exte     | rnal Marks:75 |         |
|------------|---------------|----------|---------------|---------|
| COURSE     | COURSE        | CATEGORY | Hrs           | CREDITS |
| CODE       | TITLE         |          | /Week         |         |
| 23PCH1CC1  | ORGANIC       | CORE     | 6             | 5       |
| 231 CHICCI | REACTION      | CORE     | U             | S       |
|            | MECHANISM-I   |          |               |         |

#### **Course Objective**

- ➤ To learn the basic concepts of aromaticity and stereochemistry of various organic molecules.
- > To understand the feasibility and the mechanism of various organic reactions.
- > To comprehend the techniques in the determination of reaction mechanisms.
- ➤ To understand the concept of stereochemistry involved in organic compounds.
- ➤ To correlate and appreciate the differences involved in the various types of organic reaction Mechanisms.

#### **Prerequisites**

Aromaticity, oxidation, reduction and symmetry

#### **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                                                                           | Cognitive<br>Level |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Recall and summarize the fundamentals of reaction intermediates, electrophilic and nucleophilic substitution reactions, aromaticity, and stereochemistry.   | K1, K2             |
| CO2          | Interpret the concept to Huckels theory, thermodynamic and kinetic requirements of reactions: conformation analysis and substitution reactions              | К3                 |
| CO3          | Categorize the determination of intermediates, aromaticity, configuration and reactivity of aliphatic and aromatic compounds towards substitution reaction. | K4                 |
| CO4          | Evaluate aromatic character, stereo analysis, pathway of reaction mechanism.                                                                                | K5                 |
| CO5          | Predict the intermediate, conditions and product of substitution mechanism.                                                                                 | K6                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 2   |

<sup>&</sup>quot;1"- Slight(Low) Correlation

<sup>&</sup>quot;2"-Moderate(Medium)Correlation

<sup>&</sup>quot;3"-Substantial(High) Correlation

<sup>&</sup>quot;-"indicates there is no correlation

| UNIT | CONTENT                                           | HOURS | COs          | CONGNITIVE<br>LEVEL |
|------|---------------------------------------------------|-------|--------------|---------------------|
| I    | Methods of Determination of Reaction              | 18    | CO1,         | K1, K2, K3,         |
|      | Mechanism: Reaction intermediates-transition      |       | CO2,<br>CO3, | K4, K5, K6          |
|      | state-energy profile diagrams - Thermodynamic     |       | <b>CO4</b> , |                     |
|      | and kinetic requirements of reactions -           |       | CO5          |                     |
|      | Hammond's postulate - Methods of                  |       |              |                     |
|      | determining mechanism: non-kinetic methods -      |       |              |                     |
|      | product analysis - determination of               |       |              |                     |
|      | intermediates - isolation - detection and         |       |              |                     |
|      | trapping. Cross-over experiments - isotopic       |       |              |                     |
|      | labelling - isotope effects and stereo chemical   |       |              |                     |
|      | evidences. Kinetic methods - relation of rate     |       |              |                     |
|      | and mechanism- Effect of structure on             |       |              |                     |
|      | reactivity- Hammett and Taft equations -          |       |              |                     |
|      | Linear free energy relationship - partial rate    |       |              |                     |
|      | factor- substituent and reaction constants.       |       |              |                     |
| II   | Aromaticity: Aromatic character: Huckel's         | 18    | CO1,         | K1, K2, K3,         |
|      | theory of aromaticity - three, four, five, six,   |       | CO2,<br>CO3, | K4, K5, K6          |
|      | seven and eight membered rings - other            |       | CO4,         |                     |
|      | systems with aromatic sextet- concept of homo     |       | CO5          |                     |
|      | aromaticity and anti-aromaticity- Craig'srule –   |       |              |                     |
|      | applications - consequences of aromaticity        |       |              |                     |
|      | non-alteration in bond length -Huckel's MO        |       |              |                     |
|      | calculation - Electron occupancy in - NMR         |       |              |                     |
|      | concept of aromaticity and anti-aromaticity.      |       |              |                     |
| III  | Stereochemistry and Conformational                | 18    | CO1,         | K1, K2, K3,         |
|      | Analysis: Stereoisomerism—optical activity and    |       | CO2,<br>CO3, | K4, K5, K6          |
|      | chirality – types of molecules exhibiting optical |       | <b>CO4</b> , |                     |
|      | activity - R, S and E, Z configuration -          |       | CO5          |                     |
|      | absolute configuration – chirality in molecules   |       |              |                     |
|      | with non-carbon stereo centers (N, S and P) -     |       |              |                     |

|    |                                                                                   | T        |              |             |
|----|-----------------------------------------------------------------------------------|----------|--------------|-------------|
|    | molecules with more than one chiral centre.                                       |          |              |             |
|    | Biphenyls, allenes, spiranes and analogues-                                       |          |              |             |
|    | Atropisomerism- Helicity and chirality-                                           |          |              |             |
|    | Resolution-methods of resolution -                                                |          |              |             |
|    | Conformations of mono and di substituted                                          |          |              |             |
|    | cyclohexane system and decalin. Quantitative                                      |          |              |             |
|    | correlation between conformation and                                              |          |              |             |
|    | reactivity.                                                                       |          |              |             |
| IV | Aromatic and Aliphatic Electrophilic                                              | 18       | CO1,         | K1, K2, K3, |
|    | Substitution:                                                                     |          | CO2,<br>CO3, | K4, K5, K6  |
|    | Aromatic electrophilic substitution: Orientation                                  |          | CO4,         |             |
|    | and reactivity of di- and polysubstituted                                         |          | CO5          |             |
|    | phenol, nitrobenzene and halobenzene.                                             |          |              |             |
|    | Reactions involving nitrogen electrophiles:                                       |          |              |             |
|    | nitration, nitrosation and diazonium coupling;                                    |          |              |             |
|    | Sulphur electrophiles: sulphonation - Halogen                                     |          |              |             |
|    | electrophiles: chlorination and bromination-                                      |          |              |             |
|    | Carbon electrophiles: Friedel- Crafts                                             |          |              |             |
|    | alkylation, acylation and arylation reactions-                                    |          |              |             |
|    | Aliphatic electrophilic substitution                                              |          |              |             |
|    | Mechanisms: S <sub>E</sub> 1, S <sub>E</sub> 2 and S <sub>E</sub> i-Mechanism and |          |              |             |
|    | evidences.                                                                        |          |              |             |
| V  | Aromatic and Aliphatic Nucleophilic                                               | 18       | CO1,         | K1, K2, K3, |
|    | Substitution: Aromatic nucleophilic                                               |          | CO2,<br>CO3, | K4, K5, K6  |
|    | substitution: Mechanisms - S <sub>N</sub> Ar, S <sub>N</sub> 1 and                |          | CO4,         |             |
|    | Benzyne mechanisms - Evidences - reactivity                                       |          | CO5          |             |
|    | Effect of structure - leaving group and                                           |          |              |             |
|    | attacking nucleophile. Reactions: Oxygen and                                      |          |              |             |
|    | Sulphur-nucleophiles -Bucherer and                                                |          |              |             |
|    | Rosenmund reactions, von Richter, Sommelet-                                       |          |              |             |
|    | Hauser and Smiles rearrangements - S <sub>N</sub> 1, ion                          |          |              |             |
|    | pair, S <sub>N</sub> 2 mechanisms and evidences. Aliphatic                        |          |              |             |
|    | nucleophilic substitutions at an allylic carbon,                                  |          |              |             |
|    |                                                                                   | <u> </u> | [            |             |

|    | aliphatic trigonal carbon and vinyl carbon. $S_{\rm N}1$ ,   |   |             |                |
|----|--------------------------------------------------------------|---|-------------|----------------|
|    | $S_N2$ , $S_Ni$ , and $S_E1$ mechanism and evidences -       |   |             |                |
|    | Swain- Scott, Grunwald- Winstein relationship                |   |             |                |
|    | - Ambident nucleophiles.                                     |   |             |                |
|    | Self-Study for Enrichment:                                   |   |             |                |
| VI | ((Not to be included for External                            | - | CO1,<br>CO2 | K1, K2, K3, K4 |
|    |                                                              |   |             |                |
|    | <b>Examination</b> )                                         |   | CO3         |                |
|    | Examination) Rules of resonance–tautomerism -steric effects- |   |             |                |
|    |                                                              |   |             |                |

#### **Text Books**

- 1. Mukherji,S.M, Singh.S.P.(2015).Reaction Mechanism in Organic Chemistry (Revised Edition):Trinity; New Delhi.
- 2. Kalsi.P.S.(1993).Stereochemistry.Wiley eastern limited; New Delhi.
- 3. Jagdamba singh.(2016).Organic synthesis: Pragati Prakashan.
- 4. Bansal.R.K.(1975).Organic Reaction Mechanisms. Tata McGraw Hill.

#### Reference Books

- 1. March and Smith.M.B March's Advance Organic Chemistry Reactions, Mechanisms and Structure, 7<sup>th</sup>Edition. (2013), Wiley, New York.
- 2. Finar.I.R,Organic Chemistr yVol.II7<sup>th</sup> edition. (2009),Pearson, New Delhi.
- 3. Nasipuri.D, Stereo chemistry of organic compounds Principles, 2<sup>nd</sup>Edition. (2002), New Age International and applications.
- 4. Lowry. T. H. E and Richardson. K. S, Mechanism and Theory in Organic chemistry, 3<sup>rd</sup>edition.(1997),Benjamin Cummings Publishing, USA.
- 5. Carey.F. Aand Sundberg.R.J,Advanced Organic chemistry Part A and B,5<sup>th</sup>edition.(2007),Springer,Germany.

#### Web References

- 1. https://openstax.org/books/chemistry-2e/pages/12-6-reaction-mechanisms.
- 2. <a href="http://courses.washington.edu/medch562/pdf/MEDCH400\_Stereochem.pdf">http://courses.washington.edu/medch562/pdf/MEDCH400\_Stereochem.pdf</a>
- 3. https://byjus.com/chemistry/substitution-reaction/
- 4. https://iscnagpur.ac.in/study\_material/dept\_chemistry/5.1\_RRT\_ARSN.pdf.

## Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

## Course Designer

Dr. C. Rajarajeswari

| Semester I     | Internal marks : 25                          | External Marks:75 |              |         |  |
|----------------|----------------------------------------------|-------------------|--------------|---------|--|
| COURSE<br>CODE | COURSE TITLE                                 | CATEGORY          | Hrs/<br>WEEK | CREDITS |  |
| 23PCH1CC2      | STRUCTURE AND BONDING IN INORGANIC COMPOUNDS | CORE              | 6            | 5       |  |

#### **Course Objective**

- > To articulate the learning of solid state in chemistry.
- > The subject lays a foundation to clusters and organometallic compounds.

#### Prerequisites

Clusters, Solid state, organometallic compounds, Band theory

#### **Course Outcome and Cognitive Level Mapping**

| CO Number | CO Statement On the successful completion of the course students will be able to             | Cognitive<br>Level |
|-----------|----------------------------------------------------------------------------------------------|--------------------|
| CO1       | Predict the geometry of main group compounds and clusters.                                   | K2, K3             |
| CO2       | Explain about the packing of ions in crystals and solid state.                               | K2, K3             |
| CO3       | Understand the various types of ionic crystal systems and analyze their structural features. | K3, K4             |
| CO4       | Explain the types of crystal growth methods and structures of organometallic compounds.      | K4, K5             |
| CO5       | To understand the principles of band theory and solid state theory                           | K4, K5             |

#### **Mapping with Programme Outcomes**

| CO  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 2    | 3    | 2    | 3   | 3   | 3   | 2   | 2   |
| CO2 | 2    | 3    | 2    | 2    | 1    | 3   | 2   | 3   | 3   | 3   |
| CO3 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 3   | 2   | 2   |
| CO4 | 3    | 3    | 2    | 1    | 2    | 3   | 2   | 3   | 3   | 2   |
| CO5 | 3    | 2    | 3    | 2    | 2    | 3   | 3   | 2   | 3   | 2   |

<sup>&</sup>quot;1" – Slight or No Correlation

<sup>&</sup>quot;2" -(Moderate(/Medium) correlation

<sup>&</sup>quot;3" – Substantial(High) Correlation

<sup>&</sup>quot;-" - indicates No Correlation

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HOURS | COs                             | COGNITIVE<br>LEVEL               |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------|----------------------------------|
| I    | Structure of main group compounds and clusters:  VB theory – Effect of lone pair and electro negativity of atoms (Bent's rule) on the geometry of the molecules; Structure of silicates - applications of Pauling's rule of electrovalence - isomorphous replacements in silicates – ortho, meta and pyro silicates – one dimensional, two dimensional and three-dimensional silicates. Structure of silicones, Structural and bonding inB-N(Boron nitride,Borazine) S-N (S4N4, S2N2, (SN)x), P-N (Di and Triphosphazenes,), Poly acids – types, examples and structures- Borane cluster: Structural features of closo, nido, arachano and klado; carboranes, hetero and metalloboranes; Wade's rule to predict the structure of borane cluster. | 18    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5<br>K6 |
| II   | Organo metallic Compounds: Hapticity of ligands- 18 Electron rule and its limitation-Classification of organometallic compounds – structure of methyl lithium, Zeise'ssalt and Ferrocene- Metal carbonyls – EAN rule – Mono and poly nuclear carbonyls – preparation, reactions and structure (Ni(CO)4, Fe(CO)5, Cr(CO)6, Mn <sub>2</sub> (CO) <sub>10</sub> ,Co <sub>2</sub> (CO) <sub>8</sub> and Fe <sub>2</sub> (CO)9 – Bonding in metal Carbonyls – Metalethylenic complexes – methods of formation –bonding – chemical properties.                                                                                                                                                                                                         | 18    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5<br>K6 |

| III | Solid state Chemistry – I Ionic crystals: Packing of ions in simple, hexagonal and cubic close packing, voids in crystal lattice, Radius ratio, Crystal systems and Bravis lattices, Symmetry operations in crystals, glide planes and screw axis; point group and space group; Solid state energetics: Lattice energy – Born-Lande equation - Kapustinski equation, Madelung constant.         | 18 | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5<br>K6 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------|----------------------------------|
| IV  | Solid state Chemistry – II  Structural features of the crystal systems:  Rock salt, zinc blende &wurtzite, fluorite and anti-fluorite, rutile and anatase, cadmium iodide and nickel arsenide; Spinels -normal and inverse types and perovskite structures. Crystal Growth methods: From melt and solution (hydrothermal, sol-gel methods) – principles and examples.                           | 18 | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5<br>K6 |
| V   | Band theory and defects in solids  Band theory – features and its application of conductors, insulators and semiconductors, Intrinsic and extrinsic semiconductors; Defects in crystals – point defects (Schottky, Frenkel, metal excess and metal deficient) and their effect on the electrical and optical property, laser and phosphors; Linear defects and its effects due to dislocations. | 18 | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5<br>K6 |
| VI  | Self-StudyforEnrichment (Not to be included for External Examination) High-valent metal Clusters and halide Clusters-Bragg's law, powder diffraction                                                                                                                                                                                                                                            |    | CO1<br>CO2                      | K2, K3                           |

| pattern. X-ray  | diffraction | and | Electron |  |  |
|-----------------|-------------|-----|----------|--|--|
| diffraction com | parison     |     |          |  |  |

#### **Text Books**

- Greenwood. (1996). Chemistry of the Elements, United Kingdom, Elsevier Science & Technology Books.
- 2. Kaesz, H., Adams, R., Shriver, D., Kaesz, H., Adams, R., Shriver, D. (1990). The Chemistry of Metal Cluster Complexes.
- 3. Sharma, L. R., Puri, B. R., Sharma, L. R., Puri, B. R. (1976). Principles of Inorganic Chemistry: For B.Sc. and B.Sc.(Hons.) Classes of Indian Universities. India:S.Nagin.
- 4. Cotton, F. A., Wilkinson, G., Cotton, F. A., Wilkinson. (2007). Advanced Inorganic Chemistry,6<sup>th</sup> Edition, India: Wiley India Pvt. Limited.
- 5. Keiter, E.A. (2006). Inorganic Chemistry: Principles of Structure and Reactivity. India: Pearson Education.
- 6. Arthur, W. Adamson Paul, D.(1975).Fleischauer, Concepts of Inorganic Photochemistry. United Kingdom: Wiley.
- 7. West, A. R., (2014). Solid state Chemistry and its applications, 2<sup>nd</sup>Edition (Students Edition), John Wiley & Sons Ltd.,.
- 8. Bhagi, A.K., Chatwal, G. R. (2001). A textbook of inorganic polymers, Himalaya Publishing House.
- 9. Smart, L., Moore E. (2012). Solid State Chemistry An Introduction, 4<sup>th</sup> Edition, CRC Press.
- 10. Purcell, K. F., Kotz, J. C.(1977). Inorganic Chemistry; W.B. Saunders company: Philadelphia.
- 11. Huheey, J. E., Keiter, E. A., Keiter R. L. (1983). Inorganic Chemistry; 4<sup>th</sup> ed.; Harper and Row: NewYork.

#### Reference Books

- 1. Lee, J.D., (2008). ConciseInorganicChemistry,5<sup>th</sup> Edition.(2008).India:Wiley India Pvt. Limited.
- 2. Gurdeep Raj, (2020). Advanced Inorganic ChemistryVol-1,.KrishnaPrakashan.
- 3. Ferraudi, G. J., Ferraudi, G. J. (1988). Elements of Inorganic Photochemistry. United Kingdom: Wiley.
- 4. Pearson, R. G., Basolo, F., Pearson, R. G., Basolo, F. (1967). Mechanisms of Inorganic Reactions: A Study of Metal Complexes in Solution. United Kingdom: Wiley.
- 5. Sharma, R.K., Sharma, R. K.(2007). Inorganic Reaction mechanisms. India: Discovery Publishing House.

- 6. Douglas, D. E., McDaniel, D.H., Alexander, J. J.(1994). Concepts and Models in Inorganic Chemistry, 3<sup>rd</sup> Ed, John Wiley & Sons, Inc., New York.
- 7. Tilley, R.. J. D.,(2013). Understanding Solids The Science of Materials, 2<sup>nd</sup> edition, Wiley Publication.
- 8. Rao, C. N. R., Gopalakrishnan, J., (1997). New Directions in Solid State Chemistry, 2<sup>nd</sup> Edition, Cambridge University Press.

#### **Web References**

- 1. https://www2.chemistry.msu.edu/courses/cem151/chap24lect\_2019.pdf
- 2. <a href="http://www.vpscience.org/materials/Unit%203%20B%20Coordination%20chemistry.pdf">http://www.vpscience.org/materials/Unit%203%20B%20Coordination%20chemistry.pdf</a>
- 3. https://www.usb.ac.ir/FileStaff/2896\_2019-4-18-0-9-32.pdf
- 4. <a href="https://www.uou.ac.in/sites/default/files/slm/BSCCH-101.pdf">https://www.uou.ac.in/sites/default/files/slm/BSCCH-101.pdf</a>
- 5. <a href="https://www.chem.uci.edu/~lawm/11-16.pdf">https://www.chem.uci.edu/~lawm/11-16.pdf</a>
- 6. https://www.usb.ac.ir/FileStaff/5269\_2018-9-18-10-21-39.pdf

#### Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

#### **Course Designer**

Dr. K. Shenbagam

| Semester I | InternalMarks:25          | ExternalMarks:75                   |              |         |  |  |
|------------|---------------------------|------------------------------------|--------------|---------|--|--|
| COURSECODE | COURSETITLE               | CATEGORY                           | Hrs<br>/Week | CREDITS |  |  |
| 23PCH1CC3  | MOLECULAR<br>SPECTROSCOPY | DISCIPLINE<br>SPECIFIC<br>ELECTIVE | 6            | 5       |  |  |

#### **Course Objective**

- ➤ To understand, rotational and vibrational level transition in polyatomic molecules.
- > To know the significance of Franck-Condon principle to interpret the selection rule, intensity and types of electronic transitions
- > To interpret first and second order splitting pattern NMR signals of the molecules using correlation techniques such as COSY, HETCOR, NOESY.
- ➤ To learn the principle of ESR, EPR and Raman spectroscopy.
- To understand fragmentation pattern of molecules in Mass spectroscopy.
- ➤ To predict the structure of molecules using various spectral data.

#### **Prerequisites**

Electromagnetic radiation, molecular energy level, non-Rigid rotor, selection rules for spectroscopy Course Outcome and Cognitive Level Mapping

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                                                    | Cognitive<br>Level |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Understand principle of various spectral techniques involving molecular absorption and emission of electromagnetic radiations.       | K1, K2             |
| CO2          | Apply NMR and MS spectroscopic techniques in solving structure of organic molecules.                                                 | К3                 |
| CO3          | Explain the principle, rules to analyses, compare and identify the structure of organic molecules using various spectral techniques. | K4                 |
| CO4          | Discriminate structural and stereoisomers of compound using NMR, ESR and mass spectral techniques.                                   | K5                 |
| CO5          | Evaluate energy of rotational levels, isotopic mass of the elements.                                                                 | K5                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

<sup>&</sup>quot;1"-Slight (Low)Correlation

 $<sup>\</sup>hbox{``2''-Moderate}(Medium) Correlation$ 

<sup>&</sup>quot;3"-Substantial (High)Correlation

<sup>&</sup>quot;-"indicates there is no correlation

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HOURS | COs                             | CONGNITIVE                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------|----------------------------|
| I    | Rotational and Raman Spectroscopy:  Rotational spectra of diatomic and polyatomic molecules- intensities of rotational spectral lines - isotopic substitution effect - non-rigid rotatorsRaman effect - pure rotational Raman spectra of linear and asymmetric top molecules - stokes and anti-Stokes lines- Vibrational Raman spectra - rule of mutual exclusion- rotational fine structure O and S branches - Polarization of Raman scattered photons.                                            | 18    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |
| II   | Vibrational Spectroscopy:  Vibrations of molecules - harmonic and anharmonic oscillators - energy expression - vibrational wave functions — symmetry - selection rules - energies of spectral lines - hot bands - effect of isotopic substitution - Diatomic vibrating rotorvibrational - rotational spectra of polyatomic molecules - symmetry properties - overtone - combination frequencies- P, Q and R branches - parallel and perpendicular vibrations of linear and symmetric top molecules. | 18    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |
| III  | Electronic spectroscopy:  Electronic spectroscopy of diatomic moleculesFrank-Condon principle - dissociation and predissociation spectra- $\pi \rightarrow \pi^*$ , $n \rightarrow \pi^*$ transitions and their selection rules - Photoelectron Spectroscopy: Principle - photoelectron spectra of simple molecules - X-ray photoelectron spectroscopy (XPS) - Lasers: Laser action population inversion - properties of laser                                                                      | 18    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |

|    | radiation examples of simple laser systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                 |                            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------|----------------------------|
| IV | NMR and Mass spectrometry:  NMR spectroscopy - Principle -Chemical shift, Factors influencing δ- shielding and deshielding.  spin-spin interactions- spin decoupling- Nuclear over Hauser effect (NOE)- Factors influencing coupling constants- 2D NMR – COSY, NOESY Mass Spectrometry: Ionization techniques isotope abundance- molecular ion -base peak meta stable ions -fragmentation processes of organic molecules- deduction of structure through mass spectral fragmentation.                        | 18 | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |
| V  | ESR and Mossbauer Spectroscopy: ESR-principle-selection rule- g value-hyperfine coupling parameter (A) –zero field splitting - Kramer's degeneracy – isotropy and anisotropy in g value- application of ESR to organic and inorganic system (H, CH3, p-benzosemiquinone and bis (salycylaldimine) copper (II) complex)-Principle of Mossbauer spectroscopy: Doppler shift - recoil energy. Isomer shift, quadrupole splitting - magnetic interactions - applications: high and low spin Fe and Sn compounds. | 18 | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K1<br>K2<br>K3<br>K4<br>K5 |
| VI | Self-study: (Not for final examination)  Problems based on joint application, PMR, CMR, and Mass. (Including reaction sequences), DEPT, INTEPT, Chemical spin decoupling of rapidly exchangeable protons (OH, SH, COOH, NH, NH2).                                                                                                                                                                                                                                                                            | -  | CO1<br>CO2                      | K1<br>K2                   |

#### **Text Books**

- 1. Banwell C.N (2017), Fundamentals of molecular Spectroscopy, 4<sup>th</sup> edition, McGraw Hill, New Delhi.
- 2. Silverstein.P.M and Western.F.X (2014), Spectroscopic Identification of Organic compounds, 8<sup>th</sup> edition, John Wiley, New York.
- 3. Kalsi.P.S (2016), Spectroscopy of Organic Compounds, 7<sup>th</sup> edition, New Age International Publishers, New Delhi.
- 4. William Kemp (2019), Organic spectroscopy, 3<sup>rd</sup> edition, Macmillan publisher Pvt, Bangalure.
- 5. Williams D.H and Fleming I, Spectroscopic Methods in Organic Chemistry, 4<sup>th</sup> Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988.
- 6. Drago R.S, Physical Methods in Chemistry; Saunders: Philadelphia, 1992.

#### Reference Books

- 1. Drago R.S (2012), Physical Methods in Inorganic Chemistry; Affiliated East-West press Pvt. Ltd, New Delhi.
- 2. Kaur.K, (2014), Spectroscopy, 16<sup>th</sup> edition, PragatiPrakashan Educational Publisher.
- 3. Sharma Y. R (2016), Elementary organic spectroscopy, revised 4<sup>th</sup> edition, S. Chand &Co Ltd, New Delhi.
- 4. Atkins P.W and Paula J.D, Physical Chemistry, 7th Ed., Oxford University Press, Oxford, 2002.
- 5. Rahman A, Nuclear Magnetic Resonance-Basic Principles, Springer-Verlag, New York, 1986.
- 6. Levine N.I, Molecular Spectroscopy, John Wiley & Sons, New York, 1974.

#### **Web References**

- 1. <a href="http://www.organic-chemistry.org/">http://www.organic-chemistry.org/</a>
- 2. <a href="http://www.organicworldwide.net/">http://www.organicworldwide.net/</a>
- 3. <a href="http://www.ccdc.cam.ac.uk/products/csd/">http://www.ccdc.cam.ac.uk/products/csd/</a>
- 4.http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20Chemistry%20Paper-IX%20Unit-5.pdf
- 5. <a href="http://www.rcsb.org/pdb/home/home.do">http://www.rcsb.org/pdb/home/home.do</a>
- 6. https://onlinecourses.nptel.ac.in/noc20\_cy08/preview
- 7. https://www.digimat.in/nptel/courses/video/104106122/L14.html

#### **Pedagogy**

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

#### **Course Designer**

Dr.V.Sangu

| Semester I         | Internal Mar               | ·ks: 25 Exte | ernal Marks: | 75      |
|--------------------|----------------------------|--------------|--------------|---------|
| <b>COURSE CODE</b> | COURSE TITLE               | CATEGORY     | Hrs / Week   | CREDITS |
| 23PCH1CC1P         | ORGANIC<br>CHEMISTRY-I (P) | CORE         | 6            | 5       |

#### **Course Objectives**

- > To understand the concept of separation, qualitative analysis and preparation of organic compounds.
- > To develop analytical skill in the handling of chemical reagents for separation of binary and ternary organic mixtures.
- To analyze the separated organic components systematically and derivative them suitably.
- ➤ To construct suitable experimental setup for the organic preparations involving two stages.
- > To experiment different purification and drying techniques for the compound processing

#### **Prerequisites**

Separation of components, Qualitative analysis

#### **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                          | Cognitive |
|--------|-----------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to  | Level     |
| CO1    | Apply the principles of separation in organic mixtures.               | K1        |
| CO2    | Prepare the organic compounds by single stage method.                 | K2        |
| CO3    | Identify various functional group in organic compounds.               | K3        |
| CO4    | Develop skills in separating techniques estimations and preparations. | K3        |
| CO5    | Analyze the nature of organic mixture containing two components.      | K4        |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 2    | 2    | 2    | 2   | 1   | 3   | 2   | 1   |
| CO2 | 2    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO3 | 2    | 3    | 3    | 2    | 3    | 1   | 1   | 1   | 2   | 1   |
| CO4 | 3    | 2    | 2    | 3    | 2    | 2   | 3   | 2   | 3   | 2   |
| CO5 | 2    | 3    | 3    | 3    | 2    | 1   | 2   | 2   | 2   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation ¬

<sup>&</sup>quot;3" – Substantial (High) Correlation –

<sup>&</sup>quot;2" – Moderate (Medium) Correlation ¬

<sup>&</sup>quot;-" indicates there is no correlation.

#### I. Separation and analysis

- 1. Two component mixtures.
- 2. Three component mixtures.

#### **II. Estimations**

- 1. Estimation of Phenol (bromination)
- 2. Estimation of Glucose (redox)
- 3. Estimation of Aromatic nitro groups (reduction)
- 4. Estimation of Glycine (acidimetry)
- 5. Estimation of Acetyl group in ester (alkalimetry)
- 6. Estimation of Hydroxyl group (acetylation)

#### III. Two stage preparations

- 1. p-Nitroaniline from acetanilide
- 2. 1,3,5-Tribromobenzene from aniline
- 3. Acetyl salicyclic acid from methyl salicylate
- 4. m-Nitrobenzoic acid from methyl benzoate
- 5. Benzilic acid from benzoin

#### **Text Books**

- 1. A R West, Solid state Chemistry and its applications, 2<sup>nd</sup>Edition (Students Edition), John Wiley & Sons Ltd., 2014.
- 2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya Publishing House, 2001.
- 3. L Smart, E Moore, Solid State Chemistry An Introduction, 4<sup>th</sup> Edition, CRC Press, 2012.

#### Reference Books

- 1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Models in Inorganic Chemistry, 3<sup>rd</sup> Ed, 1994.
- 2. R J D Tilley, Understanding Solids The Science of Materials, 2<sup>nd</sup> edition, Wiley Publication, 2013.
- 3. C N R Rao and J Gopalakrishnan, New Directions in Solid State Chemistry, 2<sup>nd</sup> Edition, Cambridge University Press, 199.

#### **Web References**

https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-fall 2018/video\_galleries/lecture-videos.

#### **Pedagogy**

Demonstration and practical sessions

#### **Course Designer**

Dr. K. Uma Sivakami

| Semester I   | Internal Marks  | Externa         | ıl Marks: 75 |         |
|--------------|-----------------|-----------------|--------------|---------|
| COURSE CODE  | COURSE TITLE    | CATEGORY        | Hrs / Week   | CREDITS |
|              | ANALYTICAL      | DISCIPLINE      | 6            | 3       |
| 23PCH1DSE1AP | INSTRUMENTATION | <b>SPECIFIC</b> |              |         |
|              | TECHNIQUE (P)   | <b>ELECTIVE</b> |              |         |

#### **Course Objectives**

- To design chromatographic methods for identification of species.
- To analyze different constituents through instrumental methods of analysis.
- To evaluate different contaminants in materials using turbidimetry and conductivity measurements.
- To analyze constituents in organic materials using emission and absorptionspectal techniques.

#### Pre requisites

Chromatography, qualitative analysis and spectroscopy

#### **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                                                                         | Cognitive<br>Level |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Become familiar with fundamental concepts of electrical and instrumentation techniques.                                                                   | K1                 |
| CO2          | Observe the application of Instrumentation Techniques                                                                                                     | K2                 |
| CO3          | Interpretation and identification of the given spectra of various organic compounds arrived at from spectral instruments.                                 | K4                 |
| CO4          | Develop the core skills to parse existing chromatographic protocols and identify the key factors influencing a chromatography and calorimetric experiment | K5                 |
| CO5          | To develop students' ability and skill to acquire expertise in calibration techniques and Interpretation of various compounds.                            | K5                 |

| Mark | , or co " | 1411 1 |      | •    |      |     |     |     |     |     |
|------|-----------|--------|------|------|------|-----|-----|-----|-----|-----|
| COs  | PSO1      | PSO2   | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1  | 3         | 2      | 2    | 2    | 2    | 2   | 1   | 3   | 2   | 1   |
| CO2  | 2         | 3      | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO3  | 2         | 3      | 3    | 2    | 3    | 1   | 1   | 1   | 2   | 1   |
| CO4  | 3         | 2      | 2    | 3    | 2    | 2   | 3   | 2   | 3   | 2   |
| CO5  | 2         | 3      | 3    | 3    | 2    | 1   | 2   | 2   | 2   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation ¬

<sup>&</sup>quot;3" – Substantial (High) Correlation –

<sup>&</sup>quot;2" – Moderate (Medium) Correlation ¬

<sup>&</sup>quot;-" indicates there is no correlation.

#### **I. Electrical Experiments:**

- 1. Determination of the equivalent conductance of a weak acid at different concentrations and verifying Ostwald dilution law. Calculation of the dissociation constant of the acid.
- 2. Conductometric titration of a mixture of HCl and CH<sub>3</sub>COOH Vs NaOH.
- 3. Potentiometric titration of a mixture of HCl and CH<sub>3</sub>COOH Vs NaOH
- 4. Potentiometric titration of FAS Vs K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>
- 5. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO<sub>3</sub>.
- 6. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel Electrode.
- 7. Potentiometric titration of KI Vs KMnO<sub>4</sub>.
- 8. Analysis of soil
  - i) Determination of pH of soil. ii) Determination of total soluble salts by conductometry

#### II. Analytical experiments

- 1. Determining the concentration of citric acid in soft drink using titration.
- 2. Determination of ascorbic acid in lime juice by titration.
- 3. Estimation of aspirin from tablet using titration method.
- 4. Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode using pH-meter.
- 5. Separation of monosaccharide and metal ions present in a given mixture by paper chromatography.
- 6. Determination of chlorine in water using Colorimetry.
- 7. Separation of mixture of Azo dyes by TLC chromatography.
- 8. Estimation of chlorophyll in leaves and phosphate in waste water by colorimetry.
- 9. Estimation of Fe(II) by 1,10 phenonthroline using spectrophotometry.

#### III. Spectroscopic Techniques

Interpretation and identification of the given spectra of various organic compounds arrived at from the following instruments

- 1. UV-Visible
- 2. IR
- 3. NMR
- 4. ESR

#### **Text Books**

- 1. Vogel's Text book of Practical Organic Chemistry, 5<sup>th</sup> Ed, ELBS/Longman, England, 2003.
- 2. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, Vogel's Textbook of Quantitative Chemical Analysis; 6<sup>th</sup> ed., ELBS, 1989.
- 3. J. D. Woollins, Inorganic Experiments; VCH: Weinheim, 1995.
- 4. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry, Viva Books, New Delhi, 2009.

#### **Reference Books**

- N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.
- 2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co., 2011.
- 3. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing House, 2001.
- 4. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical Chemistry, 8<sup>th</sup> edition, McGraw Hill, 2009.
- 5. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co., 1987.

#### **Web References**

- 1. https://bit.ly/3QESF7t
- 2. https://bit.ly/3QANOnX

#### Pedagogy

Demonstration and practical sessions

#### **Course Designer**

Dr. K. Uma Sivakami

| Semester I   | Internal Marks: 25 | External Marks: 75 |            |         |  |
|--------------|--------------------|--------------------|------------|---------|--|
| COURSE       | COURSE TITLE       | CATEGORY           | Hrs / Week | CREDITS |  |
| CODE         |                    |                    |            |         |  |
| 22PCH1DSE1BP | NANOSCIENCE AND    | DISCIPLINE         | 6          | 3       |  |
|              | NANOTECHNOLOGY (P) | <b>SPECIFIC</b>    |            |         |  |
|              |                    | <b>ELECTIVE</b>    |            |         |  |

#### **Course Objectives**

- > Covers the whole spectrum of nanomaterials ranging from overview, synthesis, properties, and characterization of nano phase materials to application including some new developments in various aspects.
- ➤ Provides an introduction to the theory and practice on Nanomaterials and various techniques used for the fabrication and characterization of nanostructures.

#### **Prerequisites**

Precipitation, reduction and absorption methods.

#### **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                                   | Cognitive |
|--------|----------------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                                           | Level     |
| CO1    | To foundational knowledge of the Nanoscience and related fields                                                | K1        |
| CO2    | Understand in broad outline of Nanoscience and Nanotechnology.                                                 | K2        |
| CO3    | Acquire an understanding the Nanoscience and Applications                                                      | К3        |
| CO4    | Apply principles of basic science concepts in understanding, analysis and prediction of matter at Nano scale.  | K3        |
| CO5    | Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment | K5        |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 2    | 2    | 2    | 2   | 1   | 3   | 2   | 2   |
| CO2 | 2    | 3    | 2    | 3    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO3 | 2    | 3    | 3    | 2    | 3    | 1   | 1   | 2   | 2   | 1   |
| CO4 | 3    | 2    | 2    | 3    | 2    | 2   | 3   | 2   | 2   | 2   |
| CO5 | 2    | 3    | 3    | 3    | 2    | 1   | 2   | 2   | 2   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation ¬

<sup>&</sup>quot;3" – Substantial (High) Correlation – "-" indicates there is no correlation.

<sup>&</sup>quot;2" – Moderate (Medium) Correlation ¬

- 1. Synthesis of CuO nanoparticles by sonochemical method.
- 2. Synthesis of ZnO nanoparticles by sonochemical method
- 3. Synthesis of carbon nanoparticles by microwave irradiation method.
- 4. Characterization of nanoparticles by UV- Visible spectrophotometer.
- 5. Synthesis of silver nanoparticles by chemical reduction method and their UV-Vis absorption studies.
- 6. Synthesis of iron oxide nanoparticles by polyol method and their UV-Vis absorption studies.
- 7. Synthesis of ZnO nanoparticles by co-precipitation method.
- 8. Preparation of thiolated silver nanoparticles.
- 9. Synthesis of nanoparticles from plant materials by sono chemical method.

#### **Text Books**

- 1. Edelstein, A.S., Cammaratra, R.C. (2017). Nanomaterials: Synthesis, Properties and Applications, Second Edition. United Kingdom: Taylor & Francis.
- 2. Wiederrecht, G. (2010). Handbook of Nanofabrication. Italy: Elsevier Science.
- 3. Altavilla, C., CilibertoE.(2017). Inorganic Nanoparticles: Synthesis, Applications, and Perspectives. United Kingdom: CRC Press.

#### Reference Books

- 1. Fritzsche, W., Köhler, M., Fritzsche, W., Köhler, M. (2008). Nanotechnology: An Introduction to Nanostructuring Techniques. Germany: Wiley.
- 2. Muller, A., A.K., Cheetham., Rao C.N.R. (2006). The Chemistry of Nanomaterials: Synthesis, Properties and Applications. Germany: Wiley.

#### Web References

- https://www.researchgate.net/publication/229419482 Sonochemical synthesis size controlling an d\_gas\_sensing\_properties\_of\_NiO\_nanoparticles
- 2. https://www.sciencedirect.com/science/article/pii/S1569441018301445
- 3. <a href="https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj01360a">https://pubs.rsc.org/en/content/articlelanding/2019/nj/c9nj01360a</a>
- 4. https://www.researchgate.net/publication/231240704\_UreaMelt\_Assisted\_Synthesis\_of\_NiNiO\_Na

## noparticles\_Exhibiting\_Structural\_Disorder\_and\_Exchange\_Bias

#### Pedagogy

Table Work

### **Course Designers**

- 1. Dr. G. Sivasankari
- 2. Dr. R. Subha

| Semester I   | Internal Marks:25 | External Marks:75                  |          |         |  |  |  |
|--------------|-------------------|------------------------------------|----------|---------|--|--|--|
| COURSE CODE  | COURSE TITLE      | CATEGORY                           | Hrs/Week | CREDITS |  |  |  |
| 22PCH1DSE1CP | BIOCHEMISTRY(P)   | DISCIPLINE<br>SPECIFIC<br>ELECTIVE | 6        | 3       |  |  |  |

#### **Course Objectives**

- ➤ To expertise the student to identify and isolate various biomolecules.
- > To acquire training to estimate the quantity of biomolecules present by applying biochemical techniques.

#### Prerequisites

Chromatographic techniques, biomolecules and plant pigments.

#### **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                             | Cognitive<br>Level |
|--------------|---------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Recall and understand the techniques involved in isolation, separation and estimation of various biomolecules | K1 & K2            |
| CO2          | Develop and apply the skills in handling various chromatographic and colorimetric techniques                  | К3                 |
| CO3          | Qualitatively and quantitatively analyze the biomolecules                                                     | K4                 |
| CO4          | Exemplify in handling various chromatographic techniques of biomolecules.                                     | K5                 |
| CO5          | Interpret the importance of technical analysis required for various biomolecules                              | K6                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 2    | 3    | 2    | 3    | 2    | 2   | 3   | 2   | 2   | 3   |
| CO2 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO5 | 3    | 3    | 3    | 3    | 3    | 2   | 3   | 3   | 3   | 3   |

<sup>&</sup>quot;1"-Slight(Low) Correlation

<sup>&</sup>quot;2"-Moderate(Medium)Correlation

<sup>&</sup>quot;3"-Substantial(High) Correlation

<sup>&</sup>quot;-"indicates there is no correlation.

#### **Syllabus**

#### I. EXTRACTION OF BIOMOLECULES

- 1. Starch from potato.
- 2. Casein from milk.
- 3. Oil from oil seeds.
- 4. Cellulose from plant material.

#### II. BIOCHEMICAL TECHNIQUES

- 1. Identification of amino acid by circular and ascending paper chromatography.
- 2. Separation of amino acids and carbohydrates in a mixture by paper chromatography.
- 3. Separation of lipids by thin layer chromatography.
- 4. Separation of a mixture of proteins and salt by column chromatography.
- 5. Separation of plant pigments using Chromatography techniques TLC, Paper chromatography.

#### III. QUALITATIVE ANALYSIS OF BIOMOLECULES

- 1. Carbohydrate–Glucose, Fructose, Sucrose, Lactose and Starch.
- 2. Proteins Precipitation reactions of proteins, Colour reactions of proteins, colour reactions of amino acids like tryptophan, tyrosine, cysteine, methionine, arginine, proline and histidine.
- 3. Lipids-solubility, acrolein test, Salkowski test, Lieberman-Burchard test.
- 4. Qualitative tests for nucleic acid.

#### IV. COLORIMETRIC ESTIMATION

- 1. Glucose by DNS method.
- 2. Protein by Biuret/Bradford and Lowry's method.
- 3. Uric acid.
- 4. Urea by DAM method.
- 5. Creatinine by Jaffe's method.
- 6. Phosphorous by Fiske and Subbarow's method.

#### **Text Books**

- 1. Rajan, S. &Selvi Christy.R.(2018). Experimental Procedures in Life Sciences. CBS Publishers & Distributors.
- 2. Wilson, K.&Walker, J. (2000). Principles and Techniques of Practical Biochemistry. Fifth edition. Cambridge University Press.
- 3. Upadhyay&Upadhyay Nath (2016). Biophysical Chemistry: Principles and Techniques. Himalaya Publishing House.

#### Reference Books

- Hofmann, A. &Clokie, S. (2018). Wilson and Wa lker's Principles and Techniques of Biochemistry and Molecular Biology.8<sup>th</sup> edition.Cambridge University Press.
- 2. Wood, W. B. (1981). Biochemistry-A problem Approach. Addison Wesley.

#### **Web References**

- 1. <a href="http://nec.edu.np/Publications/Chemistry\_LAB\_Manual/Experiment%204.pdf">http://nec.edu.np/Publications/Chemistry\_LAB\_Manual/Experiment%204.pdf</a>
- 2. <a href="https://www.mlsu.ac.in/econtents/1616\_Biochemical%20Tests%20of%20Ca">https://www.mlsu.ac.in/econtents/1616\_Biochemical%20Tests%20of%20Ca</a> rbohydrate,%20protein,%20lipids%20and%20salivary%20amylase.pdf
- 3. <a href="https://webstor.srmist.edu.in/web\_assets/srm\_mainsite/files/files/2% 20">https://webstor.srmist.edu.in/web\_assets/srm\_mainsite/files/files/2% 20</a>
  ESTIMATION% 20 OF%20PROTEIN%20BY%20LOWRY.pdf
- 4. <a href="https://orbitbiotech.com/estimation-of-reducing-sugars-by-dnsa-method/">https://orbitbiotech.com/estimation-of-reducing-sugars-by-dnsa-method/</a>
- 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8575183/
- 6. <a href="http://atlasmedical.com/upload/productFiles/208011/Creatinine%20Package%20Insert.pdf">http://atlasmedical.com/upload/productFiles/208011/Creatinine%20Package%20Insert.pdf</a>

#### **Pedagogy**

Demonstration and practical sessions

#### **Course Designer**

Dr. P. Pungayee Alias Amirtham

| Semester II      | Internal Marks: 25     | External Marks: 75 |       |         |
|------------------|------------------------|--------------------|-------|---------|
| COURSE           | COURSE TITLE           | CATEGORY           | Hrs./ | CREDITS |
| CODE             |                        |                    | Week  |         |
| <b>23PCH2CC4</b> | PHYSICAL CHEMISTRY - I | CORE               | 6     | 5       |
|                  |                        |                    |       |         |

#### **Course Objectives**

- > To under quantum mechanical operators, thermodynamic probability.
- > To understand and compare theories of chemical kinetics.
- > To learn symmetry operation and point group of simple molecules.
- > To predict the vibrational modes, hybridization using he concepts of group theory.

#### **Prerequisites**

Schrodinger equation, factors affecting rate of the reactions, probability, entropy, adsorption, absorption and adsorption isotherm.

#### **Course Outcomes**

#### **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                         | Cognitive |
|--------|----------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to | Level     |
| CO1    | Recall postulates of quantum theory- operator- thermodynamic         | K1, K2    |
|        | probability- and types of adsorption.                                |           |
| CO2    | Solve Schrodinger equation, character table, various statistical     | K3, K4    |
|        | models, theories of reaction rate and surface theories.              |           |
| CO3    | Explain Hermitian of operators, theories of unimolecular reactions,  | K4        |
|        | ensembles and microstates.                                           |           |
| CO4    | Deduce wave equation for particle in a box, rigid rotor, harmonic    | K5        |
|        | oscillator, classical and quantum statistics.                        |           |
| CO5    | Evaluate angular and radial function, character table, unimolecular  | K5        |
|        | reactions and kinetic models for catalysis                           |           |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 2    | 3   | 3   | 3   | 1   | 3   |
| CO2 | 3    | 2    | 2    | 3    | 2    | 2   | 3   | 3   | 3   | 2   |
| CO3 | 3    | 3    | 3    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 3    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation

| UNIT | CONTENT                                                                                  | HOURS | COs | COGNITIVE |
|------|------------------------------------------------------------------------------------------|-------|-----|-----------|
|      |                                                                                          |       |     | LEVEL     |
| I    | Quantum Chemistry:                                                                       | 18    | CO1 | K1        |
|      | Quantum mechanical operators - linear                                                    |       | CO2 | K2        |
|      | and non-linear operators - Hermitian                                                     |       | CO3 | К3        |
|      | operators - postulates of quantum                                                        |       | CO4 | K4        |
|      | mechanics - time dependent and                                                           |       | CO5 | K5        |
|      | independent Schrodinger wave equation -                                                  |       |     |           |
|      | solution of the Schrodinger equation for                                                 |       |     |           |
|      | bounded states such as particle-in-one                                                   |       |     |           |
|      | dimensional - box - harmonic oscillator -                                                |       |     |           |
|      | rigid rotor - solution of the Schrodinger                                                |       |     |           |
|      | equation for the hydrogen atom - radial -                                                |       |     |           |
|      | angular probability distributions - atomic                                               |       |     |           |
|      | orbitals - electron spin.                                                                |       |     |           |
| II   | Group Theory:                                                                            | 18    | CO1 | K1        |
|      | Definition of a mathematical group -                                                     |       | CO2 | K2        |
|      | properties - group multiplication table -                                                |       | CO3 | К3        |
|      | cyclic groups - subgroups - classes -                                                    |       | CO4 | K4        |
|      | symmetry elements - symmetry operation -                                                 |       | CO5 | K5        |
|      | determination of point group of simple                                                   |       |     |           |
|      | molecules (H <sub>2</sub> O, CO <sub>2</sub> , NH <sub>3</sub> , BF <sub>3</sub> , HCHO, |       |     |           |
|      | C <sub>2</sub> H <sub>4</sub> and XeF <sub>4</sub> like molecules) - definition          |       |     |           |
|      | of reducible and irreducible representations                                             |       |     |           |
|      | - great orthogonality theorem -                                                          |       |     |           |
|      | consequences (statement only proof not                                                   |       |     |           |
|      | needed) - determinations of the characters                                               |       |     |           |
|      | for irreducible representation of C <sub>2</sub> v - C <sub>3</sub> v                    |       |     |           |
|      | point groups using the orthogonality                                                     |       |     |           |
|      | theorem to construct the character table.                                                |       |     |           |
|      |                                                                                          |       |     |           |

| III | Chemical Kinetics:                          |    |     |    |
|-----|---------------------------------------------|----|-----|----|
|     | Theories of reaction rates - Arrhenius      | 18 | CO1 | K1 |
|     | theory - hard - sphere collision theory of  |    | CO2 | K2 |
|     | gas - phase reactions - activated complex   |    | CO3 | К3 |
|     | theory or absolute reaction rate theory     |    | CO4 | K4 |
|     | (ARRT) for ideal gas reactions (in terms of |    | CO5 | K5 |
|     | partition functions) - relation between     |    |     |    |
|     | activated complex theory and hard sphere    |    |     |    |
|     | collision theory - thermodynamic            |    |     |    |
|     | formulations of activated complex theory -  |    |     |    |
|     | Lindeman's - Hinshelwood theory of          |    |     |    |
|     | unimolecular reactions.                     |    |     |    |
| IV  | Catalysis and surface phenomenon:           | 18 | CO1 | K1 |
|     | Homogenous and heterogeneous catalysis -    |    | CO2 | K2 |
|     | effect of pH - temperature on enzyme        |    | CO3 | K3 |
|     | catalysis - kinetics of heterogeneous       |    | CO4 | K4 |
|     | catalysis - Langmuir - Hinshelwood and      |    | CO5 | K5 |
|     | Langmuir - Rideal - Eley mechanism -        |    |     |    |
|     | adsorption - free energy relation at        |    |     |    |
|     | interfaces - Gibb's adsorption isotherm -   |    |     |    |
|     | physisorption – chemisorption - adsorption  |    |     |    |
|     | isotherms - Freundlich, - Langmuir.         |    |     |    |
| V   | Statistical Thermodynamics:                 | 18 | CO1 | K1 |
|     | Thermodynamic probability - most            |    | CO2 | K2 |
|     | probable distribution - ensemble -          |    | CO3 | К3 |
|     | postulates of ensemble overlapping -        |    | CO4 | K4 |
|     | canonical - grand canonical - micro         |    | CO5 | K5 |
|     | canonical ensembles - sterling              |    |     |    |
|     | approximation derivation - Maxwell-         |    |     |    |
|     | Boltzmann distribution law - Maxwell's      |    |     |    |
|     | distribution of molecular velocity -        |    |     |    |
|     | Maxwell-Boltzmann statistics -              |    |     |    |
|     | applications - Bose-Einstein - Fermi Dirac  |    |     |    |

|    | statistics - comparison of MB, FD and BE |     |    |
|----|------------------------------------------|-----|----|
|    | statistics                               |     |    |
| VI | Self-study: (Not for final examination)  | CO1 | K1 |
|    | Eigen value - eigen function -           | CO2 | K2 |
|    | applications of quantum mechanics -      | CO3 | К3 |
|    | black body radiation - photoelectric     | CO4 | K4 |
|    | effect - hydrogen spectrum - need for    | CO5 | K5 |
|    | quantum mechanics - postulates.          |     |    |

- 1. Prasad, R. K. (2006). Quantum Chemistry (3<sup>rd</sup> ed), New Delhi, New Age International Publishers.
- 2. Bhattacharya, P.K. (2014). Group Theory and its Chemical Application, New Delhi, Himalaya Publishing House.
- 3. Laidler, K.J. (2003). Chemical Kinetics (3<sup>rd</sup> ed), India, Pearson Education.
- 4. Gupta, M.C. (2003). Statistical Thermodynamics (2<sup>nd</sup> Ed), New Delhi, New Age International Publishers.
- 5. Puri, Sharma & Pathania (2018) Principles of Physical Chemistry (47<sup>th</sup> Ed), Jalandhar, Vishal publication.

#### **Reference Books**

- 1. McQuarrie, D. A. (2015). Quantum Chemistry, India, Viva Books.
- 2. Chandra, A.K. (1994), Introduction to Quantum Chemistry, (4<sup>th</sup> Ed.), India, Tata-McGraw-Hill.
- 3. Mahendra R. Awode (2002) Quantum Chemistry, (New Delhi), S. Chand and Co. Ltd.
- 4. Raj, G. Bhagi, A. and Jain, V. (2010). Group Theory and Symmetry in Chemistry, (3<sup>rd</sup> Ed.,), India, Krishna Prakashan.
- 5. Gurdeep Raj. (2016), Advanced Physical Chemistry, (4<sup>th</sup> Ed), Meerut, Krishna prakashan media.
- 6. Raman, K.V. (1990), Group theory and its applications to chemistry (3<sup>rd</sup> Ed), McGraw-Hill Education.

#### **Web References**

- 1. e-PG Pathshala P-02- Physical Chemistry- I (Quantum Chemistry)
- 2. e-PG Pathshala P-06- Physical Chemistry- I (Statistical thermodynamics, chemical

## dynamics, electrochemistry)

- 3. <a href="https://www.bdu.ac.in/cde/SLM/M.Sc.%20Chemistry/Chemistry%20I%20Year/Physical\_Chemistry/Unit1.doc.">https://www.bdu.ac.in/cde/SLM/M.Sc.%20Chemistry/Chemistry%20I%20Year/Physical\_Chemistry/Unit1.doc.</a>
- 4. <a href="https://youtu.be/ALwziZSRiqM">https://youtu.be/ALwziZSRiqM</a>
- 5. <a href="https://youtu.be/ACY-Wbudg0o">https://youtu.be/ACY-Wbudg0o</a>
- $6. \ \underline{https://youtu.be/yO8v0nszUz8}$
- 7. <a href="https://nptel.ac.in/courses/104101124">https://nptel.ac.in/courses/104101124</a>
- 8. <a href="https://ipc.iisc.ac.in/~kls/teaching.html">https://ipc.iisc.ac.in/~kls/teaching.html</a>

## **Pedagogy**

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, and seminar

## **Course Designer**

> Dr. V. Sangu

| Semester II | Internal Marks: 40      | External Marks: 60 |       |         |
|-------------|-------------------------|--------------------|-------|---------|
| COURSE      | COURSE TITLE            | CATEGORY           | Hrs./ | CREDITS |
| CODE        |                         |                    | Week  |         |
| 23PCH2CC2P  | INORGANIC CHEMISTRY - I | CORE               | 6     | 5       |
|             | <b>(P)</b>              |                    |       |         |

- > To perform the semi-micro qualitative analysis and to estimate the metal ions using photoelectric colorimeter.
- > To examine the constituents of samples.

## **Prerequisites**

Separation of cations and anions, quantitative analysis

## **Course outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                                                              | Cognitive |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                                                                      | Level     |
| CO1    | Detection of ions in an aqueous solution of the salt.                                                                                     | K2        |
| CO2    | Explain the quantitative estimation and estimation of inorganic compounds.                                                                | К3        |
| СОЗ    | Identify and separate cations and anions in a sample substance and Interpret results, while observing responsible and scientific conduct. | К3        |
| CO4    | Analyze quantitatively inorganic components in the environment.                                                                           | K4        |
| CO5    | Hands-on experience with technical instrumentation.                                                                                       | K5        |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 2    | 2    | 2    | 2   | 1   | 3   | 2   | 1   |
| CO2 | 2    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO3 | 2    | 3    | 2    | 2    | 2    | 1   | 1   | 1   | 2   | 2   |
| CO4 | 2    | 3    | 2    | 2    | 2    | 2   | 1   | 2   | 2   | 1   |
| CO5 | 2    | 3    | 2    | 2    | 2    | 1   | 1   | 1   | 2   | 2   |

<sup>&</sup>quot;1" - Slight (Low) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation.

- 1. Semi-micro qualitative analysis of a mixture containing two common cations (Pb, Bi, Ca, Cd, Fe, Cr, Al, Co, Ni, Mn, Zn, Ba, Sr, Ca, Mg,) and two less common cations (W, Tl, Se, Te, Mo, Ce, Th, Zr, Ti, V, U, Li).
- 2. Quantitative Estimation of copper, iron, nickel, chromium and manganese ions using photoelectric colorimeter.

#### **Text Book**

- 1. Vogel. A. I (2000), Text Book of Quantitative Inorganic Analysis, Longman.
- 2. Ramanujam, V.V. (1988), Inorganic Semimicro Qualitative Analysis, National Pubs.
- 3. Svehla. G. (1987), Text Book of Macro and Semimicro Qualitative Inorganic analysis, Longman.

### Reference book

Vogel, A. ITatchell. A.R, Furniss B.S, Hannaford.A. J & Smith, P. W. G, (1989), Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall.

#### **Web References**

- 1. <a href="https://iscnagpur.ac.in/study\_material/dept\_chemistry/4.1\_MIS\_and\_NJS\_Manual\_f">https://iscnagpur.ac.in/study\_material/dept\_chemistry/4.1\_MIS\_and\_NJS\_Manual\_f</a> or\_Inorganic semi-micro qualitative analysis.
- 2. <a href="https://byjus.com/chemistry/systematic-analysis-of-cations">https://byjus.com/chemistry/systematic-analysis-of-cations</a>.
- 3. https://www.uou.ac.in/sites/default/files/slm/MSCCH-505L.pdf

## **Pedagogy**

E-content, Demo, Hands on training

### **Course Designer**

> Dr. K. Shenbagam

| Semester II        | Internal Marks:          | 25          | External Marks: 75 |         |  |
|--------------------|--------------------------|-------------|--------------------|---------|--|
| COURSE             | COURSE TITLE             | CATEGORY    | Hrs. / Week        | CREDITS |  |
| CODE               |                          |             |                    |         |  |
| <b>23PCH2CCC1A</b> | ORGANIC                  | CORE CHOICE | 6                  | 4       |  |
|                    | REACTION<br>MECHANISM-II | COURSE      |                    |         |  |

- > To learn about the oxidising and reducing agent.
- Enable the students to acquire surplus knowledge about the addition, elimination mechanism, pericyclic reactions and the chemistry behind the photolytic reactions.
- ➤ Guide the students to know the role of heterocyclic compounds in drug development.

## **Prerequisites**

Addition, Elimination, cycloaddition, photoreaction and Heterocycles.

#### **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement<br>On the successful completion of the course, students will be able to                                       | Cognitive<br>Level |
|--------------|----------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Outline the synthesis, reactivity of organic compounds, nature of reagents, and fundamentals of photochemistry.            | K1 & K2            |
| CO2          | Interpret the reaction mechanism of various organic reactions including photochemical, pericyclic, redox and heterocycles. | К3                 |
| CO3          | Classify the different types of addition, elimination, photolytic reactions and heterocyclic compounds.                    | K4                 |
| CO4          | Categorize the reaction pathways and naming reactions.                                                                     | K5                 |
| CO5          | Predict the mechanism and products of organic reactions.                                                                   | K6                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 3    | 2    | 3   | 2   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 3   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 2    | 1    | 2    | 3   | 3   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 2   | 1   | 1   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HOURS | COs                                 | COGNITIVE                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|---------------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                     | LEVEL                     |
| I    | Addition and Elimination:  Addition to carbon - carbon multiple bonds - electrophile - nucleophile - free radical addition - addition to carbonyl - conjugated carbonyl system with mechanisms - Knoevengal - Stobbe - Darzen's glycidic ester condensation - Reformatsky reaction - elimination reaction - mechanism of E1, E2, E1CB - stereochemistry - Hoffmann's - Zaitsev's rules - pyrolytic cis elimination - Chugaev reaction - Hoffmann exhaustive methylation - Cope elimination - Bredt's rule.         | 18    | CO1,<br>CO2,<br>CO4,<br>CO5         | K1, K2, K3,<br>K4, K5     |
| II   | Organic Photochemistry:  Fundamental concepts - energy transfer - characteristic of photoreaction - photoreduction-photooxidation — photosensitization - classification of photo reactions of Ketones - enones - Norrish type I and II - Paterno-Buchi reaction — photo-Fries rearrangement — photochemistry of alkenes - aromatic compounds — Zimmerman's di-pi methane rearrangement — reaction of unactivated centres- photochemistry of $\alpha$ , $\beta$ — unsaturated carbonyl compounds — Barton Reaction. | 18    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5, K6 |
| III  | Pericyclic Reactions:  Concerted reactions- stereochemistry - orbital symmetry - correlation diagram - Frontier molecular orbital approach- Woodward-Hoffmann rules- electrocyclic reactions - cycloaddition reactions- selection rules -                                                                                                                                                                                                                                                                          | 18    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5, K6 |

|    | sigmatropic rearrangements- selection rules with                                                                                                                                                                                                                                                                                                                              |    |              |                   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|-------------------|
|    | examples- 1,3 and 1,5 hydrogen shifts - Cope -                                                                                                                                                                                                                                                                                                                                |    |              |                   |
|    | Claisen rearrangements.                                                                                                                                                                                                                                                                                                                                                       |    |              |                   |
| IV | Reagents in Organic Synthesis:                                                                                                                                                                                                                                                                                                                                                | 18 | CO1,         | K1, K2, K3,       |
|    | Oxidation- Baeyer-Villiger-Jacobsen epoxidation                                                                                                                                                                                                                                                                                                                               |    | CO2,<br>CO3, | K4, K5, K6        |
|    | - Shi epoxidation- Jones reagent-PCC-PDC-                                                                                                                                                                                                                                                                                                                                     |    | CO4,         |                   |
|    | IBX-DMP-CAN-Cu(OAC) <sub>2</sub> -Bi <sub>2</sub> O <sub>3</sub> -Swern                                                                                                                                                                                                                                                                                                       |    | CO5          |                   |
|    | oxidation- Sommelet reaction- Elbs reaction-                                                                                                                                                                                                                                                                                                                                  |    |              |                   |
|    | oxidative coupling -Prevost reaction - Woodward                                                                                                                                                                                                                                                                                                                               |    |              |                   |
|    | modification - reduction-palladium - platinum -                                                                                                                                                                                                                                                                                                                               |    |              |                   |
|    | rhodium - nickel based heterogeneous catalysts                                                                                                                                                                                                                                                                                                                                |    |              |                   |
|    | for hydrogenation -Wilkinson's catalyst -Noyori                                                                                                                                                                                                                                                                                                                               |    |              |                   |
|    | asymmetric hydrogenation- Luche reduction-                                                                                                                                                                                                                                                                                                                                    |    |              |                   |
|    | Red-Al- NaBH <sub>4</sub> -NaCNBH <sub>3</sub> - trialkylsilanes -                                                                                                                                                                                                                                                                                                            |    |              |                   |
|    | trialkylstannane.                                                                                                                                                                                                                                                                                                                                                             |    |              |                   |
| V  | Heterocycles:                                                                                                                                                                                                                                                                                                                                                                 | 18 | CO1,         | K1, K2, K3,       |
|    | Nomenclature - synthesis - reactivity of aromatic                                                                                                                                                                                                                                                                                                                             |    | CO2,<br>CO3, | K4, K5, K6        |
|    | 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                               |    |              |                   |
|    | heterocycles - pyrazole- isothiazole- triazole-                                                                                                                                                                                                                                                                                                                               |    | CO4,         |                   |
|    | pyrimidine- purines- triazines- pyridazines –                                                                                                                                                                                                                                                                                                                                 |    | CO4,         |                   |
|    |                                                                                                                                                                                                                                                                                                                                                                               |    |              |                   |
|    | pyrimidine- purines- triazines- pyridazines –                                                                                                                                                                                                                                                                                                                                 |    |              |                   |
|    | pyrimidine- purines- triazines- pyridazines – pyrazines - synthesis - reactivity of non-aromatic                                                                                                                                                                                                                                                                              |    |              |                   |
| VI | pyrimidine- purines- triazines- pyridazines – pyrazines - synthesis - reactivity of non-aromatic heterocycles - tetra hydro furan- pyrrolidine -                                                                                                                                                                                                                              | -  | CO5          | K1, K2, K3,       |
| VI | pyrimidine- purines- triazines- pyridazines – pyrazines - synthesis - reactivity of non-aromatic heterocycles - tetra hydro furan- pyrrolidine - piperidine- oxirane- oxetane- oxazole -imidazole.                                                                                                                                                                            | -  | CO5          | K1, K2, K3,<br>K4 |
| VI | pyrimidine- purines- triazines- pyridazines – pyrazines - synthesis - reactivity of non-aromatic heterocycles - tetra hydro furan- pyrrolidine - piperidine- oxirane- oxetane- oxazole -imidazole.  Self-Study for Enrichment:                                                                                                                                                | -  | CO5          |                   |
| VI | pyrimidine- purines- triazines- pyridazines – pyrazines - synthesis - reactivity of non-aromatic heterocycles - tetra hydro furan- pyrrolidine - piperidine- oxirane- oxetane- oxazole -imidazole.  Self-Study for Enrichment: (Not to be included for External Examination)                                                                                                  | -  | CO5          |                   |
| VI | pyrimidine- purines- triazines- pyridazines – pyrazines - synthesis - reactivity of non-aromatic heterocycles - tetra hydro furan- pyrrolidine - piperidine- oxirane- oxetane- oxazole -imidazole.  Self-Study for Enrichment: (Not to be included for External Examination) Markovnikov's - Anti-Markovnikov's rule - syn-                                                   | -  | CO5          |                   |
| VI | pyrimidine- purines- triazines- pyridazines – pyrazines - synthesis - reactivity of non-aromatic heterocycles - tetra hydro furan- pyrrolidine - piperidine- oxirane- oxetane- oxazole -imidazole.  Self-Study for Enrichment: (Not to be included for External Examination) Markovnikov's - Anti-Markovnikov's rule - syn- anti addition – elimination - Jablonski diagram - | -  | CO5          |                   |

- Pine S.H, Hendrickson J B, Cram and Hammond, (1980), Organic Chemistry, McGraw Hill, New York, 4<sup>th</sup> edition.
- 2. March J, and Smith M.B,(2020), Advanced Organic Chemistry, Reactions, mechanisms and Structure, Wiley, 8<sup>th</sup> edition.

- 3. Carey F A and Sundberg R J,(2007), Advanced Organic Chemistry, Part A and Part B, Springer,5<sup>th</sup> Corrected edition.
- 4. Bansal. R.K, (1990), Reaction mechanism in Organic Chemistry, Tata McGraw Hill.
- 5. Finar I L, (2009), Organic Chemistry, Pearson Education Ltd., 6<sup>th</sup> edition.

#### **Reference Books**

- 1. Peter sykes (2009), A guide book to mechanism in Organic Chemistry, Pearson Education, 6<sup>th</sup> edition.
- 2. Raj K Bansal. (2009), Heterocyclic Chemistry, New Age International Publishers. 4<sup>th</sup> edition.
- 3. Gurdeep.R.Chatwal, (2015), Reaction Mechanism and Reagents in Organic Chemistry, Himalaya Publishing House.

#### **Web References**

- 1. https://www.chemistrylearner.com/addition-reaction.html.
- 2. <a href="http://www-oc.chemie.uni-regensburg.de/OCP/ch/chb/oc5/Photochemie-08.pdf">http://www-oc.chemie.uni-regensburg.de/OCP/ch/chb/oc5/Photochemie-08.pdf</a>.
- 3. <a href="https://edscl.in/pluginfile.php/2878/mod\_resource/content/1/teachers%20notes.pdf">https://edscl.in/pluginfile.php/2878/mod\_resource/content/1/teachers%20notes.pdf</a>.

## **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

## **Course Designer**

> Dr. A. Sharmila

| Semester II        | Internal Marks: | 25          | External Marks: 75 |         |  |
|--------------------|-----------------|-------------|--------------------|---------|--|
| COURSE             | COURSE TITLE    | CATEGORY    | Hrs. / Week        | CREDITS |  |
| CODE               |                 |             |                    |         |  |
| <b>23PCH2CCC1B</b> | CHEMISTRY OF    | CORE CHOICE | 6                  | 4       |  |
|                    | NATURAL         | COURSE      |                    |         |  |
|                    | PRODUCTS        |             |                    |         |  |

- > By the end of this course, the student will be familiar with definition, isolation and uses of natural products.
- > The students will be able to know the general properties and methods of preparation of natural products chemically and biosynthetically.

## **Prerequisites**

Isolation, addition, elimination, substitution, oxidation, reduction reactions.

### **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                   | Cognitive |
|--------|------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                           | Level     |
| CO1    | Differentiate the different types of alkaloids, terpenes, steroids, flavonoids and vitamins.   | K1        |
| CO2    | Know the basic terms in natural product chemistry and their physiological significance.        | К2        |
| CO3    | Evaluate the different methods of preparation of natural products.                             | К3        |
| CO4    | Recognize the most important building blocks employed in the biosynthesis of natural products. | K4        |
| CO5    | Elaborate general methods of structural elucidation of compounds of natural origin.            | K5        |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                               | HOURS | COs                                 | COGNITIVE             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|-----------------------|
|      |                                                                                                                                                                                                                                                       |       |                                     | LEVEL                 |
| I    | Alkaloids: Categorization of alkaloids- general methods of structural determination of alkaloids -synthesis - biogenesis of nicotine - quinine - morphine - atropine - sertonin.                                                                      | 18    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5 |
| II   | Terpenoids and Carotenoid: Classification of terpenoids - isoprene rules-structural elucidation - synthesis of geraniol- $\alpha$ -pinene - camphor - diterpenoids - carotenoid-introduction - structure - synthesis of $\beta$ -carotene - lycopene. | 18    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5 |
| III  | Steroids: Introduction - nomenclature of steroids - Blanc's rule - Barbier-Wieland degradation - oppenauer oxidation - Diel's hydrocarbon - chemistry of cholesterol - ergosterol - Vitamin- D.                                                       | 18    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5 |
| IV   | Flavonoids and Isoflavonoids:  Occurrence, nomenclature and general methods of structure determination, isolation - structure elucidation -synthesis of kaempferol - quercetin - cyanidin- genestein.                                                 | 18    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5 |
| V    | Vitamins:  Classification - structure of water soluble - fat- soluble vitamins - plant and animal sources- vitamins as coenzymes-deficiency of vitamins and their effects.                                                                            | 18    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5 |

| VI | Self-Study for Enrichment:                    | _ | CO2, | K2, |
|----|-----------------------------------------------|---|------|-----|
|    | (Not to be included for External Examination) |   | CO3  | K3  |
|    | Definition - isolation and purification of    |   |      |     |
|    | alkaloids- terpenes - flavonoids.             |   |      |     |

- 1. Chatwal G.R, (1990), Natural Products Chemistry-Vol. I & II, Himalaya Bombay.
- 2. Agarwal, O.P, Goel Gorakhpur (1985), Chemistry of Natural Products-Vol. I & II:
- 3. Longmann E.L, London B.S, (2000), Organic Chemistry-Vol. I-II: I. L. Finar.
- 4. Sujatha V. Bhat, Nagasampige B.A & Sivakumar M, (2006), Chemistry of Natural Products:, 2<sup>nd</sup>reprint, Springer.

#### **Reference Books**

- 1. Dewick P.M (2009), Medicinal Natural Products: A Biosynthetic Approach", 2<sup>nd</sup> Edition, Wiley& Sons.
- 2. Graham Solomons T.W, Craig B. Fryhle, Scott A. Snyder (2013), Organic Chemistry, 11<sup>th</sup> Edition, International Student Version, John Wiley &Sons. Himalaya Publishing House.

### **Web References**

- 1. <a href="https://chemnote.weebly.com/uploads/2/5/8/6/25864552/alkaloids.pdf">https://chemnote.weebly.com/uploads/2/5/8/6/25864552/alkaloids.pdf</a>.
- 2. <a href="https://www.vedantu.com/biology/steroid">https://www.vedantu.com/biology/steroid</a>.
- 3. <a href="https://www.slideshare.net/TareqAspirant/a-short-note-on-vitamins">https://www.slideshare.net/TareqAspirant/a-short-note-on-vitamins</a>.
- 4. <a href="https://www.tuscany-diet.net/2014/01/22/flavonoids-definition-structure-classification">https://www.tuscany-diet.net/2014/01/22/flavonoids-definition-structure-classification</a>.
- 5. <a href="https://www.intechopen.com/chapters/62573">https://www.intechopen.com/chapters/62573</a>.
- 6. https://gcwgandhinagar.com/econtent/document/1588068142ch-1.pdf.

#### **Pedagogy**

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

### **Course Designer**

> Dr. C. Rajarajeswari

| Semester II        | Internal Marks: 25 | 5             | External Marks: 75 |         |  |
|--------------------|--------------------|---------------|--------------------|---------|--|
| COURSE             | COURSE TITLE       | CATEGORY      | Hrs. / Week        | CREDITS |  |
| CODE               |                    |               |                    |         |  |
| <b>23PCH2CCC1C</b> | MOLECULAR          | CORE          | 6                  | 4       |  |
|                    | REARRANGEMENT      | <b>CHOICE</b> |                    |         |  |
|                    |                    | COURSE        |                    |         |  |

- > To learn about the reactions intermediates involved in rearrangement reactions.
- ➤ To learn about the basic concepts about the electrophilic and nucleophilic rearrangement reactions.
- > To learn the concept and mechanism of rearrangement reactions.

## **Prerequisites**

Reaction intermediates, nitrenes, carbenes, electrophilic, nucleophilic, naming reactions.

### **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                     | Cognitive |
|--------|--------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                             | Level     |
| CO1    | Know the outline for determining nature of rearrangements.                                       | K1, K2    |
| CO2    | Interpret the reaction mechanism in various organic reactions.                                   | K2        |
| CO3    | Classify the different types of intermediates involving in organic rearrangement reactions.      | К3        |
| CO4    | Recognize the technique of identifying reaction mechanism in various naming reactions.           | K4        |
| CO5    | Predict the mechanism, different intermediates and product of molecular rearrangement reactions. | K5        |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

## **Mapping of CO with PO and PSO**

"1" – Slight (Low) Correlation

"2" – Moderate (Medium) Correlation

"3" – Substantial (High) Correlation

"-" Indicates there is No Correlation.

| UNIT | CONTENT                                            | HOURS | COs          | COGNITIVE             |
|------|----------------------------------------------------|-------|--------------|-----------------------|
|      |                                                    |       |              | LEVEL                 |
| I    | Molecular Rearrangements:                          | 18    | CO1,<br>CO2, | K1, K2, K3,<br>K4, K5 |
|      | Introduction - intermolecular - intra molecular    |       | CO3,         | :,                    |
|      | rearrangement - intermediates - classification     |       | CO4,<br>CO5  |                       |
|      | based on migration origin and migration            |       | 003          |                       |
|      | terminus - rearrangement to electron - deficient   |       |              |                       |
|      | carbon - Wagner - Meerwein rearrangement -         |       |              |                       |
|      | pinacol rearrangement - Wolff rearrangement -      |       |              |                       |
|      | benzyl - benzilic acid rearrangement - allylic     |       |              |                       |
|      | rearrangement - Sommelet - Hauser                  |       |              |                       |
|      | rearrangement - Tiffeneau - Demjanov               |       |              |                       |
|      | rearrangement.                                     |       |              |                       |
| II   | Rearrangement to electron-deficient                | 18    | CO1,         | K1, K2, K3,           |
|      | nitrogen:                                          |       | CO2,<br>CO3, | K4, K5                |
|      | Beckmann rearrangement - Schmidt                   |       | CO4,         |                       |
|      | rearrangement - Hofmann rearrangement -            |       | CO5          |                       |
|      | Curtius rearrangement - Lossen rearrangement -     |       |              |                       |
|      | Neber rearrangement - Stieglitz rearrangement -    |       |              |                       |
|      | rearrangements with acyl carbenes - Arndt-         |       |              |                       |
|      | Eistert Reaction - diazo ketone reactions.         |       |              |                       |
| III  | Rearrangement to electron-deficient oxygen:        | 18    | CO1,         | K1, K2, K3,           |
|      | Baeyer - Villiger oxidation - cumene               |       | CO2,<br>CO3, | K4, K5                |
|      | hydroperoxide rearrangement - phenol               |       | CO4,         |                       |
|      | rearrangement - Dakin reaction - free radical      |       | CO5          |                       |
|      | rearrangements - sigmatropic rearrangement -       |       |              |                       |
|      | classification - [1,2] shift - [1,3] shift - [3,3] |       |              |                       |
|      | shift - Claisen rearrangement - Cope               |       |              |                       |
|      | rearrangement.                                     |       |              |                       |

| IV | Migration from N- to ring carbon rearrangement:  Hoffmann Martius rearrangement - Orton rearrangement - benzidine - semidine rearrangement - Bamberger rearrangement - migration to electron rich carbon center - Fries rearrangement - Favorski rearrangement.                       | 18 | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------|-----------------------|
| V  | Free radical rearrangement  Introduction - addition - substitutions - fragmentations - homolysis and free radical displacement - Hunsdieker reaction - Birch reduction - acyloin condensation - Homobenzylic rearrangement - Barton rearrangement- Hoffmann-Loffler-Freytag reaction. | 18 | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2,K3,<br>K4, K5  |
| VI | Self-Study for Enrichment:  (Not to be included for External Examination)  Aldol condensation - allylic rearrangement -  Ullmann reaction - Sandmeyer reaction - Perkin  reaction - photochemical reaction - thermal  fission reaction - oxidation - reduction reaction.              | -  | CO1,<br>CO2                         | K1<br>K2,<br>K3       |

- 1. Tewari, .K.S, Vishil, N.K, & Mehotra N.S (2001), A text book of org. chem  $-1^{st}$  edition, Vikas Publishing House Pvt Ltd., New Delhi.
- 2. Soni P.L (2005), Text Book of Organic chemistry, Sultans Chand, 1991, New Delhi.
- 3. Bahl & Arun Bahl (2005), Organic Chemistry, S. Chand and Sons, New Delhi.
- 4. Agarwal O.P (2002), Chemistry of Organic Natural Products, Vol 1 and 2, Goel Pub. House.
- 5. Gurdeep Chatwal (2002), Chemistry of Organic Natural Products, Vol 1 and 2, Goel Pub. House.

#### **Reference Books**

- Sharma, Y.R & Vig O.P (1997), Elementary organic absorption spectroscopy 1<sup>st</sup> edition, Goel Pulishers, Meerut.
- 2. Morrison R.T & Boyd R.N (1992), Organic Chemistry, 6<sup>th</sup> edition, PHI Limited, New Delhi.
- 3. Jerry March (1992), Advanced Organic Chemistry, 4<sup>th</sup> edition, John Wiley and Sons, New York.
- 4. Pine S.H (1987), Organic Chemistry, 5<sup>th</sup> edition, McGraw Hill International Edition, Chemistry Series, New York.

### **Web References**

- 1. <a href="https://tmv.ac.in/ematerial/chemistry/kpb/SEM\_IV\_Honours\_Rearrangement%20final.">https://tmv.ac.in/ematerial/chemistry/kpb/SEM\_IV\_Honours\_Rearrangement%20final.</a> pdf
- 2. <a href="https://pt.slideshare.net/ranianjali/molecular-rearrangements-involving-electron-deficient-nitrogen-as-an-intermediate">https://pt.slideshare.net/ranianjali/molecular-rearrangements-involving-electron-deficient-nitrogen-as-an-intermediate</a>
- 3. https://tmv.ac.in/ematerial/chemistry/kpb/SEM\_IV\_Honours\_Rearrangement.pdf
- 4. https://www.slideshare.net/RakeshAmrutkar/molecular-rearrangement-182395340
- 5. https://www.slideshare.net/VIKASMATHAD1/free-radicals-84891258

## **Pedagogy**

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar.

## **Course Designer**

> Dr. K. Uma Sivakami

| Semester II | Internal Marks: 40            |          | External N  | Aarks: 60 |
|-------------|-------------------------------|----------|-------------|-----------|
| COURSE CODE | COURSE TITLE                  | CATEGORY | Hrs. / Week | CREDITS   |
| 23PCH2CC3P  | PHYSICAL<br>CHEMISTRY - I (P) | CORE     | 6           | 5         |

- > To understand the principle of conductivity experiments through conductometric titrations.
- ➤ To evaluate the order of the reaction, temperature coefficient, and activation energy of the reaction by following pseudo first order kinetics.
- > To construct the phase diagram of two component system forming congruent melting solid and find its eutectic temperatures and compositions. To determine the kinetics of adsorption of oxalic acid on charcoal.

## **Prerequisites**

Basic knowledge in electrochemistry, kinetics, phase rule and adsorption theories.

### **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statements                                                        | Cognitive |
|--------|----------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to | Level     |
| CO1    | Recall the principles associated with various physical chemistry     | K1, K2    |
|        | experiments.                                                         |           |
| CO2    | Scientifically plan and perform conductometric, kinetics, rast and   | K3, K4    |
|        | adsorption experiments.                                              |           |
| CO3    | Calculate and process the experimentally measured values and         | K4, K5    |
|        | compare with graphical data.                                         |           |
| CO4    | Interpret the experimental data scientifically to improve students'  | K6        |
|        | efficiency for societal developments.                                |           |
| CO5    | Comprehend the kinetics and mechanism of substitution reactions      | K5        |
|        | in octahedral and square planar complexes.                           |           |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO2 | 3    | 3    | 3    | 3    | 3    | 2   | 3   | 3   | 3   | 2   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 2   | 3   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 2   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation.

- 1. Study the kinetics of acid hydrolysis of an ester to determine relative strength of acids.
- 2. Study the kinetics of hydrolysis of methyl/Ethyl acetate catalyzed by hydrochloric acid at different temperatures and to determine the thermodynamic parameters.
- 3. Study the kinetics of the reaction between acetone and iodine in acidic medium by half-life method and determine the order with respect to iodine and acetone.
- 4. Study of effect of salt (ionic strength) on the kinetics of reaction between potassium persulphate and potassium iodide (second order reaction).
- 5. Construct the phase diagram of simple eutectic system to determine composition of given mixture.
- 6. Determine the freezing point curve of two component system forming compound.
- 7. Determine cryoscopy constant of the given solvent by Rast method.
- 8. Determination of critical solution temperature of phenol-water system.
- 9. Study the effect of added electrolyte on the CST of phenol-water system.
- 10. Adsorption of oxalic acid on charcoal & determination of surface area (Freundlich isotherm only).
- 11. Determination of molecular weight of the polymer by viscometer method.

#### **Text Books**

- 1. Viswanathan B & Raghavan P.S, (2009). Practical Physical Chemistry, Viva Books, New Delhi.
- 2. Sundaram, Krishnan, Raghavan, (1996). Practical Chemistry (Part II), S. Viswanathan Co. Pvt.
- 3. Athawale and Parul Mathur, (2008). Experimental Physical Chemistry, New Age International (P) Ltd., New Delhi.
- 4. Lewers E.G, (2011) Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2<sup>nd</sup> Ed., Springer, New York.

#### Reference Books

- 1. Yadav J.B, (2001). Advanced Practical Physical Chemistry, Goel Publishing House.
- 2. Gurthu, J. N., & Kapoor R, (1987) Advanced Experimental Chemistry, S. Chand and Co.

# Web References

1. <a href="https://web.iitd.ac.in/~nkurur/2015-16/Isem/cmp511/lab\_handout\_new.pdf">https://web.iitd.ac.in/~nkurur/2015-16/Isem/cmp511/lab\_handout\_new.pdf</a>

## Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz and Seminar

# **Course Designer**

Dr. V. Sangu

| Semester II | Internal Marks: | 25              | External Marks: 75 |         |  |
|-------------|-----------------|-----------------|--------------------|---------|--|
| COURSE      | COURSE TITLE    | CATEGORY        | Hrs. / Week        | CREDITS |  |
| CODE        |                 |                 |                    |         |  |
| 23PCH2DSE2A | GREEN           | DISCIPLINE      | 6                  | 3       |  |
|             | CHEMISTRY       | SPECIFIC        |                    |         |  |
|             |                 | <b>ELECTIVE</b> |                    |         |  |

- ➤ To know about twelve principles of green chemistry, eco-friendly synthesis using microwave, ionic liquid and phase transfer catalyst.
- > To know the synthesis of organic compounds in greener way.
- > To gain knowledge about the use of environmentally friendly practices in reducing pollution.

## **Prerequisites**

Pollution, hazardous chemicals, toxic chemicals. catalyst, condensation, substitution, elimination, oxidation, reduction.

### **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                                          | Cognitive  |
|--------|-----------------------------------------------------------------------------------------------------------------------|------------|
| Number | On the successful completion of the course, students will be able to                                                  | Level      |
| CO1    | Describe the basics of green chemistry and organic synthesis.                                                         | <b>K</b> 1 |
| CO2    | Understand the importance of solvents, solid-state reactions, phase transfer catalyst and alternative energy sources. | K2         |
| CO3    | Apply green synthesis for synthesizing different organic compounds.                                                   | К3         |
| CO4    | Analyze the applications of green synthesis.                                                                          | K4         |
| CO5    | Create a new route for the synthesis of organic compounds.                                                            | K5         |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 2   | 2   | 2   | 2   | 2   |
| CO2 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HOURS | COs                                      | COGNITIVE             |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------|-----------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                          | LEVEL                 |
| I    | Introduction to Green Chemistry:  Introduction - need of green chemistry - twelve principles of green chemistry - planning a green synthesis - percentage atom utilization - evaluating the type of the reaction involved - selection of appropriate solvents - selection of starting materials - use of catalyst - international organizations promoting green chemistry.                                                                                                   | 18    | CO 1,<br>CO 2,<br>CO 3,<br>CO 4,<br>CO 5 | K1,K2,K3,<br>K4,K5    |
| II   | Organic Synthesis in Green Solvents:  Introduction, reactions in water - pericyclic reactions - Claisen rearrangement - Wittig-Horner reaction - Knoevenagel reactions - pinacol coupling - aldol condensation - benzoin condensation - Heck reaction - Wurtz reaction - Mannich reactions - organic synthesis in supercritical carbon dioxide - Diels-Alder reaction - Kolbe-Schmitt synthesis - reaction in ionic liquids - types - preparations - synthetic applications. | 18    | CO 1,<br>CO 2,<br>CO 3,<br>CO 4,<br>CO 5 | K1, K2, K3,<br>K4, K5 |
| III  | Organic synthesis using ionic liquids:  Introduction - types of ionic liquids - preparation of ionic liquids - applications - conversion of epoxides to halohydrins - thiocyanation of alkyl halides - Biginelli reaction - synthesis of homoallylic amines - cyclic carbonates - tonalid - traseolide - 1-acetyl naphthalene - biotransformation in ionic liquids - transesterification reactions - ammoniolysis of carboxylic acids - synthesis of Z-aspartame.            | 18    | CO 1,<br>CO 2,<br>CO 3<br>CO 4,<br>CO 5  | K1,K2,K3,<br>K4,K5    |

| IV | Alternate Energy Processes in Chemical                              | 18 | CO 1,         | K1,K2,K3, |
|----|---------------------------------------------------------------------|----|---------------|-----------|
|    | Synthesis:                                                          |    | CO 2,<br>CO 3 | K4,K5     |
|    | Microwave assisted organic synthesis -                              |    | CO 4,         |           |
|    | introduction - reactions in water - Hofmann                         |    | CO 5          |           |
|    | elimination - hydrolysis of benzyl chloride -                       |    |               |           |
|    | benzamide - coupling reactions - reactions in                       |    |               |           |
|    | organic solvents - Baylis - Hillman reaction -                      |    |               |           |
|    | esterification - Fries rearrangement - synthesis                    |    |               |           |
|    | of chalcones - ultrasound assisted organic                          |    |               |           |
|    | synthesis - introduction - homogenous                               |    |               |           |
|    | sonochemical reactions - Curtius rearrangement                      |    |               |           |
|    | - organometallic reactions - addition reactions -                   |    |               |           |
|    | heterogenous liquid - liquid reactions - solid-                     |    |               |           |
|    | liquid reactions.                                                   |    |               |           |
| V  | Phase Transfer Catalysts:                                           | 18 | CO 1,         | K1,K2,K3, |
|    | Introduction - mechanism of phase transfer                          |    | CO 2,<br>CO 3 | K4,K5     |
|    | reaction - types - advantages of phase transfer                     |    | CO 4,         |           |
|    | catalyst - applications of phase transfer catalyst                  |    | CO 5          |           |
|    | in organic synthesis - Darzen reaction - Michael                    |    |               |           |
|    | addition - Benzoin condensation - Wittig                            |    |               |           |
|    | reaction - oxidation reactions using                                |    |               |           |
|    | permanganate - chromate - hypochloride -                            |    |               |           |
|    | osmium tetraoxide - potassium ferricyanide -                        |    |               |           |
|    | peroxides - reduction reactions.                                    |    |               |           |
| VI | Self-Study for Enrichment:                                          | -  | CO 1,         | K1,K2     |
|    | (Not to be included for External Examination)                       |    | CO 2          |           |
|    | Properties of CO <sub>2</sub> - Phase diagram for CO <sub>2</sub> - |    |               |           |
|    | Uses of CO <sub>2</sub> in dry cleaning - instrumentation -         |    |               |           |
|    | types of sonochemical reaction in ultrasound                        |    |               |           |
|    | assisted green synthesis.                                           |    |               |           |

- 1. Kumar, V. (2007) An Introduction to Green Chemistry. Vishal Publishing Co. Jalandhar.
- 2. Ahluwalia. V. K. An Introduction to Green Chemistry. Narosa Publishing.
- 3. Anastas. P. T., and Warner, J. C. (2008). Green Chemistry. Oxford University Press.

### **Reference Books**

- 1. Ahluwalia. V. K., and Kidwai, M. (2007). New Trends in Chemistry. Anamaya Publishers. 2<sup>nd</sup> Edition.
- 2. Ahluwalia. V. K., and Varma, R. S. (2009). Green Solvents. Narosa Publishing. 1<sup>st</sup> Edition.

#### **Web References**

- 1. https://www.epa.gov/greenchemistry/basics-green-chemistry
- 2. <a href="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57FB7TrhBWRLnzkCfDs/?lang=en#:~:text="https://www.scielo.br/j/jbchs/a/Fzh57
- 3. https://www.organic-chemistry.org/topics/sonochemistry.shtm
- 4. <a href="https://epgp.inflibnet.ac.in/epgpdata/uploads/epgp\_content/chemistry/05.organic\_c">https://epgp.inflibnet.ac.in/epgpdata/uploads/epgp\_content/chemistry/05.organic\_c</a> hemistry-ii/21.phase\_transfer\_catalysis/et/5550\_et\_et.pdf
- 5. <a href="https://doras.dcu.ie/18202/1/Robert\_Ryan.pdf">https://doras.dcu.ie/18202/1/Robert\_Ryan.pdf</a>

### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

#### **Course Designer**

> Dr. S. Devi

| Semester II | Internal Marks: | 25         | Exter       | nal Marks: 75 |
|-------------|-----------------|------------|-------------|---------------|
| COURSE      | COURSE TITLE    | CATEGORY   | Hrs. / Week | CREDITS       |
| CODE        |                 |            |             |               |
| 23PCH2DSE2B | FORENSIC        | DISCIPLINE | 6           | 3             |
|             | CHEMISTRY       | SPECIFIC   |             |               |
|             |                 | ELECTIVE   |             |               |

- > To identify the physical and biological evidences.
- > To asset the various system of finger prints, forgery and natural origin.
- > To explore the processing and usage of explosives.

## **Prerequisites**

Terminologies, fingerprint, counterfitting, explosions.

### **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                           | Cognitive |
|--------|------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to   | Level     |
| CO1    | Identify the fundamental principles and functions of forensic science. | K1        |
| CO2    | Apply the principles of Spectroscopy in forensic science.              | K2        |
| CO3    | Analyze the techniques involved in the field of forensics.             | К3        |
| CO4    | Appraise the role of chemistry and other branches in forensics.        | K4        |
| CO5    | Feasibility and evaluation of explosives.                              | K5        |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO2 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 2   |
| CO3 | 2    | 3    | 3    | 3    | 3    | 2   | 3   | 3   | 3   | 2   |
| CO4 | 3    | 3    | 2    | 3    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO5 | 2    | 3    | 1    | 2    | 3    | 3   | 3   | 3   | 2   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation

| UNIT | CONTENT                                             | HOURS | COs            | COGNITIVE   |
|------|-----------------------------------------------------|-------|----------------|-------------|
|      |                                                     |       |                | LEVEL       |
| I    | Introduction to Forensic Science:                   | 18    | CO 1,          | K1,K2,K3,   |
|      | Functions of forensic science - historical aspects  |       | CO 2,<br>CO 3, | K4,K5       |
|      | of forensic science - definitions - concepts in     |       | CO 4,          |             |
|      | forensic science - scope of forensic science -      |       | CO 5           |             |
|      | need of forensic science - basic principles of      |       |                |             |
|      | forensic science - branches of forensic science -   |       |                |             |
|      | forensic science in international perspectives.     |       |                |             |
| II   | Chemistry of Forensic Investigations:               | 18    | CO 1,          | K1, K2, K3, |
|      | Definition of physical evidence - classification    |       | CO 2,<br>CO 3, | K4, K5      |
|      | of physical evidence - types of physical            |       | CO 4,          |             |
|      | evidences - glass - soil - physical properties -    |       | CO 5           |             |
|      | comparing glass fragments - collection -            |       |                |             |
|      | preservation of glass evidence - forensic           |       |                |             |
|      | characteristics of soil - collection - preservation |       |                |             |
|      | of soil evidence - fingerprints - fundamental       |       |                |             |
|      | principles of fingerprints - classification of      |       |                |             |
|      | fingerprints methods of detecting fingerprints -    |       |                |             |
|      | preservation of developed prints - document -       |       |                |             |
|      | voice examination - collection of handwriting       |       |                |             |
|      | exemplars - typescript comparisons - inks and       |       |                |             |
|      | papers - alterations - erasures - obliterations.    |       |                |             |
| III  | Technological Methods in Forensic Science:          | 18    | CO 1,          | K1,K2,K3,   |
|      | Chromatographic methods - fundamental -             |       | CO 2,<br>CO 3  | K4,K5       |
|      | principles - forensic applications of thin layer    |       | CO 4,          |             |
|      | chromatography - gas chromatography - liquid        |       | CO 5           |             |
|      | chromatography - spectroscopic methods -            |       |                |             |
|      | fundamental principles - forensic applications of   |       |                |             |
|      | ultraviolet - visible spectroscopy - infrared       |       |                |             |
|      | spectroscopy - atomic absorption spectroscopy -     |       |                |             |
|      | atomic emission spectroscopy - mass                 |       |                |             |

|    | spectroscopy - X-ray spectrometry -                                                                                                                                                                                                                                                                                                                                                                        |    |                                          |                    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------|--------------------|
|    | colorimetric analysis - Lambert-Beer law.                                                                                                                                                                                                                                                                                                                                                                  |    |                                          |                    |
| IV | Forgery and Counterfeiting:  Detecting forgery in bank cheques / drafts - educational records (mark lists, certificates) using UV-light - alloy analysis using AAS to detect counterfeit coins - checking silverline water mark in currency notes - jewellery - detection of gold - purity in 22 carat ornaments - detecting gold plated jewels - authenticity of diamonds - natural - synthetic - glassy. | 18 | CO 1,<br>CO 2,<br>CO 3,<br>CO 4,<br>CO 5 | K1,K2,K3,<br>K4,K5 |
| V  | Explosive and Explosion:  Introduction - classification of explosives - primary - secondary or high explosive - detonator pyro technique propellant IEDs - firing mechanism of IEDs - evaluation - assessment of explosion.                                                                                                                                                                                | 18 | CO 1,<br>CO 2,<br>CO 3,<br>CO 4,<br>CO 5 | K1,K2,K3,<br>K4,K5 |
| VI | Self-Study for Enrichment:  (Not to be included for External Examination)  Role of Forensic scientist in Post blast investigation - collection of samples - explosion effects - technical report frame work.                                                                                                                                                                                               | -  | CO 1,<br>CO 2,<br>CO 3<br>CO4            | K1,K2,K3,<br>K4    |

- 1. Eckert G. William, (1996), Introduction to forensic sciences, New york, washington, CRC, Press.
- 2. Kemp, W. (1991) Organic Spectroscopy, 3<sup>rd</sup> Edition, Macmillan, Hampshire.
- 3. Henry, C. (2006) Physical Evidence in Forensic Science.
- 4. Nanda, B.B. and Tewari, R.K. (2001) Forensic Science in India: A vision for the twenty first century Select Publisher, New Delhi.

#### **Reference Books**

- Tiwari, R. K., & Nanda, B. K. (2014) Forensic Science in India: A vision for the 21<sup>st</sup> Century.
- 2. Nordby, J. J., & James, S. H. (2019). An Introduction to Scientific and Investigative Techniques
- 3. James, S. H., & Nordby, J.J. (2003) Forensic Science: An introduction to scientific and investigative techniques CRC Press.

### **Web References**

- 1. <a href="https://ga01000549.schoolwires.net/cms/lib/GA01000549/Centricity/Domain/463/Fo">https://ga01000549.schoolwires.net/cms/lib/GA01000549/Centricity/Domain/463/Fo</a> rensics%20Chap%2010%20Forgery.pdf
- 2. <a href="http://dfs.nic.in/pdfs/EXPLOsive.pdf">http://dfs.nic.in/pdfs/EXPLOsive.pdf</a>
- 3. https://www.azolifesciences.com/article/Chromatography-in-Forensic-Science.aspx

## **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

## **Course Designer**

Dr. R. Subha

| Semester II | Internal Marks: 25 | Ex                     | External Marks: 75 |         |  |  |
|-------------|--------------------|------------------------|--------------------|---------|--|--|
| COURSE CODE | COURSE TITLE       | CATEGORY               | Hrs./              | CREDITS |  |  |
|             |                    |                        | Week               |         |  |  |
| 23PCH2DSE2C | ANALYTICAL         | DISCIPLINE             | 6                  | 3       |  |  |
|             | <b>CHEMISTRY</b>   | <b>ELECTIVE COURSE</b> |                    |         |  |  |
|             |                    |                        |                    |         |  |  |

- > To acquire the knowledge of basic principles and theory behind analytical techniques.
- > To know the separation of chemical compounds from mixtures.
- > To gain knowledge about the application of analytical techniques to analysis chemical compounds.

## **Prerequisites**

Adsorption, elution, solubility, electromagnetic radiation.

#### **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                           | Cognitive |
|--------|------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to   | Level     |
| CO1    | Describe the basic concepts of data analysis, chromatography,          | K1        |
|        | electroanalytical methods, thermal methods and flame photometry.       |           |
| CO2    | Understand the theory of various analytical techniques.                | K2        |
| CO3    | Illustrates the instrumentation, experimental and purification details | К3        |
|        | of analytical techniques.                                              |           |
| CO4    | Compare various analytical techniques based on their principle         | K4        |
|        | and applications.                                                      |           |
| CO5    | Evaluate the applications of data analysis,                            | K5        |
|        | chromatography, electroanalytical methods, thermal methods and flame   |           |
|        | photometry.                                                            |           |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO2 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO3 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 3   | 2   | 2   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 3   | 2   | 2   | 2   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation.

| UNIT | CONTENT                                                  | HOURS | COs  | COGNITIVE   |
|------|----------------------------------------------------------|-------|------|-------------|
|      |                                                          |       |      | LEVEL       |
| I    | <b>Introduction To Analytical Chemistry:</b>             | 18    | CO1, | K1, K2, K3, |
|      | Analytical chemistry - role of analytical chemistry -    |       | CO2, | K4, K5      |
|      | classification - advantages - limitations of             |       | CO3, |             |
|      | analytical methods - safety in laboratory - errors -     |       | CO4, |             |
|      | types - definitions of relative error - absolute error - |       | CO4  |             |
|      | significant figures - mean - median - standard           |       |      |             |
|      | deviation - sensitivity - detection limits - precision   |       |      |             |
|      | - accuracy - confidence limit - test of significance -   |       |      |             |
|      | Q - test, F - test - T - test - minimization of errors.  |       |      |             |
| II   | Chromatography I:                                        | 18    | CO1, | K1, K2, K3, |
|      | Chromatography - introduction - definition - types       |       | CO2, | K4, K5      |
|      | - principles - theories - experimental details -         |       | CO3, |             |
|      | advantages - limitations - applications of paper         |       | CO4, |             |
|      | chromatography - thin layer chromatography -             |       | CO5  |             |
|      | liquid - liquid partition chromatography -               |       |      |             |
|      | column chromatography.                                   |       |      |             |
| III  | Chromatography II:                                       | 18    | CO1, | K1, K2, K3, |
|      | Introduction, principle, instrumentation,                |       | CO2, | K4, K5      |
|      | advantages, limitations and applications of gas          |       | CO3, |             |
|      | chromatography, gel permeation chromatography,           |       | CO4, |             |
|      | silver impregnated ion exchange chromatography.          |       | CO5  |             |
|      | Principle, instrumentation and applications of high      |       |      |             |
|      | performance liquid chromatography, gas                   |       |      |             |
|      | chromatography - mass spectroscopy.                      |       |      |             |
| IV   | Purification techniques:                                 | 18    | CO1, | K1, K2, K3, |
|      | Purification of solid organic compounds -                |       | CO2, | K4, K5      |
|      | recrystallization - use of miscible solvents - use of    |       | CO3, |             |
|      | drying agents - properties - sublimation -               |       | CO4, |             |
|      | experimental techniques of distillation - fractional     |       | CO5  |             |
|      | distillation - distillation under reduced pressure -     |       |      |             |

|    | extraction - use of immiscible solvents - solvent  |    |      |             |
|----|----------------------------------------------------|----|------|-------------|
|    | extraction - chemical methods of purification.     |    |      |             |
| V  | Thermal Methods and Flame Photometry:              | 18 | CO1, | K1, K2, K3, |
|    | Thermogravimetry - Introduction - principle -      |    | CO2, | K4, K5      |
|    | instrumentation - derivative thermogravimetry      |    | CO3, |             |
|    | analysis - factors affecting TGA - applications of |    | CO4, |             |
|    | TGA for quantitative analysis of calcium carbonate |    | CO5  |             |
|    | - copper sulphate pentahydrate - calcium oxalate   |    |      |             |
|    | hydrate - differential thermal analysis -          |    |      |             |
|    | Introduction - principle of working - factors      |    |      |             |
|    | affecting DTA - applications - flame photometry -  |    |      |             |
|    | introduction - principles - instrumentation -      |    |      |             |
|    | advantages - limitations - applications.           |    |      |             |
| VI | Self-Study for Enrichment                          | -  | CO1, | K1, K2, K3  |
|    | (Not to be included for External Examination)      |    | CO2, |             |
|    | Methods of expressing accuracy and precision -     |    | CO3  |             |
|    | fractional distillation - column chromatography -  |    |      |             |
|    | chemical methods of purification - gas             |    |      |             |
|    | chromatography - applications of TGA.              |    |      |             |

- 1. Skoog. D. A., West. D. M., & Holler. H. J. (1992). Fundamentals of Analytical Chemistry.
- 2. Chatwal, G. R., & Anand. S. (1999). Instrumental Method of Analysis. Himalya Publishing House, 13<sup>th</sup> reprint.
- 3. Srivastava. A. K., & Jain, P. C. Instrumental Approach to Chemical Analysis.
- 4. Allen J. Bard & Larry R. Faulkner. Electrochemical Methods: Fundamentals and Applications.

### **Reference Books**

- 1. Skoog, D. A., Holler, F. J., & Crouch, R. (2006). Principles of Instrumental analysis. 6<sup>th</sup> Edition.
- 2. Vogel's. Textbook of Quantitative Chemical Analysis, Pearson Education. 6<sup>th</sup> Edition.

3. Kaur, H. Instrumental Methods of Chemical Analysis. Pragati Edition.

## **Web References**

- 1. <a href="https://www.simplilearn.com/data-analysis-methods-process-types-article">https://www.simplilearn.com/data-analysis-methods-process-types-article</a>
- 2. <a href="https://www.britannica.com/science/chromatography">https://www.britannica.com/science/chromatography</a>
- 3. <a href="https://acikders.ankara.edu.tr/pluginfile.php/75185/mod\_resource/content/0/Distillation.pdf">https://acikders.ankara.edu.tr/pluginfile.php/75185/mod\_resource/content/0/Distillation.pdf</a>
- 4. <a href="https://www.med.upenn.edu/robertsonlab/assets/user-content/documents/types-of-chromatography.pdf">https://www.med.upenn.edu/robertsonlab/assets/user-content/documents/types-of-chromatography.pdf</a>
- 5. <a href="https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/621%20Unit%202.">https://soe.unipune.ac.in/studymaterial/ashwiniWadegaonkarSelf/621%20Unit%202.</a>
  <a href="pdf">pdf</a>

## **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

## **Course Designer**

- 1. Dr. G. Sivasankari
- 2. Dr. S. Devi

| Semester III | Internal Marks:25  | External Marks:75 |              |         |
|--------------|--------------------|-------------------|--------------|---------|
| COURSE CODE  | COURSE TITLE       | CATEGORY          | Hrs<br>/Week | CREDITS |
| 23PCH3CC5    | PHYSICAL CHEMISTRY | CORE              | 6            | 5       |
|              | - II               | <b>COURSE</b>     |              |         |

- > To understand the significance of electrochemistry and kinetics of reactions in solution.
- > To predict the vibrational modes, hybridization using he concepts of group theory.
- ➤ To apply the approximation methods to hydrogen and polyelectronic systems.
- > To determine thermodynamic properties of diatomic molecules using partition function.

## **Prerequisites**

Electrolytes, electrode potential, sterling approximation, thermodynamic properties, Kronecker delta.

Course Outcomes and Cognitive Level Mapping

| CO     | CO Statement                                                                                                                                                                                                                                                                                                 | Cognitive |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                                                                                                                                                                                                                                         | Level     |
| CO1    | Understand theories of electro-kinetics, over voltage, factors affecting reactions in solution, partition function, group theoretical selection rule molecular vibration, electronic transitions.                                                                                                            | K1, K2    |
| CO2    | To compare and correlate variation and Perturbation method, theories of electrolytic double layers. Derive partition function for gas molecules.                                                                                                                                                             | К3        |
| CO3    | Explain the principle electro-capillary phenomenon, electric double layers, factors affecting reactions in solution, IR/Raman active modes of vibrations, approximation method and VB theory. Ortho para ratio of hydrogen.                                                                                  | K3, K4    |
| CO4    | Discriminate various concepts of electro kinetic phenomenon, theories for construction of wavefunctions quantum mechanical. VB and perturbation theorem to construct trial wavefunction for hydrogen like molecules                                                                                          | K5        |
| CO5    | To determine activity, activity co-efficient, Butler volmer and Tafel equations to predict over voltage. Using find hybridization and IR/Raman active modes of vibration. Deduce thermodynamic properties using partition function. Develop slater determinant for find bonder order for pi electron system. | K5, K6    |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 2    | 3   | 3   | 3   | 1   | 3   |
| CO2 | 3    | 2    | 2    | 3    | 2    | 2   | 3   | 3   | 3   | 2   |
| CO3 | 3    | 3    | 3    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 3    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1"-Slight (Low) Correlation

<sup>&</sup>quot;2"-Moderate (Medium) Correlation

<sup>&</sup>quot;3"-Substantial (High) Correlation

<sup>&</sup>quot;-"indicates there is no correlation

# Syllabus

| UNIT | CONTENT                                                                        | HOURS | COs        | CONGNITIVE<br>LEVEL |
|------|--------------------------------------------------------------------------------|-------|------------|---------------------|
| I    | Electrochemistry:                                                              | 18    | CO1        | K1                  |
|      | Theory of electrolytic conductance – ionic activity                            |       | CO2<br>CO3 | K2<br>K3            |
|      | and activity coefficient. – Ionic strength. Debye –                            |       | CO3        | K3<br>K4            |
|      | Huckel theory – Limiting Law –Molar conductivity –                             |       | CO5        | K5                  |
|      | Debye – Huckel – Onsager equation. Introduction to                             |       |            |                     |
|      | electrical double layer -Electrocapillary phenomenon -                         |       |            |                     |
|      | Lipmann's equation, interpretation and electro kinetic                         |       |            |                     |
|      | phenomenon. Theories of double layer. Helmholtz –                              |       |            |                     |
|      | Perrin, Gouy chapman model – Stern theories. Over                              |       |            |                     |
|      | voltage – Hydrogen overvoltage – Butler -Volmer                                |       |            |                     |
|      | equation, Tafel equation. Corrosion and passivation -                          |       |            |                     |
|      | Pourbaix diagram iron in water and Evans diagram for                           |       |            |                     |
|      | Zinc in HCl.                                                                   |       |            |                     |
| II   | Kinetics of Reaction in solutions and chain                                    | 18    | CO1        | K1                  |
|      | reactions:                                                                     |       | CO2<br>CO3 | K2<br>K3            |
|      | Reactions in solution: Comparison between gas-phase                            |       | CO4        | K4                  |
|      | - solution in reactions-effect of ionizing power of                            |       | CO5        | K5                  |
|      | solvent (Grunwald Weinstein equation) - primary salt                           |       |            |                     |
|      | effect (Bronsted-Bjerrum equation) - Significance of                           |       |            |                     |
|      | volume and entropy of activations. Chain reactions-                            |       |            |                     |
|      | characteristics – derivation for rate constant                                 |       |            |                     |
|      | expression for decomposition of acetaldehyde (Rice-                            |       |            |                     |
|      | Herzfeld scheme) - photochemical reaction of H <sub>2</sub> -Br <sub>2</sub> . |       |            |                     |

| Partition functions – definitions and separations, evaluation of translational- rotational, vibrational and electronic partition functions for monoatomic and diatomic gases molecules. Calculation of thermodynamic functions and equilibrium constant in terms of partition functions- entropy of monoatomic gas – Sacker-Tetrode equation- Quantum theory of heat capacities of solids. Statistical basis of entropy of H2 gas- ortho and para nuclear states- calculation of residual entropy of H2 at 0 K in terms of ortho-para ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of H2O and NH3. Prediction of orbitals and hybridization for the molecules BF3 and CH4. Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. Salater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and | III | Partition functions:                                                          | 18 | CO1 | K1       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------|----|-----|----------|
| evaluation of translational- rotational, vibrational and electronic partition functions for monoatomic and diatomic gases molecules. Calculation of thermodynamic functions and equilibrium constant in terms of partition functions- entropy of monoatomic gas — Sacker-Tetrode equation— Quantum theory of heat capacities of solids. Statistical basis of entropy of H2 gas— ortho and para nuclear states— calculation of residual entropy of H2 at 0 K in terms of ortho-para ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry— selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of H2O and NH3. Prediction of orbitals and hybridization for the molecules BF3 and CH4.  Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods— the perturbation theory (first order only)— application of the perturbation method— application of variation method to Hydrogen atom. Variation method— application of variation method to Hydrogen molecule— Coloumbic integral— exchange integral and overlap integral. Huckel method to Ethylene and                                                                             |     | Partition functions – definitions and separations,                            |    | CO2 | K2<br>K3 |
| electronic partition functions for monoatomic and diatomic gases molecules. Calculation of thermodynamic functions and equilibrium constant in terms of partition functions- entropy of monoatomic gas – Sacker-Tetrode equation- Quantum theory of heat capacity-Derivation of Debye's for heat capacities of solids. Statistical basis of entropy of H2 gas- ortho and para nuclear states- calculation of residual entropy of H2 at 0 K in terms of ortho-para ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of H2O and NH3. Prediction of orbitals and hybridization for the molecules BF3 and CH4. Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                      |     | evaluation of translational- rotational, vibrational and                      |    | CO4 | K4       |
| thermodynamic functions and equilibrium constant in terms of partition functions- entropy of monoatomic gas — Sacker-Tetrode equation- Quantum theory of heat capacity-Derivation of Debye's for heat capacities of solids. Statistical basis of entropy of H2 gas- ortho and para nuclear states- calculation of residual entropy of H2 at 0 K in terms of ortho-para ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of H2O and NH3. Prediction of orbitals and hybridization for the molecules BF3 and CH4. Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods — the perturbation theory (first order only) — application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. Slater determinants —VB treatment to hydrogen molecule — Coloumbic integral — exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                 |     | electronic partition functions for monoatomic and                             |    | CO5 | K5       |
| terms of partition functions- entropy of monoatomic gas — Sacker-Tetrode equation- Quantum theory of heat capacity-Derivation of Debye's for heat capacities of solids. Statistical basis of entropy of H2 gas- ortho and para nuclear states- calculation of residual entropy of H2 at 0 K in terms of ortho-para ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of H2O and NH3. Prediction of orbitals and hybridization for the molecules BF3 and CH4. Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods — the perturbation theory (first order only) — application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants —VB treatment to hydrogen molecule — Coloumbic integral — exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                     |     | diatomic gases molecules. Calculation of                                      |    |     |          |
| gas – Sacker-Tetrode equation- Quantum theory of heat capacities of solids. Statistical basis of entropy of $H_2$ gas- ortho and para nuclear states- calculation of residual entropy of $H_2$ at 0 K in terms of ortho-para ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of $H_2$ O and $NH_3$ . Prediction of orbitals and hybridization for the molecules $BF_3$ and $CH_4$ . Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. Slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                            |     | thermodynamic functions and equilibrium constant in                           |    |     |          |
| heat capacity-Derivation of Debye's for heat capacities of solids. Statistical basis of entropy of $H_2$ gas- ortho and para nuclear states- calculation of residual entropy of $H_2$ at 0 K in terms of ortho-para ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of $H_2O$ and $NH_3$ . Prediction of orbitals and hybridization for the molecules $BF_3$ and $CH_4$ . Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. Slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                      |     | terms of partition functions- entropy of monoatomic                           |    |     |          |
| capacities of solids. Statistical basis of entropy of $H_2$ gas- ortho and para nuclear states- calculation of residual entropy of $H_2$ at 0 K in terms of ortho-para ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of $H_2O$ and $NH_3$ . Prediction of orbitals and hybridization for the molecules $BF_3$ and $CH_4$ . Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. Slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                   |     | gas - Sacker-Tetrode equation- Quantum theory of                              |    |     |          |
| gas- ortho and para nuclear states- calculation of residual entropy of $H_2$ at 0 K in terms of ortho-para ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of $H_2O$ and $NH_3$ . Prediction of orbitals and hybridization for the molecules $BF_3$ and $CH_4$ . Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                               |     | heat capacity-Derivation of Debye's for heat                                  |    |     |          |
| residual entropy of $H_2$ at 0 K in terms of ortho-para ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of $H_2O$ and $NH_3$ . Prediction of orbitals and hybridization for the molecules $BF_3$ and $CH_4$ . Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method – application of variation method to Hydrogen atom. Variation method – application of variation method to Hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | capacities of solids. Statistical basis of entropy of $H_2$                   |    |     |          |
| ratio of hydrogen molecule.  IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of H <sub>2</sub> O and NH <sub>3</sub> . Prediction of orbitals and hybridization for the molecules BF <sub>3</sub> and CH <sub>4</sub> . Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method – application of variation method to Hydrogen atom. Variation method – application of variation method to Hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | gas- ortho and para nuclear states- calculation of                            |    |     |          |
| IV Applications of group theory:  Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of H <sub>2</sub> O and NH <sub>3</sub> . Prediction of orbitals and hybridization for the molecules BF <sub>3</sub> and CH <sub>4</sub> .  Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. Slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | residual entropy of $H_2$ at 0 K in terms of ortho-para                       |    |     |          |
| Molecular symmetry - selection rule for IR/Raman and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of H <sub>2</sub> O and NH <sub>3</sub> . Prediction of orbitals and hybridization for the molecules BF <sub>3</sub> and CH <sub>4</sub> . Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | ratio of hydrogen molecule.                                                   |    |     |          |
| and electronic spectra. Application of group theory to predict the selection rules for IR / Raman activity of normal modes of H <sub>2</sub> O and NH <sub>3</sub> . Prediction of orbitals and hybridization for the molecules BF <sub>3</sub> and CH <sub>4</sub> . Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method – application of variation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IV  | Applications of group theory:                                                 | 18 |     |          |
| predict the selection rules for IR / Raman activity of normal modes of H <sub>2</sub> O and NH <sub>3</sub> . Prediction of orbitals and hybridization for the molecules BF <sub>3</sub> and CH <sub>4</sub> .  Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | Molecular symmetry - selection rule for IR/Raman                              |    |     |          |
| normal modes of H <sub>2</sub> O and NH <sub>3</sub> . Prediction of orbitals and hybridization for the molecules BF <sub>3</sub> and CH <sub>4</sub> .  Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method – application method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | and electronic spectra. Application of group theory to                        |    | CO4 |          |
| and hybridization for the molecules BF <sub>3</sub> and CH <sub>4</sub> .  Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | predict the selection rules for IR / Raman activity of                        |    | CO5 | K5       |
| Applications of group theory to electronic spectra of formaldehyde and ethylene.  V Applications of quantum theory: Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. Slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | normal modes of H <sub>2</sub> O and NH <sub>3</sub> . Prediction of orbitals |    |     |          |
| formaldehyde and ethylene.  V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | and hybridization for the molecules BF <sub>3</sub> and CH <sub>4</sub> .     |    |     |          |
| V Applications of quantum theory:  Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Applications of group theory to electronic spectra of                         |    |     |          |
| Need for approximation methods – the perturbation theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | formaldehyde and ethylene.                                                    |    |     |          |
| theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V   | Applications of quantum theory:                                               | 18 |     |          |
| theory (first order only) – application of the perturbation method to Hydrogen atom. Variation method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | Need for approximation methods – the perturbation                             |    |     |          |
| method – application of variation method to Hydrogen atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | theory (first order only) - application of the                                |    | CO4 |          |
| atom. slater determinants –VB treatment to hydrogen molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | perturbation method to Hydrogen atom. Variation                               |    | CO5 | K5       |
| molecule – Coloumbic integral – exchange integral and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | method – application of variation method to Hydrogen                          |    |     |          |
| and overlap integral. Huckel method to Ethylene and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | atom. slater determinants –VB treatment to hydrogen                           |    |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | molecule - Coloumbic integral - exchange integral                             |    |     |          |
| hat disperse de determine hand and an and about desired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | and overlap integral. Huckel method to Ethylene and                           |    |     |          |
| butagiene to determine bond order and charge density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | butadiene to determine bond order and charge density                          |    |     |          |
| on each carbon atom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | on each carbon atom.                                                          |    |     |          |
| Self-Study for Enrichment: CO1 K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Self-Study for Enrichment:                                                    |    |     |          |
| (Not to be included for External Examination)  CO2 K2 CO3 K3 CO4 K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VI  | (Not to be included for External Examination)                                 |    | CO3 | К3       |

| Conductivity electrolytes, electrode potential, ionic | CO5 | K5 |
|-------------------------------------------------------|-----|----|
| strength, solvation, modes of vibration, types of     |     |    |
| electronic transition in molecules. Orbital           |     |    |
| overlapping, hybridized molecular orbitals, wave      |     |    |
| function, Kronecker delta.                            |     |    |

- 1. Samuel Glasstone. (2006). An Introduction to Electrochemistry, New Delhi, East-West Press (Pvt.) Ltd.
- 2. Laidler, K. J. (2003). Chemical Kinetics (3<sup>rd</sup> ed), India, Pearson Education.
- 3. Gupta, M. C. (2003). Statistical Thermodynamics (2<sup>nd</sup> Ed), New Delhi, New Age International Publishers.
- 4. Albert Cotton, F. (2008). Chemical Applications of Group theory (3<sup>rd</sup> Ed), New Delhi, Willy India Pvt. Ltd publisher.
- 5. Chandra, A. K. (1994). Introduction to Quantum Chemistry, (4<sup>th</sup> Ed.), India, Tata-McGraw-Hill.

### Reference Books

- 1. Laidler, K. J. (1987). Chemical Kinetics (3<sup>rd</sup> ed), Harper and Row publications, p.359-360 ISBN 0-06-043862-2.
- 2. Espenson, J. H. (2002). Chemical Kinetics and Reaction Mechanisms (2<sup>nd</sup> ed), McGraw-Hill, p.264-6 ISBN 0-07-288362-6.
- 3. Prasad, R. K. (2006). Quantum Chemistry (3<sup>rd</sup> ed), New Delhi, New Age International Publishers.
- 4. Prasad, R.K. (1992). Quantum Chemistry, Wiley Easter.
- 5. Gurdeep Raj. (2016). Advanced Physical Chemistry, (4<sup>th</sup> Ed), Meerut, Krishna prakashan media.
- 6. Puri, Sharma and Pathania. (2018). Principles of Physical Chemistry (47<sup>th</sup> Ed), Jalandhar, Vishal publication.
- 7. Raman, K. V. (1990), Group theory and its applications to chemistry (3<sup>rd</sup> Ed), McGraw-Hill Education.
- 8. Bhattacharya, P. K. (2014). Group Theory and its Chemical Application, New Delhi, Himalaya Publishing House.
- 9. McQuarrie, D. A. (2015). Quantum Chemistry, India, Viva Books.
- 10. Rajaram and Kuriacose, J. C. (1986). Thermodynamics for Students of Chemistry

(second Ed), Jalandhar, S. L. N. Chand and Co.

## Web References

- 1. https://nptel.ac.in/courses/115101107
- 2. <a href="https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA">https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=13G8VouhmrFfuhs6rkiyTA</a>
- 3. <a href="https://www.chem.tamu.edu/rgroup/hughbanks/courses/673/lecturenotes/lecturenotes.">https://www.chem.tamu.edu/rgroup/hughbanks/courses/673/lecturenotes/lecturenotes.</a>
  <a href="https://www.kpgcollege.org/admin/upload/1586604901.pdf">https://www.kpgcollege.org/admin/upload/1586604901.pdf</a>
- 4. <a href="https://youtu.be/ALwziZSRiqM">https://youtu.be/ALwziZSRiqM</a>
- 5. <a href="https://youtu.be/ACY-Wbudg0o">https://youtu.be/ACY-Wbudg0o</a>
- 6. <a href="https://youtu.be/yO8v0nszUz8">https://youtu.be/yO8v0nszUz8</a>
- 7. https://nptel.ac.in/courses/104101124
- 8. https://ipc.iisc.ac.in/~kls/teaching.html
- 9. https://www.pdfdrive.com/modern-electrochemistry-e34333229.

## **Pedagogy**

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz and Seminar

## **Course Designer**

Dr. V. Sangu

| Semester III | Internal Marks: 25     |                | External Marks:75 |         |  |
|--------------|------------------------|----------------|-------------------|---------|--|
| COURSE CODE  | COURSE<br>TITLE        | CATEGORY       | Hrs / Week        | CREDITS |  |
| 23РСН3СС6    | INORGANIC<br>CHEMISTRY | CORE<br>COURSE | 6                 | 5       |  |

- To articulate the learning of coordination chemistry in Inorganic chemistry.
- This subject will also create foundation to learn inorganic photochemistry.

## **Course Outcomes**

# **Course Outcomes and Cognitive Level Mapping**

| CO     | CO Statement                                                         | Cognitive |
|--------|----------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to | Level     |
| CO1    | Identify the chemistry of coordination compound.                     | K1        |
| CO2    | Apply the basic concepts co-ordination compounds.                    | K2        |
| CO3    | Analyze the mechanism of coordination reactions.                     | К3        |
| CO4    | Compare the reaction standards of organometallic compounds.          | К3        |
| CO5    | Understand the chemistry of photochemical reactions                  | K4        |

| COs | PSO1 | PSO <sub>2</sub> | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------------------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3                | 2    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2                | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 2    | 3                | 2    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3                | 2    | 2    | 3    | 2   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3                | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation, "2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation "-" Indicates there is no Correlation.

# Syllabus

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HOURS | COs                                 | COGNITIVE<br>LEVEL             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|--------------------------------|
| I    | Principles of coordination chemistry:  Studies of coordination compounds in solution — detection of complex formation in solution —stability constants — stepwise and overall formation constants.  Simple methods (potentiometric, pH metric and photometric methods of determination). Factors affecting stability — statistical and chelate effects — forced configurations.                                                                                                                                    | 17    | CO1,<br>CO2,<br>CO3,<br>CO4         | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| II   | Theories of Metal - Ligand bond:  VB theory and its limitations – Crystal field theory - splitting of d-orbitals under various geometries – Factors affecting splitting – CFSE and evidences for CFSE (Structural and thermodynamic effects) – Spectrochemical series – Jahn-Teller distortion – Spectral and magnetic properties of complexes – Site preferences - Limitations of CFT – Ligand field theory – MO theory – sigma – and pi-bonding in complexes – Nephelauxetic effect – The angular overlap model. | 20    | CO1,<br>CO2,<br>CO3,<br>CO4         | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| III  | Reaction mechanism in coordination complexes:  Kinetics and mechanism of reactions in solution — labile and inert complexes — ligand displacement reactions in octahedral and square planar complexes — acid hydrolysis, base hydrolysis and anation reactions. Trans effect — theory and applications — electron transfer reactions — electron exchange reactions — complementary and non-complementary                                                                                                           | 21    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |

|          |                                                         |    | 1            |            |
|----------|---------------------------------------------------------|----|--------------|------------|
|          | types – inner sphere and outer sphere processes –       |    |              |            |
|          | application of electron transfer reactions in inorganic |    |              |            |
|          | complexes – isomerisation and racemisation reactions    |    |              |            |
|          | of complexes. Molecular rearrangements of four- and     |    |              |            |
|          | six-coordinate complexes – interconversion of           |    |              |            |
|          | stereoisomers – reactions of coordinated ligands.       |    |              |            |
| IV       | CATALYTIC REACTIONS OF                                  | 16 | CO1,<br>CO2, | K1,<br>K2, |
|          | ORGANOMETALLIC COMPOUNDS:                               |    | CO3,         | K3,        |
|          | Reactions and Catalysis by Organometallics              |    | CO4,<br>CO5  | K4,<br>K5  |
|          | Organometallic reactions - ligand association and       |    |              | II.        |
|          | dissociation - oxidative addition and reductive         |    |              |            |
|          | elimination – insertion reactions. Reactions of         |    |              |            |
|          | coordinated ligands in organometallics -                |    |              |            |
|          | hydrogenation, hydroformylation, epoxidation,           |    |              |            |
|          | metathesis. Polymerization of olefins, olefin           |    |              |            |
|          | oxidation (Wacker process) and carbonylation of         |    |              |            |
|          | methanol.                                               |    |              |            |
| V        | Inorganic photochemistry:                               | 16 | CO1,         | K1,        |
|          | Fundamental concepts - electronic transitions in metal  |    | CO2,<br>CO3, | K2,<br>K3, |
|          | complexes, metal - centered and charge transfer         |    | CO4,         | K4,        |
|          | transitions - various photophysical and photochemical   |    | CO5          | K5         |
|          | processes of coordination compounds. Unimolecular       |    |              |            |
|          | charge transfer photochemistry of cobalt (III)          |    |              |            |
|          | complexes mechanism of CTTM, photoreduction -           |    |              |            |
|          | ligand field photochemistry of chromium(III)            |    |              |            |
|          | complexes - Adamson's rules, photoactive excited        |    |              |            |
|          | states, V-C model photophysics and photochemistry       |    |              |            |
|          | of ruthenium – polypyridine complexes, emission and     |    |              |            |
|          | redox properties.                                       |    |              |            |
| <u> </u> | <u> </u>                                                |    | <u> </u>     |            |

|    | Self-Study for Enrichment:                            |  | CO1, | K1, |
|----|-------------------------------------------------------|--|------|-----|
| VI | (Not to be included for External Examination)         |  | CO2  | K2, |
|    |                                                       |  | CO3  | K3, |
|    | Importance and applications of coordination           |  |      | K4  |
|    | compound. Photochemistry of organometallic            |  |      |     |
|    | compounds – metal carbonyl compounds –                |  |      |     |
|    | compounds with metal-metal bonding - Reinecke's       |  |      |     |
|    | salt chemical actinometer. Template effect and its    |  |      |     |
|    | applications for the synthesis of macrocyclic ligands |  |      |     |
|    | – unique properties.                                  |  |      |     |

### **Text Books:**

- 1. Earnshaw, A., and Greenwood. N. (1997) Chemistry of the elements, Butterworth-Heinemann.
- 2. Shriver, D. F., Kaesz, H. D., and Adams, R. D. (1989). The Chemistry of Metal Cluster Complexes, VCH, Weinheim.
- 3. Puri, B. R., Sharma, L. R., Day, M. C., and Selbin, J. (2012) Theoretical Inorganic Chemistry, Sisler, Literary Licensing (LLC), Montana.
- Cotton, F. A., and Wilkinson, G.Murillo C. A. and Bochmann, M. (1999). Advanced InorganicChemistry, 6<sup>th</sup> Ed., A Wiley -Interscience Publications, JohnWiley and Sons, USA.
- 5. Huheey, J. E. (2006). Inorganic Chemistry, 4<sup>th</sup> Ed, Harper and Row publisher, Singapore.
- Adamson, A. W. (1975). Concept of Inorganic Photochemistry, John Wiley and Sons, New York.
- 7. Kettle, S. F. A. (1996). Physical Inorganic Chemistry A Coordination Chemistry Approach, Academic Publishers, Oxford University Press, New York.
- 8. Adamson, W. and Fleischaue, P. D. (1984). Concepts of Inorganic photochemistry, R. E. Krieger Pubs, Florida.

#### **Reference Books:**

- Lee, J. D. (2000). Concise InorganicChemistry, 20<sup>th</sup> revised edition, SultanChand & Sons.
- 2. Gurdeep Raj, J. (2000). Advanced Inorganic Chemistry, 20<sup>th</sup> revised edition, Sultan Chand &Sons.
- 3. Ferraudi, J. (1998). Elements of Inorganic Photochemistry, Wiley, New York.

- 4. Basolo and Pearson R.G. (1967). Mechanism of Inorganic Reactions, 2<sup>nd</sup> Edition., John Wiley, New York.
- Sharma, R. K. (2007). Inorganic Reactions Mechanism, Discovery Publishing House, New Delhi.

### Web References

- 1. https://www2.chemistry.msu.edu/courses/cem151/chap24lect\_2019.pdf
- 2. <a href="http://www.vpscience.org/materials/Unit%203%20B%20Coordination%20chemistry">http://www.vpscience.org/materials/Unit%203%20B%20Coordination%20chemistry</a>
  <a href="mailto:pdf">.pdf</a>
- 3. https://www.usb.ac.ir/FileStaff/2896\_2019-4-18-0-9-32.pdf
- 4. <a href="https://www.uou.ac.in/sites/default/files/slm/BSCCH-101.pdf">https://www.uou.ac.in/sites/default/files/slm/BSCCH-101.pdf</a>
- 5. <a href="https://www.chem.uci.edu/~lawm/11-16.pdf">https://www.chem.uci.edu/~lawm/11-16.pdf</a>
- 6. https://www.usb.ac.ir/FileStaff/5269\_2018-9-18-10-21-39.pdf

## **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

## **Course Designer**

Dr. K. Shenbagam

| Semester III | Internal Marks:40  | Marks:60  |      |         |
|--------------|--------------------|-----------|------|---------|
| COURSE       | COURSE             | CATEGORY  | Hrs/ | CREDITS |
| CODE         | TITLE              |           | Week |         |
|              | INORGANIC          | CORE      | 6    | 4       |
| 23PCH3CC4P   | CHEMISTRY – II (P) | PRACTICAL |      |         |

- ➤ To gain the knowledge on the molecular structure and of chemical and biological properties of biomolecules such as amino acids, proteins, lipids and nucleic acids.
- ➤ To know the mechanisms of enzymatic reactions, the various role of organic molecules in living systems.
- > To learn the concepts of bio energies.

# **Course Outcomes**

# **Course Outcomes and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course students will be able to |    |  |  |  |  |  |
|--------------|----------------------------------------------------------------------------------|----|--|--|--|--|--|
| CO1          | Apply the principles for the separation of cations.                              | К3 |  |  |  |  |  |
| CO2          | Prepare the inorganic complexes.                                                 | К3 |  |  |  |  |  |
| CO3          | Estimation of metal ions by volumetric and gravimetric methods.                  | К3 |  |  |  |  |  |
| CO4          | Characterization of metal ions.                                                  | K4 |  |  |  |  |  |
| CO5          | Identification and recrystallisation of complexes.                               | K5 |  |  |  |  |  |

| CO  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 2    | 2    | 3    | 2    | 3   | 3   | 3   | 2   | 2   |
| CO2 | 2    | 3    | 2    | 2    | 1    | 3   | 2   | 3   | 3   | 3   |
| CO3 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 3   | 2   | 2   |
| CO4 | 3    | 2    | 2    | 2    | 3    | 3   | 3   | 3   | 2   | 2   |
| CO5 | 3    | 2    | 2    | 3    | 2    | 3   | 3   | 3   | 2   | 2   |

<sup>&</sup>quot;1" – Slight or No Correlation

<sup>&</sup>quot;2" -(Moderate(/Medium) correlation

<sup>&</sup>quot;3" - Substantial(High) Correlation

<sup>&</sup>quot;-" - indicates No Correlation

## **Syllabus**

### I. TITRIMETRY AND GRAVIMETRY

A mixture of solution(s) should be given for estimation

- 1. Cu (V) and Ni (G)
- 2. Cu (V) and Zn (G)
- 3. Fe (V) and Zn (G)
- 4. Fe (V) and Ni (G)
- 5. Zn (C) and Cu (G)

### II. PREPARATION OF COMPLEXES

- 1. Tris(thiourea)copper(I) chloride
- 2. Tetraamminecopper(II) sulphate
- 3. Potassium trioxalatoferrate
- 4. Potassium trioxalatoaluminate(III)
- 5. Potassium trioxalatochromate(III)
- 6. Hexammine cobalt(III) chloride.

## **Text Book**

Vogel A. I. (2000). Text Book of Quantitative Inorganic Analysis; 6<sup>th</sup> Ed, Longman, New Delhi.

## Reference Book

Gurthu, J. N., and Kapoor, R. (1987). Advanced Experimental Chemistry, S. Chand and Co.

## Web References

- 1. https://www.youtube.com/watch?v=OGFWZclzXkk
- 2. <a href="https://labguider.com/synthesis-of-tetraamminecopperii-sulphate-monohydrate/">https://labguider.com/synthesis-of-tetraamminecopperii-sulphate-monohydrate/</a>
- 3. <a href="https://in.video.search.yahoo.com/search/video?fr=mcafee&ei=UTF-8&p=preparation+of+Potassium+trioxalatoferrate&vm=r&type=E211IN826G0#id=1&vid=cc898fe1f3d6eca2842e1498dd920917&action=click">https://in.video.search.yahoo.com/search/video?fr=mcafee&ei=UTF-8&p=preparation+of+Potassium+trioxalatoferrate&vm=r&type=E211IN826G0#id=1&vid=cc898fe1f3d6eca2842e1498dd920917&action=click</a>

# Pedagogy

E-content, Demo, Hands on training

### **Course Designer**

Dr. K. Shenbagam

| Semester : III | Internal M     | Iarks:25       | External Marks:75 |         |  |
|----------------|----------------|----------------|-------------------|---------|--|
| COURSE CODE    | COURSE TITLE   | CATEGORY       | HRS/WEEK          | CREDITS |  |
| 22PGCS3CCC2A   | CYBER SECURITY | CORE<br>CHOICE | 3(T) + 2(P)       | 4       |  |

- To develop skills in students that can help them plan, implement, and monitor cyber security mechanisms to ensure the protection of information technology assets.
- To expose students to governance, regulatory, legal, economic, environmental, social, and ethical contexts of cyber security.
- To expose students to the responsible use of online social media networks.
- To systematically educate the necessity to understand the impact of cyber-crimes and threats with solutions in a global and societal context.
- To select suitable ethical principles, commit to professional responsibilities and human values, and contribute value and wealth for the benefit of society

# **Prerequisites**

Basic Knowledge of Cyber Security

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement                                                                                                             | Cognitive<br>Level |
|--------------|--------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Understand the cyber security threat landscape                                                                           | K1,K2              |
| CO2          | Develop a deeper understanding and familiarity with various types, cyber crimes, vulnerabilities, and remedies there to. | K2, K3             |
| CO3          | Analyse and evaluate existing legal frameworks and laws on cyber security.                                               | K4, K5             |
| CO4          | Analyse and evaluate the digital payment system security and remedial measures.                                          | K4, K5             |
| CO5          | Analyse and evaluate the cyber security risks, plan suitable security controls                                           | K4, K5             |

|     | PSO 1 | PSO 2 | PSO 3 | PSO 4 | PSO 5 | P0 1 | PO 2 | PO 3 | PO 4 | PO 5 |
|-----|-------|-------|-------|-------|-------|------|------|------|------|------|
| CO1 | 3     | 3     | 3     | 3     | 3     | 3    | 3    | 3    | 3    | 3    |
| CO2 | 3     | 3     | 3     | 3     | 3     | 3    | 3    | 3    | 3    | 3    |
| CO3 | 3     | 3     | 3     | 3     | 2     | 3    | 3    | 3    | 3    | 2    |
| CO4 | 3     | 3     | 3     | 3     | 2     | 3    | 3    | 3    | 3    | 2    |
| CO5 | 3     | 3     | 3     | 3     | 2     | 3    | 3    | 3    | 3    | 2    |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;-" indicates there is no correlation

# Syllabus Theory

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HOURS | COs                                 | COGNITIVE<br>LEVEL             |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|--------------------------------|
| I    | Overview of Cyber Security: Cyber security increasing threat landscape, -Cyberspace, attack, attack vector, attack surface, threat, risk, vulnerability, exploit, exploitation, hacker., Nonstate actors, Cyber terrorism, Protection ofend user machine, Critical IT and National Critical Infrastructure, Cyber warfare, Case Studies.                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9     | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| II   | Cyber Crimes: Cyber Crimes targeting Computer systems and Mobiles- data diddling attacks, spyware, logic bombs, DoS, DDoS, APTs, virus, Trojans, ransomware, data breach., Online scams and frauds- email scams, Phishing, Vishing, Smishing, Online job fraud, Online sextortion, Debit/credit card fraud, Online payment fraud, Cyberbullying, website defacement, Cybersquatting, Pharming, Cyber espionage, Cryptojacking, Darknet- illegal trades, drug trafficking, human trafficking., Social Media Scams & Frauds- impersonation, identity theft, job scams, misinformation, fake news cyber crime against persons –cyber grooming, child pornography, cyber stalking., Social Engineering attacks, Cyber Police stations, Crime reporting procedure, Case studies. | 9     | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| III  | Cyber Law: Cyber Crime and legal landscape around the world, IT Act, 2000 and its amendments. Limitations of IT Act, 2000. Cyber Crime and punishments, Cyber Laws and Legal and ethical aspects related to new technologies- AI/ML, IoT, Blockchain, Darknet and Social media, Cyber Laws of other countries, Case Studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9     | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |

| IV | Data Privacy and Data Security: Defining data, meta-data, big data, non-personal data. Data protection, Data privacy and data security, Personal Data Protection Bill and its compliance, Data protection principles, Big data security issues and challenges, Data protection regulations of other countries- General Data Protection Regulations(GDPR),2016 Personal Information Protection and Electronic Documents Act (PIPEDA). Social media- data privacy and security issues. | 9 | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------|--------------------------------|
| V  | Cyber security Management, Compliance and Governance: Cyber security Plan-cyber security policy, cyber crises management plan., Business continuity, Risk assessment, Types of security controls and their goals, Cyber security audit and compliance, National cyber security policy and strategy.                                                                                                                                                                                  | 9 | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| VI | Self Study for Enrichment (Not included for End Semester Examinations) Case Studies: Largest Cyber Attacks: Yahoo Data Breach, Equifax Data Breach, WannaCry Malware Attack, Simple Locker.                                                                                                                                                                                                                                                                                          | - | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |

### Reference Books

- 1. Vivek Sood, (2017). Cyber Law Simplified. McGraw Hill Education
- 2. Sumit Belapure and Nina Godbole, (2011). *Computer Forensics and Legal Perspectives*. Wiley India Pvt. Ltd.
- 3. Dorothy F. Denning, (1998). Information Warfare and Security. Addison Wesley.
- 4. Henry A. Oliver, (2015). Security in the Digital Age: Social Media Security Threats and Vulnerabilities. Create Space Independent Publishing Platform.
- 5. Natraj Venkataramanan and Ashwin Shriram, (2016). *Data Privacy Principles and Practice*. 1<sup>st</sup> Edition, CRC Press.
- 6. W.Krag Brothy, (2008). *Information Security Governance, Guidance for Information Security Managers*. 1st Edition, Wiley Publication.
- 7. Martin Weiss, Michael G.Solomon, (2015). *Auditing IT Infrastructures for Compliance*. 2<sup>nd</sup> Edition, Jones & Bartlett Learning.

### Web References

- 1. https://www.tutorialspoint.com/principles-of-information-system-security
- 2. https://www.geeksforgeeks.org/principle-or-information-system-secutiry/
- 3. https://www.techtarget.com/searchsecurity/definition/cybersecurity
- 4. https://www.ukessays.com/essays/computer-science/analysis-of-the-yahoo-data-breaches.php
- 5. https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was- affected-what-was-the-impact.html
- 6. https://www.techtarget.com/searchsecurity/definition/WannaCry-ransomware
- 7. https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

### **Practicals:**

## **List of Exercises: (Not included for End Semester Examinations)**

- 1. Platforms for reporting cyber crimes.
- 2. Checklist for reporting cyber crimes online
- 3. Setting privacy settings on social media platforms.
- 4. Do's and Don'ts for posting content on Social media platforms.
- 5. Registering complaints on a Social media platform.
- 6. Prepare password policy for computer and mobile device.
- 7. List out security controls for computer and implement technical security controls in the personal computer.
- 8. List out security controls for mobile phone and implement technical security controls in the personal mobile phone.
- 9. Log into computer system as an administrator and check the security policies in the system.

## Web References

- 1. https://cybercrime.gov.in/
- 2. https://cybercrime.gov.in/webform/crime\_onlinesafetytips.aspx
- 3. https://www.digitalvidya.com/blog/social-media-dos-and-donts/
- 4. https://www.medianama.com/2023/02/223-platform-grievance-appellate-committees-social- media/
- 5. https://www.ibm.com/topics/security-controls
- 6. https://docs.oracle.com/cd/E19683-01/817-0365/concept-2/index.html

# **Pedagogy**

Chalk and Talk, Group discussion, Seminar & Assignment.

# **Course Designer**

From UGC SYLLABUS

| Semester III | Internal Marks: 25                            | External Marks: 75        |              |         |  |  |  |
|--------------|-----------------------------------------------|---------------------------|--------------|---------|--|--|--|
| COURSECODE   | COURSETITLE                                   | CATEGORY                  | Hrs/<br>Week | CREDITS |  |  |  |
| 22PCH3CCC2B  | PHOTOCHEMISTRY AND ADVANCED CHEMICAL KINETICS | CORE CHOICE<br>COURSE- II | 5            | 4       |  |  |  |

- > To learn the basic principles of photochemistry and energy transfer mechanism.
- > To learn about the theories of reaction rates and kinetics of fast reactions.
- > To gain knowledge about the catalysis and solar cells.

# **Course Outcomes**

# **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                                 | Cognitive<br>Level |
|--------------|-------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Recall the terms related to photochemistry, theories of reaction rates, kinetics of fast reactions and catalysis. | K1                 |
| CO2          | Discuss the various methods to study photochemistry and chemical kinetics.                                        | K2                 |
| CO3          | Apply the concepts of photochemistry, chemical kinetics and solar cells.                                          | К3                 |
| CO4          | Analyze the importance of photochemistry, chemical kinetics, catalysis and solar cells.                           | K4                 |
| CO5          | Evaluate the theory and applications of photochemistry, chemical kinetics, and solar cells.                       | K5                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO2 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |
| CO5 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

# **SYLLABUS**

| UNIT | CONTENT                                        | HOURS | COs  | COGNITIVE<br>LEVEL |
|------|------------------------------------------------|-------|------|--------------------|
| I    | Photo Chemistry                                | 15    | CO1, | K1, K2, K3,        |
|      | Principle - absorption and emission spectra    |       | CO2, | K4, K5             |
|      | - properties of excited states - excited state |       | CO3, |                    |
|      | acidity constants - dipole moments and         |       | CO4, |                    |
|      | redox properties - importance of               |       | CO5  |                    |
|      | photochemistry - photo physical processes      |       |      |                    |
|      | in electronically excited molecules - types    |       |      |                    |
|      | of photophysical pathways - types of           |       |      |                    |
|      | radiation less transitions - fluorescence      |       |      |                    |
|      | emission-fluorescence and structure -          |       |      |                    |
|      | Triplet state and phosphorescence              |       |      |                    |
|      | emission – delayed fluorescence - e - type     |       |      |                    |
|      | and p-type delayed fluorescence -              |       |      |                    |
|      | photosynthesis.                                |       |      |                    |
| II   | Electronically excited states                  | 15    | CO1  | K1, K2, K3,        |
|      | Electronic, vibrational and spin levels -      |       | CO2, | K4, K5             |
|      | unimolecular and bimolecular                   |       | CO3, |                    |
|      | photophysical processes - kinetic collisions   |       | CO4, |                    |
|      | and optical collisions - mechanism of          |       | CO5  |                    |
|      | fluorescence quenching - collisions in         |       |      |                    |
|      | solution - kinetics of collisional quenching   |       |      |                    |
|      | - Stern- Volmer equation - deviations from     |       |      |                    |
|      | Stern- Volmer equation - concentration         |       |      |                    |
|      | dependence of quenching and excimer            |       |      |                    |
|      | formation - quenching by added                 |       |      |                    |
|      | substances - charge transfer- mechanism -      |       |      |                    |
|      | energy transfer mechanism.                     |       |      |                    |

| III | Theories of reaction rates                                                              | 15 | CO1, | K1, K2, K3, |
|-----|-----------------------------------------------------------------------------------------|----|------|-------------|
|     | Potential energy surfaces – reaction                                                    |    | CO2, | K4, K5      |
|     | coordinate – theories of unimolecular gas                                               |    | CO3, |             |
|     | phase reactions – Lindemann hypothesis –                                                |    | CO4, |             |
|     | Hinshelwood treatment -reactions in                                                     |    | CO5  |             |
|     | solutions – kinetic isotope effect – Linear                                             |    |      |             |
|     | free energy relationships - Hammett                                                     |    |      |             |
|     | equation – Okamato–Brown Equation –                                                     |    |      |             |
|     | Taft Equation - chain reactions H <sub>2</sub> –Cl <sub>2</sub> ,                       |    |      |             |
|     | H <sub>2</sub> –Br <sub>2</sub> and H <sub>2</sub> –O <sub>2</sub> reaction – explosion |    |      |             |
|     | limits – factors affecting explosion limits.                                            |    |      |             |
| IV  | Kinetics of Fast Reactions                                                              | 15 | CO1, | K1, K2, K3, |
|     | Chemical relaxation method - principles –                                               |    | CO2, | K4, K5      |
|     | parameters affecting relaxation time and                                                |    | CO3, |             |
|     | amplitude – derivation of equations for                                                 |    | CO4, |             |
|     | relaxation time for one-step                                                            |    | CO5  |             |
|     | transformations – chemical relaxation in                                                |    |      |             |
|     | two step – experimental techniques -                                                    |    |      |             |
|     | pressure jump - principle and relaxational                                              |    |      |             |
|     | behavior in beryllium sulphate solutions –                                              |    |      |             |
|     | temperature jump - principle and factors                                                |    |      |             |
|     | affecting relaxation time -competition                                                  |    |      |             |
|     | methods – nuclear magnetic resonance line                                               |    |      |             |
|     | shape analysis – nuclear relaxation – effect                                            |    |      |             |
|     | of chemical exchange -flash photolysis                                                  |    |      |             |
|     | and pulse radiolysis – principles and                                                   |    |      |             |
|     | applications.                                                                           |    |      |             |

| V  | Catalysis and Solar Cells                    | 15 | CO1, | K1, K2, K3, |
|----|----------------------------------------------|----|------|-------------|
|    | Homogenous catalysis – heterogenous          |    | CO2, | K4, K5      |
|    | catalysis – enzyme catalysis: Kinetics –     |    | CO3, |             |
|    | influence of substrate concentration – pH –  |    | CO4, |             |
|    | temperature – turn over number – catalytic   |    | CO5  |             |
|    | efficiency – enzyme-like catalysis– critical |    |      |             |
|    | micellar concentration (CMC) – factors       |    |      |             |
|    | affecting CMC – thermodynamics of            |    |      |             |
|    | micellization – reverse micelles –           |    |      |             |
|    | mechanism of surface reactions –             |    |      |             |
|    | unimolecular and bimolecular surface         |    |      |             |
|    | reactions – solar cells – photovoltaic and   |    |      |             |
|    | photo galvanic cells –prospects of solar     |    |      |             |
|    | energy conversion and storage - organic      |    |      |             |
|    | solar cells.                                 |    |      |             |
| VI | <b>Self-Study for Enrichment:</b>            | -  | CO1, | K1, K2      |
|    | (Not to be included for External             |    | CO2  |             |
|    | Examination)                                 |    |      |             |
|    | Photo chemical reactions - ketones,          |    |      |             |
|    | olefins conjugated olefins and aromatic      |    |      |             |
|    | compounds - Mechanism of sensing -           |    |      |             |
|    | sensing techniques based on coalitional      |    |      |             |
|    | quenching - electrical field jump -          |    |      |             |
|    | principles and applications to               |    |      |             |
|    | neutralization reaction - methods with       |    |      |             |
|    | enhance time resolution- photoelectron       |    |      |             |
|    | chemistry - – Michaelis-Menten equation –    |    |      |             |
|    | reactions assisted by micelles.              |    |      |             |
|    |                                              |    |      |             |

# Text Books

- 1. Kalidas. C., (1995). Chemical Kinetic Methods Principles of relaxation techniques and Applications. (2<sup>nd</sup>ed.). New Age International (P) Ltd., New Delhi.
- 2. Keith J Laidler, (2004). Chemical Kinetics. (3<sup>rd</sup>ed.). Pearson education. New Delhi.
- 3. Santosh K. Upadhyay, (2006). Chemical Kinetics and Reaction Dynamics, New York:

- Springer with Anamaya Publishers. New Delhi.
- 4. Margaret Robson Wright, (2005). An introduction to Chemical Kinetics. John Wiley & sons, Ltd. England.
- 5. Rohatgi K. K and Mukherjee, (1978). Fundamentals of Photochemistry. NewAge International Publisher. New Delhi.

### Reference Books

- Peter Atkins and Julio de Paula, (2016). Physical Chemistry. (10<sup>th</sup>ed.). Oxford University Press. New Delhi.
- 2. Houston, Paul L, (2001). Chemical Kinetics and Reaction Dynamics. McGraw-Hill, Inc, Singapore.
- 3. Ira N. Levine, (2011). Physical Chemistry.(6<sup>th</sup>ed.). McGraw-Hill Higher Education. New York.
- 4. Robert G. Mortimer, (2008). Physical Chemistry. (3<sup>rd</sup>ed.). Elsevier Academic Press. London.
- 5. Alan Cox and Terence James Kemp, (1971). Photochemistry. McGraw-Hill. European.

# Web References

- 1. https://www.jstor.org/stable/2414473
- 2. <a href="https://www.sciencedirect.com/topics/chemistry/excited-electronic-state#:~:text=An%20excited%20electronic%20state%20of,any%20of%20the%20valence%20electrons.">https://www.sciencedirect.com/topics/chemistry/excited-electronic-state#:~:text=An%20excited%20electronic%20state%20of,any%20of%20the%20valence%20electrons.</a>
- 3. https://archive.nptel.ac.in/courses/104/101/104101128/
- 4. https://www.youtube.com/watch?v=k3Y\_tONFQTU
- 5. <a href="https://pdfcoffee.com/homogeneous-catalyst-pdf-free.html">https://pdfcoffee.com/homogeneous-catalyst-pdf-free.html</a>

### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

### **Course Designer**

Dr. P. Thamizhini

| Semester III | Internal Marks: 25   | External Marks:75         |            |         |  |
|--------------|----------------------|---------------------------|------------|---------|--|
| COURSE CODE  | COURSE TITLE         | CATEGORY                  | Hrs / Week | CREDITS |  |
| 22PCH3CCC2C  | ELECTRO<br>CHEMISTRY | CORE CHOICE<br>COURSE- II | 5          | 4       |  |

- > To understand the theories and concepts of electrochemistry.
- > To understand the behavior of electrolytes in solution and compare the structures of electrical double layer of different models.
- > To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations
- > To gain knowledge about modern areas of electrochemistry like electrocatalysis, photoelectron catalysis and bioelectrodics.

## Pre requisites:

Electrode, bio electrochemistry, electro diodes, Debye-Huckel

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement  On the successful completion of the course, students will be able to                              | Cognitive<br>Level |
|--------------|-----------------------------------------------------------------------------------------------------------------|--------------------|
|              | Categorize and account the importance ions in electrode reactions and applications of electrochemistry.         | K1&K2              |
|              | Demonstrate and categorize the importance of electrodics and its reactions in multi-step systems                | К3                 |
|              | Understand the concept and applications of electrochemistry in photo and bio electrochemistry.                  | K4                 |
|              | Recognize the characterization of electrolyte in Electro-chemical reaction mechanisms with rates of reaction.   | K5                 |
|              | Distinguish the categorization of electrolyte in Electro-chemical reaction mechanisms and bio electrochemistry. | K6                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 2    | 2    | 3   | 2   | 1   | 3   | 2   |
| CO2 | 3    | 2    | 1    | 2    | 2    | 3   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO4 | 3    | 1    | 2    | 3    | 2    | 3   | 3   | 2   | 1   | 2   |
| CO5 | 3    | 2    | 2    | 3    | 2    | 3   | 3   | 2   | 2   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation "-" indicates there is no correlation

# **SYLLABUS**

| UNIT | CONTENT                                               | HOURS | COs                    | COGNITIVE<br>LEVEL |
|------|-------------------------------------------------------|-------|------------------------|--------------------|
| I    | Ionics:                                               |       |                        |                    |
|      | Arrhenius theory -limitations- van't Hoff factor      |       | GO1 GO2                |                    |
|      | and its relation to colligative properties- Deviation | 15    | CO1, CO2,<br>CO3, CO4, | K1, K2, K3,        |
|      | from ideal behavior- Ionic activity- mean ionic       |       | CO5                    | K4, K5,K6          |
|      | activity and mean ionic activity coefficient-concept  |       |                        |                    |
|      | of ionic strength-Debye Huckel theory of strong       |       |                        |                    |
|      | electrolytes- activity coefficient of strong          |       |                        |                    |
|      | electrolytes-Determination of activity coefficient    |       |                        |                    |
|      | ion solvent and ion-ion interactions- Born            |       |                        |                    |
|      | equation- Debye-Huckel Bjerrum model-                 |       |                        |                    |
|      | Derivation of Debye-Huckel limiting law at            |       |                        |                    |
|      | appreciable concentration of electrolytes             |       |                        |                    |
|      | modifications and applications- Electrolytic          |       |                        |                    |
|      | conduction-Debye-Huckel Onsager treatment of          |       |                        |                    |
|      | strong electrolyte qualitative and quantitative       |       |                        |                    |
|      | verification and limitations- Evidence for ionic      |       |                        |                    |
|      | atmosphere- Ion association and triple ion            |       |                        |                    |
|      | formations.                                           |       |                        |                    |
| II   | Electrode-electrolyte interface:                      |       |                        |                    |
|      | Interfacial phenomena - Evidences for electrical      |       | CO1 CO2                |                    |
|      | double laye-, polarizable and non-polarizable         | 15    | CO1, CO2,<br>CO3, CO4, | K1, K2, K3,        |
|      | interfaces- Electrocapillary phenomena -              |       | CO5                    | K4, K5,K6          |
|      | Lippmann equation electro capillary curves-           |       |                        |                    |
|      | Electro-kinetic phenomena electro-osmosis-            |       |                        |                    |
|      | electrophoresis- streaming and sedimentation          |       |                        |                    |
|      | potentials- colloidal and poly electrolytes-          |       |                        |                    |
|      | Structure of double layer- Helmholtz -Perrin-         |       |                        |                    |
|      | Guoy Chapman and Stern models of electrical           |       |                        |                    |
|      | double layer- Zeta potential and potential at zero    |       |                        |                    |
|      | charge. Applications and limitations.                 |       |                        |                    |

| III | <b>Electrodics of Elementary Electrode Reactions:</b>                       |    |                        |                          |
|-----|-----------------------------------------------------------------------------|----|------------------------|--------------------------|
|     | Behavior of electrodes- Standard electrodes and                             | 15 | CO1 CO2                |                          |
|     | electrodes at equilibrium- Anodic and Cathodic                              |    | CO1, CO2,<br>CO3, CO4, | K1, K2, K3,              |
|     | currents, condition for the discharge of ions-                              |    | CO5                    | K4, K5,K6                |
|     | Nernst equation- polarizable and non-polarizable                            |    |                        |                          |
|     | electrodes- Model of three electrode system- over                           |    |                        |                          |
|     | potential- Rate of electro chemical reactions- Rates                        |    |                        |                          |
|     | of simple elementary reactions- Butler-Volmer                               |    |                        |                          |
|     | equation-significance of exchange current density-                          |    |                        |                          |
|     | net current density and symmetry factor-Low and                             |    |                        |                          |
|     | high field approximations- symmetry factor and                              |    |                        |                          |
|     | transfer coefficient Tafel equations and Tafel plots.                       |    |                        |                          |
| IV  | <b>Electrodics of Multistep Multi Electron System:</b>                      |    |                        |                          |
|     | Rates of multi-step electrode reactions- Butler -                           | 15 | CO1 CO2                |                          |
|     | Volmer equation for a multi-step reaction- Rate                             |    | CO1, CO2,<br>CO3, CO4, | K1, K2, K3,<br>K4, K5,K6 |
|     | determining step- electrode polarization and                                |    | CO5                    |                          |
|     | depolarization- Transfer coefficients, its                                  |    |                        |                          |
|     | significance and determination- Stoichiometric                              |    |                        |                          |
|     | number. Electro-chemical reaction mechanisms-                               |    |                        |                          |
|     | rate expressions- order and surface coverage-                               |    |                        |                          |
|     | Reduction of I <sup>3-</sup> -Fe <sup>2+</sup> -and dissolution of Fe to Fe |    |                        |                          |
|     | <sup>2+</sup> -Overvoltage - Chemical and electro chemical-                 |    |                        |                          |
|     | Phase-activation and concentration over potentials-                         |    |                        |                          |
|     | Evolution of oxygen and hydrogen at different pH.                           |    |                        |                          |
| V   | Advanced topics in electrochemistry                                         |    |                        |                          |
|     | Photo electrochemistry- introduction, band                                  | 15 | CO1, CO2,              |                          |
|     | bending at the semiconductor/solution interface-                            |    | CO3, CO4,              | K1, K2, K3,              |
|     | photo excitation of electrons by absorption of                              |    | CO5                    | K4, K5,K6                |
|     | light- surface effects in photo electrochemistry-                           |    |                        |                          |
|     | photo electrochemical splitting of water- photo                             |    |                        |                          |
|     | electrochemical reduction of CO <sub>2</sub> . Bio                          |    |                        |                          |
|     | electrochemistry – bioelectrodics- membrane                                 |    |                        |                          |
|     | potentials- electrochemical communication in                                |    |                        |                          |
|     |                                                                             |    |                        |                          |

| biological organisms- enzymes as electrodes-<br>electron transfer in enzymes- electrochemical<br>sensors- electrochemical biosensors- gas sensors-<br>solid state devices and sensor arrays.                                                                                                                     |   |                  |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|------------|
| Self-Study for Enrichment (Not to be included for External Examination)  Rates of electrochemical reactions- over potential-chemical- electrochemical conditions for the discharge of ions- electro catalysis- Basics of electrodics- rates of simple electrode reactions-elementary electron electrode process. | - | CO1, CO2,<br>CO3 | K1, K2, K3 |

## **Text Books:**

- 1. D. R. Crow, Principles and applications of electrochemistry, 4<sup>th</sup>edition, Chapman & Hall/CRC, 2014.
- 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011.
- 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008.
- 4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai, 2007.
- 5. Joseph Wang, Analytical Electro chemistry, 2<sup>nd</sup> edition, Wiley, 2004.

### **Reference Books:**

- 1. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008.
- 2. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008.
- 3. Philip H. Rieger, Electrochemistry, 2<sup>nd</sup> edition, Springer, New York, 2010.
- 4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.
- 5. K.L. Kapoor, A Text book of Physical chemistry, volume-3, Macmillan, 2001.

### Web References:

1.https://www.dalalinstitute.com/wp-content/uploads/Books/A-Textbook-of-Physical-Chemistry-Volume-1/ATOPCV1-4-5-Debye-Huckel-Limiting-Law-of-Activity-Coefficients-and-Its-Limitations.pdf

- 2. <a href="https://www.pdfdrive.com/modern-electrochemistry-e34333229">https://www.pdfdrive.com/modern-electrochemistry-e34333229</a>.
- 3. https://www.ph.tum.de/academics/org/labs/fopra/docs/userguide-28.en.pdf

# Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

# **Course Designer**

Dr. K. Uma Sivakami

| Semester III |                                           | F                                  | External M   | arks: 100 |
|--------------|-------------------------------------------|------------------------------------|--------------|-----------|
| COURSE CODE  | COURSE<br>TITLE                           | CATEGORY                           | Hrs<br>/Week | CREDITS   |
| 22PCH3DSE3A  | CHEMISTRY FOR<br>COMPETITIVE EXAMINATIONS | DISCIPLINE<br>SPECIFIC<br>ELECTIVE | 4            | 3         |

- > To know the types of bonds, properties of transition elements, structures and functions of biomolecules.
- > To study the reaction mechanism and spectroscopy techniques.
- ➤ To learn the catalytic behavior of organometallic compounds.

# **Prerequisites**

Polarity, oxidation state, biomolecules, selection rule

# **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                                                            | Cognitive<br>Level |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Recall and understand the modern approaches of chemical bonding, coordination compounds, reaction mechanism and various spectral techniques. | K1,K2              |
| CO2          | Interpret the shapes, reactions, spectrum and point group of the molecules.                                                                  | K3                 |
| CO3          | Analyze bond properties, catalytic behaviour, enzyme mechanism, reagents and frequencies of functional group.                                | K4                 |
| CO4          | Explain the molecular bonding, functions of biomolecules, rearrangements and applications of various spectroscopies.                         | K5                 |
| CO5          | Predict the nature of bonds, organometallic reactions, electron transfers, reagents and structure of molecules.                              | K6                 |

| COs | PSO1 | PSO <sub>2</sub> | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------------------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3                | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2                | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3                | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3                | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3                | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |

<sup>&</sup>quot;1"-Slight (Low)Correlation "2"-Moderate (Medium)Correlation

<sup>&</sup>quot;3"-Substantial (High) Correlation "-"indicates there is no correlation

# **SYLLABUS**

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HOURS | СО                                  | COGNITIVE<br>LEVEL        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|---------------------------|
| I    | Chemical Bonding: Ionic bond - lattice energy- Born-Haber cycle. Covalent bond- polarities of bonds in molecules and their dipole moments. Valence bond theory - VSEPR model- shapes of molecules. Molecular orbital theory (LCAO method): Bonding in H <sub>2</sub> ,He <sub>2</sub> , Li <sub>2</sub> , Be <sub>2</sub> , B <sub>2</sub> , N <sub>2</sub> , NO, CO, HF, and CN <sup>-</sup> . Bond order- bond strength and bond length.                                                    | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5, K6 |
| II   | Chemistry of Coordination Complexes: IUPAC nomenclature - No. of possible isomers - EAN rule- Valence bond theory - CFT and CFSE calculation-Jahn Teller distortion theory. Organometallic reactions: ligand association - dissociation - oxidative addition- reductive elimination and insertion reactions. Reactions of coordinated ligands in organometallics: hydrogenation-hydroformylation - epoxidation - metathesis- polymerization of olefins and olefin oxidation (Wacker process). | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5, K6 |
| III  | Bioinorganic Chemistry: Metal ions in biological systems - role in ion transport across the membranes (molecular mechanism) - oxygen uptake proteins. Heme and non-heme proteins -haemoglobin and myoglobin - oxygen transport and storage - electron transfer and oxygen activation-cytochromes - Ferredoxin and Rubredoxin.  Copper containing proteins: Classification and examples - electron transfer - oxygen transport - oxygenation - oxidases and reductases -                       | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2, K3,<br>K4, K5, K6 |

|    | cytochrome oxidase - superoxide dismutase                                                               |    |              |                           |
|----|---------------------------------------------------------------------------------------------------------|----|--------------|---------------------------|
|    | (Cu, Zn). Nickel containing enzyme: urease.                                                             |    |              |                           |
| IV | Reaction Mechanism of Rearrangements                                                                    | 12 | CO1,         | K1, K2, K3,               |
|    | and Reagents:                                                                                           |    | CO2,<br>CO3, | K4, K5, K6                |
|    | Molecular Rearrangements: Baeyer-Villiger –                                                             |    | CO4,         |                           |
|    | Favorskii- Fries - Claisen - Cope - Stevens                                                             |    | CO5          |                           |
|    | and Wagner-Meerwein rearrangements. Aldol                                                               |    |              |                           |
|    | condensation - Claisen condensation -                                                                   |    |              |                           |
|    | Dieckmann – Perkin – Knoevenagel –Witting -                                                             |    |              |                           |
|    | Von Richter reactions. Synthetic Uses of                                                                |    |              |                           |
|    | Reagents: OsO <sub>4</sub> - HIO <sub>4</sub> - Pb(OAc) <sub>4</sub> - SeO <sub>2</sub> -               |    |              |                           |
|    | NBS - LiAlH <sub>4</sub> - NaBH <sub>4</sub> - n-BuLi and                                               |    |              |                           |
|    | MCPBA.                                                                                                  |    |              |                           |
| V  | Spectroscopy and Group Theory: Principle and applications in structural                                 | 12 | CO1,<br>CO2, | K1, K2, K3,<br>K4, K5, K6 |
|    | elucidation. Rotational: Diatomic molecules -                                                           |    | CO3,         |                           |
|    | isotopic substitution and rotational constants.                                                         |    | CO4,<br>CO5  |                           |
|    | Vibrational: Diatomic molecules- linear                                                                 |    |              |                           |
|    | triatomic molecules - specific frequencies of                                                           |    |              |                           |
|    | functional groups in polyatomic molecules.                                                              |    |              |                           |
|    | Mass Spectrometry- parent peak - base peak -                                                            |    |              |                           |
|    | metastable peak -McLafferty rearrangement.                                                              |    |              |                           |
|    | Group theory: symmetry elements - symmetry                                                              |    |              |                           |
|    | operation - point group of simple molecules                                                             |    |              |                           |
|    | like H <sub>2</sub> O, NH <sub>3</sub> , BF <sub>3</sub> , C <sub>6</sub> H <sub>6</sub> , biphenyl and |    |              |                           |
|    | Ferrocene.                                                                                              |    |              |                           |
| VI | Self-Study for Enrichment:                                                                              |    | CO1,         | K1, K2, K3                |
|    | (Not to be included for External                                                                        |    | CO2,<br>CO3  |                           |
|    | <b>Examination</b> ) Lewis structure -hydrogen bonding -                                                |    |              |                           |
|    | calculation of oxidation number and oxidation                                                           |    |              |                           |
|    | state - action of enzymes - types of fissions                                                           |    |              |                           |
|    | and rearrangements - electromagnetic                                                                    |    |              |                           |
|    | radiations - wavelength - frequency and wave                                                            |    |              |                           |

| number. |  |  |
|---------|--|--|
|         |  |  |

### **Text Books**

- 1. Puri B. R., Sharma L. R., Day M. C., and Selbin J. (2012), Theoretical Inorganic Chemistry; Sisler, Literary Licensing (LLC), Montana.
- 2. Jagdambasingh (2016), Organic Synthesis, Pragati Prakashan.
- 3. Kasim W and Schewederski B. (2013), Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2<sup>nd</sup> Edn. John Wiley and Sons, New York, USA.
- 4. Finar I.R, (2009) Organic Chemistry Vol.1, 7th Edn, Pearson Education Asia.
- 5. Banwell C.N and Mc Cash.E.M.(2000) Fundamentals of Molecular Spectroscopy, 4<sup>th</sup>Edn,Tata McGraw Hill, New Delhi.

### Reference Books

- 1. Huheey J. E. (2006) Inorganic Chemistry, 4<sup>th</sup> Edn., Harper and Row publisher, Singapore.
- 2. Mukherji,S.M and Singh.S.P (2015) Reaction Mechanism in Organic Chemistry, (Revised Edition), Trinity, New Delhi.
- 3. Dargo.R.S. (1977) Physical Methods in Chemistry, Saunders, Philadelphia.
- 4. Carey.F.A and Sundberg R.J (2000) Advanced Chemistry Part A &B, 4<sup>th</sup> Edn, Kluwer Academic/Plenum Publishers.
- Ramam.K.V. (1990) Group Theory and its Application to Chemistry, Tata McGrawHill, New Delhi.

### **Web References**

- 1.<u>https://chem.libretexts.org/Bookshelves/Organic\_Chemistry/Supplemental\_Modules\_(Organic\_Chemistry)/Fundamentals/Ionic\_and\_Covalent\_Bonds</u>
- 2. https://byjus.com/jee/coordination-compounds/
- 3.https://chem.libretexts.org/Bookshelves/Inorganic\_Chemistry/Organometallic\_Chemistry\_

  (Evans)/04%3A\_Fundamentals\_of\_Organometallic\_Chemistry\_
- 4. <a href="https://www.ncbi.nlm.nih.gov/books/NBK544256/#:~:text=Myoglobin%20is%20a%20pr">https://www.ncbi.nlm.nih.gov/books/NBK544256/#:~:text=Myoglobin%20is%20a%20pr</a> otein%20located,can%20reversibly%20bind%20to%20oxygen.
- 5.https://tmv.ac.in/ematerial/chemistry/kpb/SEM\_IV\_Honours\_Rearrangement%20final.pdf

#### Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

## **Course Designer**

Dr. A. Sharmila

| Semester III   | Internal Marks: 25      | External Marks:75                  |            |         |  |  |  |
|----------------|-------------------------|------------------------------------|------------|---------|--|--|--|
| COURSE<br>CODE | COURSE TITLE            | CATEGORY                           | HRs/ WEEKS | CREDITS |  |  |  |
| 22PCH3DSE3B    | BIOORGANIC<br>CHEMISTRY | DISCIPLINE<br>SPECIFIC<br>ELECTIVE | 4          | 3       |  |  |  |

- ➤ To Gain the knowledge on the molecular structure and of chemical and biological properties of biomolecules such as amino acids, proteins, lipids and nucleic acids.
- > To know the mechanisms of enzymatic reactions, the various role of organic molecules in living systems.
- > To learn the concepts of bio energies.

# **Prerequisites**

Bio energies, nucleic acids, molecular structure.

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                                              | Cognitive |
|--------|---------------------------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course students will be able to                                                       | Level     |
| CO1    | To understand the basic concepts of biomolecules and natural products.                                                    | K2, K3    |
| CO2    | To integrate and assess the different methods of preparation of structurally different biomolecules and natural products. | K2, K3    |
| CO3    | To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.                 | K3, K4    |
| CO4    | To analyse and rationalise the structure and synthesis of heterocyclic compounds.                                         | K4, K5    |
| CO5    | To develop the structure of biologically important heterocyclic compounds by different methods.                           | K4, K5    |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

<sup>&</sup>quot;1"-Slight (Low)Correlation

<sup>&</sup>quot;3"-Substantial (High) Correlation

<sup>&</sup>quot;2"-Moderate (Medium)Correlation

<sup>&</sup>quot;-"indicates there is no correlation

# **SYLLABUS**

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HOURS | COs                             | COGNITIVE<br>LEVEL   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------|----------------------|
| I    | Chemistry and metabolism of carbohydrates  Definition, classification and biological role of carbohydrates. Monosaccharides: Linear and ring structures (Haworth formula) of ribose, glucose, fructose and mannose (structure determination not required), physical and chemical properties of glucose and fructose. Disaccharides: Ring structures (Haworth formula) —occurrence, physical and chemical properties of maltose, lactose and sucrose. Polysaccharides: Starch, glycogen and cellulose — structure and properties, glycolysis of carbohydrates. | 12    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K2<br>K3<br>K4<br>K5 |
| II   | Steroids and Hormones:  Steroids-Introduction, occurrence, nomenclature, configuration of substituents. Diels' hydrocarbon, stereochemistry, classification, Diels' hydrocarbon, biological importance, colour reactions of sterols, cholesterol-occurrence, tests, physiological activity, biosynthesis of cholesterol from squalene. Hormones-Introduction, classification, functions of sex hormones-androgens and estrogens, adrenocortical hormones-cortisone and cortisol                                                                               | 12    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K2<br>K3<br>K4<br>K5 |
| III  | Proteins: Separation and purification of proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amino acid                                                                                                                                                                                                                                                                                                          | 12    | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K2<br>K3<br>K4<br>K5 |

|    | metabolism and urea cycle.                                                                                                                                                                                                                                                                                                                                 |    |                                 |                      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------|----------------------|
| IV | Nucleic acids:  Structure, methods for the synthesis of nucleosides - direct combination, formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson-Crick model, solid phase synthesis of oligonucleotides.                                              | 12 | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K2<br>K3<br>K4<br>K5 |
| V  | Fused Ring Heterocyclic Compounds: Benzofused five membered rings: Indole, isoindole, benzofuran and benzothiophene, Preparation and properties. Benzofused six membered rings: Quinoline and isoquinoline: Preparation by ring closure reactions, Reactions: Mechanism of electrophilic and nucleophilic substitutions, oxidation and reduction reactions | 12 | CO1<br>CO2<br>CO3<br>CO4<br>CO5 | K2<br>K3<br>K4<br>K5 |
| VI | Self-Study for Enrichment (Not to be included for External Examination)  Formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Structure and functions of non-steroidal hormones-adrenaline and thyroxin.                                                                                                   |    | CO1,<br>CO2                     | K2,<br>K3            |

# **Text Books**

- 1. Lindhorst, T.K., (2007). Essentials of Carbohydrate Chemistry and Biochemistry, Wiley VCH, North America, 2007.
- 2. Finar, I. L., (1975). Organic Chemistry Vol-2, 5th edition, Pearson Education Asia.
- 3. Ahluwalia V. K., Goyal, M., (2000). Textbook of Heterocyclic compounds, Narosa Publishing, New Delhi, 2000.
- 4. Jain M. K., Sharma, S. C., (2014). Modern Organic Chemistry, Vishal Publishing Co., Jalandhar, Delhi.
- 5. Ahluwalia, V. K., (2009). Steroids and Hormones, Ane books pub., New Delhi.

## **Reference Books**

- 1. Finar, I. L., (2004). Organic Chemistry Vol-1, 6thedition, Pearson Education Asia.
- 2. Pelletier, (2000). Chemistry of Alkaloids, Van Nostrand Reinhold Co.
- 3. Shoppe,(1994). Chemistry of the steroids, Butterworthes.
- 4. Khan, I. A., Khanum, A.(2004). Role of Biotechnology in medicinal & aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad.
- 5. Singh. M. P., Panda, H., (2005). Medicinal Herbs with their formulations, Daya Publishing House, Delhi.

## **Web References**

- 1. <a href="https://www.organic-chemistry.org/">https://www.organic-chemistry.org/</a>
- 2. https://www.studyorgo.com/summary.php
- 3. <a href="https://www.clutchprep.com/organic-chemistry">https://www.clutchprep.com/organic-chemistry</a>

# **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

# Course Designer

Dr. K. Shenbagam

| Semester III | Internal Marks:2            | External Marks:75                  |              |         |
|--------------|-----------------------------|------------------------------------|--------------|---------|
| COURSE CODE  | COURSE<br>TITLE             | CATEGORY                           | Hrs<br>/Week | CREDITS |
| 22PCH3DSE3C  | PHARMACEUTICAL<br>CHEMISTRY | DISCIPLINE<br>SPECIFIC<br>ELECTIVE | 4            | 3       |

- > To understand the advanced concepts of pharmaceutical chemistry. To recall the principle and biological functions of various drugs.
- > To train the students to know the importance as well the consequences of various drugs.
- > To have knowledge on the various analysis and techniques.
- To familiarize on the drug dosage and its structural activities

# **Prerequisites**

Drugs, Isotopic dilution analysis, clincical tesing, Radio pharamaceuticals

# **Course Outcome and Cognitive Level Mapping**

| CO   | CO Statement                                                      | Cognitive |
|------|-------------------------------------------------------------------|-----------|
| No.  | On the successful completion of the course, students will be      | Level     |
|      | able to                                                           |           |
| CO 1 | To identify the suitable drugs for various diseases.              | K1, K2    |
| CO2  | To apply the principles of various drug action and drug design.   | К3        |
| CO3  | To acquire the knowledge on product development based on SAR.     | K4        |
| CO4  | To apply the knowledge on applications of computers in chemistry. | K5        |
| CO5  | To synthesize new drugs after understanding the concepts SAR.     | K6        |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

<sup>&</sup>quot;1"-Slight (Low)Correlation

<sup>&</sup>quot;2"-Moderate (Medium)Correlation

<sup>&</sup>quot;3"-Substantial (High)Correlation "-"indicates there is no correlation

# **SYLLABUS**

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HOURS | COs                                 | COGNITIVE<br>LEVEL               |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|----------------------------------|
| I    | Physical properties in Pharmaceuticals:  Physical properties- Refractive index- specific & molar refraction. Optical activity\rotation- angle of rotation, specific rotation- examples-measurement of optical activity-Dielectric Constant- Induced Polarization-explanation-determination. Rheology of pharmaceutical systems-concept of viscosity, Newton's law of flow, Kinematic, Relative, Specific, Reduced & Intrinsic viscosity. Newtonian system, non-Newtonian system-Plastic flow-Pseudo plastic flow- Dilatant flow-Viscosity measurements- selection of viscometer for Newtonian and non- Newtonian system. | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2,<br>K3, K4,<br>K5, K6     |
| Ii   | Isotopic Dilution analysis:  Principle and applications Neutron activation analysis:  Principle, advantages and limitations, Scintillation counters: Body scanning-radio pharmaceuticals.  Properties-diagnostics, as therapeutics, for research and sterilization. Physico Chemical Properties and drugaction- Physico chemical properties of drugs-Partition coefficient-solubility-surface activity-degree of ionization.                                                                                                                                                                                             | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2,<br>K3, K4,<br>K5         |
| III  | Drug dosage and product development:  Drug dosage Forms- Drug Delivery system—Drug Regulation and control pharmacopoeias formularies- sources of drug- drug nomenclature- routes of administration of drugs products-need for a dosage form-classification of dosage forms- Drug dosage and product development. Introduction to drug dosage Forms &Drug Delivery system—Drug regulation and                                                                                                                                                                                                                             | 12    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1, K2,<br>K3, K4,<br>K5,<br>K 6 |

|    | control-pharmacopoeias formularies, sources of drug,         |    |              |                |
|----|--------------------------------------------------------------|----|--------------|----------------|
|    | drug nomenclature, routes of administration of drugs         |    |              |                |
|    | products, need for a dosage form, classification of          |    |              |                |
|    | dosage forms.                                                |    |              |                |
| IV | Development of new drugs:                                    | 12 | CO1,         | K1, K2,        |
|    | Drug design, the research for lead compounds-                |    | CO2,<br>CO3, | K3, K4,<br>K5, |
|    | molecular modification of lead compounds. Structure-         |    | CO4,         | K6             |
|    | Activity Relationship(SAR) - Factors effecting               |    | CO5          |                |
|    | bioactivity-resonance-inductive effect- isoterism,           |    |              |                |
|    | ioisosterism, spatial considerations -biological             |    |              |                |
|    | properties of simple functional groups-theories of drug      |    |              |                |
|    | activity-occupancy theory-rate theory-induced-               |    |              |                |
|    | fittheory-4.3Quantitative structure activity                 |    |              |                |
|    | relationship(QSAR)-Development of QSAR- drug                 |    |              |                |
|    | recept or interactions-the additivity of group               |    |              |                |
|    | contributions- physico- chemical parameters-                 |    |              |                |
|    | Lipophilicity parameters- electronic parameter-              |    |              |                |
|    | ionization constants.                                        |    |              |                |
| V  | <b>Antibiotics, Analgesics, Antipyretics and Anesthetics</b> | 12 | CO1,         | K1, K2,        |
|    | Definition – introduction – classification and biological    |    | CO2,<br>CO3, | K3, K4,<br>K5, |
|    | actions- structure, properties and therapeutic uses -        |    | CO4,         | K6             |
|    | chemical structure and pharmacological activity of           |    | CO5          |                |
|    | antibiotics, analgesics, antipyretics and anaesthetics-      |    |              |                |
|    | Aspirin, paracetamol and phenacetin – analgen–               |    |              |                |
|    | methohexitone-,ibuprofen, cocaine and amethocaine            |    |              |                |
|    | preparation- structure-properties and uses .                 |    |              |                |
|    |                                                              |    |              |                |
| L  | 1                                                            |    | l            | l              |

|    | Self-Study for Enrichment:                                 |            |         |
|----|------------------------------------------------------------|------------|---------|
|    | (Not to be included for External Examination)              |            |         |
| VI | Determination of sugar (glucose) in serum - o-toluidine    | CO1,       | K1, K2, |
|    | method - diagnostic test for sugar in urine - Benedict's   | CO2<br>CO3 | K3,K4   |
|    | test - detection of diabetes - detection of cholesterol in | 003        |         |
|    | urine – detection of anaemia – estimation of haemoglobin   |            |         |
|    | (Hb concentration) – red cell count.                       |            |         |
|    |                                                            |            |         |

## **Text Books**

- 1. Bartley, E. H. (1901). Text-book of Medical and Pharmaceutical Chemistry. United Kingdom: P. Blakiston's Son & Company.
- 2. Braun, T., Kyrš, M., Tölgyessy, J. (2013). Isotope Dilution Analysis: International Series of Monographs in Analytical Chemistry. United Kingdom: Elsevier Science.
- 3. Shargel, L. (2016). Generic Drug Product Development: Specialty Dosage Forms. United Kingdom: CRC Press.
- 4. Toxicity Bibliography. (1972). United States: National Library of Medicine.

### Reference Books

- 1. Ghosh, J. (n.d.). A Textbook of Pharmaceutical Chemistry. India: S. Chand Limited.
- 2. Alonso, J., Gonzalez, P. (2019). Isotope Dilution Mass Spectrometry. United Kingdom: Royal Society of Chemistry.
- 3. Isadore Kanfer, Leon Shargel, Generic Drug Product Development: International Regulatory Requirements for Bioequivalence. (2010). United Kingdom: CRC Press.
- 4. Goulding, R. (2013). Handbook of Dental Pharmacology and therapeutics. Netherlands: Elsevier Science..

### **Web References**

 $\underline{https://www.ncbi.nlm.nih.gov/books/NBK482447/https://training.seer.cancer.gov/treatment/chemotherapy/types.html}$ 

## **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

### **Course Designers**

- 1. Dr. R. Subha
- 2. Dr. C. Rajarajeswari

| Semester III | Internal Marks: 25 |                 | External | Marks: 75 |
|--------------|--------------------|-----------------|----------|-----------|
| COURSE       | COURSE TITLE       | CATEGORY        | Hrs./    | CREDITS   |
| CODE         |                    |                 | Week     |           |
| 23PCH3GEC1   | RENEWABLE ENERGY   | GENERIC         | 3        | 2         |
|              | AND ENERGY         | <b>ELECTIVE</b> |          |           |
|              | HARVESTING         | COURSE          |          |           |

- ➤ Understand the fundamental principles of renewable energy sources, including solar, wind, hydroelectric, geothermal, and biomass, and their potential for sustainable power generation.
- ➤ Explore the engineering principles underlying energy harvesting techniques, such as photovoltaic systems, wind turbines, hydroelectric generators, and thermoelectric devices.
- Analyze the environmental, economic, and social impacts of various renewable energy technologies, including their advantages and limitations compared to conventional fossil fuel-based energy sources.
- ➤ Investigate policy frameworks, regulatory mechanisms, and financial incentives influencing the deployment and adoption of renewable energy solutions at local, national, and global scales.
- Foster effective communication skills to articulate the technical, economic, and environmental implications of renewable energy technologies.

## **Course Outcomes**

# Course Outcome and Cognitive Level Mapping

| CO     | CO Statement                                                              | Cognitive |
|--------|---------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to      | Level     |
| CO1    | Understanding of the fundamental principles governing renewable energy    | K1        |
|        | sources, including solar, wind, hydroelectric, geothermal, and biomass,   |           |
|        | and their potential applications for sustainable energy generation.       |           |
| CO2    | Analyze and evaluate the environmental, economic, and social              | K2        |
|        | implications of various renewable energy technologies,                    |           |
| CO3    | Implementing, and optimizing energy harvesting systems, utilizing a       | K3        |
|        | range of techniques such as photovoltaics, wind turbines, hydroelectric   |           |
|        | generators, and thermoelectric devices to efficiently capture and convert |           |
|        | renewable energy resources into usable electricity.                       |           |
| CO4    | Expertise in navigating the complex policy and regulatory landscape       | K4        |
|        | governing renewable energy deployment                                     |           |
| CO5    | Promote ethical awareness and responsible citizenship by exploring the    | K5        |
|        | ethical dilemmas, social justice considerations, and cultural dimensions  |           |
|        | associated with the transition to a renewable energy-based economy.       |           |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 2    | 2    | 2    | 3   | 2   | 3   | 3   | 3   |
| CO2 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 2   | 2   | 2   |
| CO3 | 2    | 2    | 2    | 3    | 2    | 3   | 3   | 2   | 3   | 3   |
| CO4 | 3    | 2    | 3    | 2    | 3    | 3   | 2   | 2   | 2   | 3   |
| CO5 | 3    | 2    | 2    | 3    | 3    | 3   | 3   | 1   | 2   | 2   |

<sup>&</sup>quot;1" – Slight (Low) Correlation "2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation "-" Indicates there is No Correlation.

| UNIT | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                               | HOURS | COs                                 | COGNITIVE<br>LEVEL             |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------|--------------------------------|
| I    | Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear Energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.              | 09    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| II   | Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non-convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. | 09    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| III  | Wind Energy harvesting and Ocean Energy: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies. Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave                                                                                                                    | 09    | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |

|    | Energy Devices.                                                                                                                                                                                                                                                                            |    |                                     |                                |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------|--------------------------------|
| IV | Piezoelectric Energy harvesting: Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric energy harvesting applications, Human power. | 09 | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| V  | Electromagnetic Energy Harvesting: Linear generators, physics mathematical models, recent applications. Carbon captured technologies, cell, batteries, power consumption. Environmental issues and Renewable sources of energy, sustainability.                                            | 09 | CO1,<br>CO2,<br>CO3,<br>CO4,<br>CO5 | K1,<br>K2,<br>K3,<br>K4,<br>K5 |
| VI | Self-Study for Enrichment:  (Not to be included for External Examination)  Solar energy, biomass, biochemical conversion- applications of solar pond and solar energy- grid interconnection topologies- mathematical description of piezoelectricity – batteries.                          | -  | CO1,<br>CO2,<br>CO3,<br>CO4         | K1,<br>K2,<br>K3,<br>K4        |

- 1. Rai, G. D. (2017). Non-conventional energy sources, 6<sup>th</sup> Edition, Khanna Publishers, New Delhi.
- 2. Agarwal, M. P. (1983). Solar energy, S Chand and Co. Ltd, New Delhi.
- 3. Sukhatme, S. P., and Nayak, J. K. (2017). Solar energy, 4<sup>th</sup> Edition. Tata McGraw Hill Publishing Company Ltd, New Delhi.
- 4. Boyle, G. (2012). Renewable Energy, Power for a sustainable future, Oxford University Press, in association with The Open University.

- 5. Jayakumar, P. (2009). Solar Energy: Resource Assessment Handbook, Asian and Pacific Centre for Transfer of Technology, Thailand.
- 6. Balfour, J., Shaw, M., and Jarosek, S. (2012). Introduction to Photovoltaics, Jones & Bartlett Publishers, USA.

## Reference Books

- 1. Boyle, G., Everett, B., and Ramage, J. (2012). Renewable energy: Power for a sustainable future (3<sup>rd</sup> ed.), Oxford University Press.
- 2. Goswami, D. Y. (2000). Principles of solar engineering. CRC Press.
- 3. Manwell, J. F., McGowan, J. G., and Rogers, A. L. (2009). Wind energy explained: Theory, design and application (2<sup>nd</sup> ed.). Wiley.
- 4. Pandey, B. (2015). Hydroelectric energy: Renewable energy and the environment. CRC Press.
- 5. Klass, D. L. (1998). Biomass for renewable energy, fuels, and chemicals. Academic Press.
- 6. Glassley, W. E. (2015). Geothermal energy: Renewable energy and the environment. CRC Press.
- 7. Priya, S., and Inman, D. J. (2009). Energy harvesting technologies. Springer.
- 8. Markvart, T., and Castaner, L. (2003). Solar cells: Materials, manufacture and operation (2<sup>nd</sup> ed.). Elsevier.
- 9. Burton, T., Jenkins, N., Sharpe, D., and Bossanyi, E. (2011). Wind energy handbook (2<sup>nd</sup> ed.). Wiley.
- 10. Donovan, C. W. (2015). Renewable energy finance: Powering the future. World Scientific.

## **Web References**

- 1. <a href="https://en.wikipedia.org/wiki/Renewable\_energy">https://en.wikipedia.org/wiki/Renewable\_energy</a>
- 2. <a href="https://www.ieee-pes.org/pes-communities/technical-committees/tc-renewable-energy-resources">https://www.ieee-pes.org/pes-communities/technical-committees/tc-renewable-energy-resources</a>
- 3. https://www.energy.gov/science-innovation/energy-sources/renewable-energy
- 4. <a href="https://www.renewableenergyworld.com/">https://www.renewableenergyworld.com/</a>

#### **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

## **Course Designer**

Dr. G. Sivasankari

| Semester IV        | Internal Marks: 25               | External Marks: 75 |          |         |  |  |
|--------------------|----------------------------------|--------------------|----------|---------|--|--|
| <b>COURSE CODE</b> | COURSETITLE                      | CATEGORY           | Hrs/Week | CREDITS |  |  |
| 23PCH4CC7          | PHYSICAL METHODS<br>IN CHEMISTRY | CORE               | 6        | 5       |  |  |

- ➤ To understand electronic spectroscopy of metal complexes.
- > To study in detail IR, Raman and NMR of inorganic compounds.
- > To learn the Mossbauer and magnetic properties of metal complexes.

## **Prerequisites**

Metal complexes, magnetic properties, electromagnetic spectrum.

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to   | Cognitive<br>Level |
|--------------|-------------------------------------------------------------------------------------|--------------------|
| CO1          | Explain the principles of electronic, IR, NMR, ESR and mass spectrometry.           | K1                 |
| CO2          | Describe the applications of various spectroscopy to study the inorganic molecules. | K2                 |
| CO3          | Sketch the different types of spectrum for metal complexes.                         | К3                 |
| CO4          | Analyze the spectrum qualitatively certain chemical compounds.                      | K4                 |
| CO5          | Assess the structure of a compound by various spectral data.                        | K5                 |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO2 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |
| CO5 | 3    | 3    | 2    | 2    | 3    | 3   | 3   | 2   | 3   | 3   |

<sup>&</sup>quot;1" – Slight (Low) Correlation

<sup>&</sup>quot;2" – Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" indicates there is no correlation.

| UNIT | CONTENT                                                                                            | HOURS | COs  | COGNITIVE<br>LEVEL |
|------|----------------------------------------------------------------------------------------------------|-------|------|--------------------|
| I    | <b>Electronic Spectroscopy:</b>                                                                    | 18    | CO1, | K1,                |
|      | Electronic configuration - terms and microstates of                                                |       | CO2, | K2,                |
|      | atoms and ions - term symbols (pn and dn) -                                                        |       | CO3, | К3,                |
|      | spectroscopic terms - L-S coupling - effect of                                                     |       | CO4, | K4,                |
|      | inter-electronic repulsion and spin- orbit coupling -                                              |       | CO5  | K5                 |
|      | selection rules - Orgel diagram - prediction and                                                   |       |      |                    |
|      | assignment of transitions for weak field $d^1 - d^9$                                               |       |      |                    |
|      | ions - calculation of $\boldsymbol{\beta}$ and 10 Dq for simple                                    |       |      |                    |
|      | octahedral complexes of Co and Ni- charge                                                          |       |      |                    |
|      | transfer spectra – electronic spectra of                                                           |       |      |                    |
|      | $[Ru(bipy)_3]^{2+}.$                                                                               |       |      |                    |
| II   | IR and Raman Spectroscopy:                                                                         | 18    | CO1, | K1,                |
|      | Introduction to IR spectroscopy- IR active and IR                                                  |       | CO2, | K2,                |
|      | inactive vibrations - compare the intensity of M-O,                                                |       | CO3, | K3,                |
|      | M-N, and M-S stretching vibrations in urea and                                                     |       | CO4, | K4,                |
|      | thiourea complexes- factors affecting metal-ligand                                                 |       | CO5  | K5                 |
|      | vibrations - Raman spectroscopy- theory of Raman                                                   |       |      |                    |
|      | effect- applications of Raman spectroscopy for                                                     |       |      |                    |
|      | inorganic chemistry - combined uses of IR and                                                      |       |      |                    |
|      | Raman Spectroscopy in the structural elucidation                                                   |       |      |                    |
|      | of simple molecules like H <sub>2</sub> O, ClF <sub>3</sub> , NO <sub>3</sub> -and                 |       |      |                    |
|      | ClO <sub>3</sub> applications of IR to identify terminal and                                       |       |      |                    |
|      | bridging carbonyl group.                                                                           |       |      |                    |
| III  | NMR Spectroscopy:                                                                                  | 18    | CO1, | K1,                |
|      | Introduction to NMR spectroscopy – one                                                             |       | CO2, | K2,                |
|      | dimensional NMR of <sup>13</sup> C, <sup>15</sup> N, <sup>31</sup> P, <sup>19</sup> F – structural |       | CO3, | К3,                |
|      | determination of molecules by 2D NMR (Peptides-                                                    |       | CO4, | K4,                |
|      | I & II) - chemical exchange - hydrogen or                                                          |       | CO5  | K5                 |
|      | deuterium exchange - Diffusion ordered                                                             |       |      |                    |
|      | spectroscopy (DOSY)- use of chemical shift                                                         |       |      |                    |

|    | reagents - NMR of paramagnetic compounds             |    |      |     |
|----|------------------------------------------------------|----|------|-----|
|    | (contact & pseudo-contact shift) - magnetic          |    |      |     |
|    | resonance imaging (MRI).                             |    |      |     |
| IV | EPR Spectroscopy and Magnetic properties:            | 18 | CO1, | K1, |
|    | Electron spin and its characteristics - treatment of |    | CO2, | K2, |
|    | EPR of hydrogen atom with spin levels, g-value       |    | CO3, | К3, |
|    | and hyperfine interaction in hydrogen atom and       |    | CO4, | K4, |
|    | free radicals - McConnell equation - spectra of      |    | CO5  | K5  |
|    | V(II), Mn (II), Fe(II), Co(II), Ni(II) and Cu(II)    |    |      |     |
|    | complexes - applications of EPR to biological        |    |      |     |
|    | molecules containing Cu(II) and Fe(III) ions -       |    |      |     |
|    | magnetic properties.                                 |    |      |     |
| V  | Photoelectron Spectroscopy Electron and              | 18 | CO1, | K1, |
|    | Neutron Diffraction Analysis:                        |    | CO2, | K2, |
|    | Basic principle of PES - Koopman's theorem -         |    | CO3, | K3, |
|    | Types of PES - XPS - Chemical shifts in XPS -        |    | CO4, | K4, |
|    | Applications of XPS. Electron diffraction by gases   |    | CO5  | K5  |
|    | - scattering intensity vs scattering angle, Wierl    |    |      |     |
|    | equation – measurement techniques. Neutron           |    |      |     |
|    | diffraction by crystals - magnetic scattering -      |    |      |     |
|    | Comparison between electron diffraction and          |    |      |     |
|    | neutron diffraction techniques.                      |    |      |     |
| VI | Self Study for Enrichment:                           | -  | CO1  | K1, |
|    | (Not to be included for External Examination)        |    |      | K2  |
|    | Applications of electronic spectroscopy to metal     |    |      |     |
|    | complexes - symmetry notation for molecular          |    |      |     |
|    | vibrations - Examples for different spin systems -   |    |      |     |
|    | chemical shifts and coupling constants - factors     |    |      |     |
|    | affecting the magnitude of g and A tensors in metal  |    |      |     |
|    | species – high resolution mass spectrometry.         |    |      |     |

- 1. Drago, R. S. (2012). Physical Methods in Inorganic Chemistry; Affiliated East-West Press Pvt. Ltd., New Delhi.
- 2. Drago, R. S. (1992) Physical Methods in Chemistry; Saunders College Publications, Philadelphia.
- 3. Cotton, F. A., and Wilkinson, G. (1999). Advanced Inorganic Chemistry, 6<sup>th</sup> Ed., Wiley Eastern Company, New Delhi.
- 4. Wheatley, P. J. (1981). The Determination of Molecular Structure; 2<sup>nd</sup> Ed., Dover Publications, Mineola.
- 5. Leigh, G. J., and Winterton, N. (2002). Modern Coordination Chemistry; Royal Society of Chemistry, UK.

#### Reference Books

- 1. Ebsworth, E. A. V. (1987). Structural Methods in Inorganic Chemistry; 3<sup>rd</sup> Ed., ELBS, Great Britain.
- 2. Kemp, W. (2011). Organic Spectroscopy; 3<sup>rd</sup> Ed., Palgrave, New York.
- 3. Puri, Sharma and Pathania, (2024). Principles of Physical Chemistry; 48<sup>th</sup> Ed., Vishal Publishing Co., Jalandhar.
- 4. Malik, W. U., Tuli G. D., and Madan R. D. (2009). Selected Topics in Inorganic Chemistry 7<sup>th</sup> edition, S.Chand, New Delhi.
- 5. Abdul Jameel, A. (2003). Application of Physical Methods to Inorganic compounds JAN publication, Trichy.

## Web References

- 1.https://epgp.inflibnet.ac.in/epgpdata/uploads/epgp\_content/chemistry/07.inorganic\_chemistry-ii/12.\_electronic\_spectra\_of\_coordination\_complexes-iv/et/7436\_et\_et.pdf
- 2. https://oms.bdu.ac.in/ec/admin/contents/160\_P16CH41\_2020052904251921.pdf
- 3. <a href="https://www.youtube.com/watch?v=4yUQMEwW4TU">https://www.youtube.com/watch?v=4yUQMEwW4TU</a>
- 4. https://ccsuniversity.ac.in/bridge-library/pdf/chem-ESR-Lecture-5.pdf
- 5.https://www.blogs.uni-mainz.de/fb09akguetlich/files/2017/11/Moessbauer\_Lectures.pdf
- 6. <a href="http://www.ccdc.cam.ac.uk/products/csd/Protein Data Bank">http://www.ccdc.cam.ac.uk/products/csd/Protein Data Bank</a> (PDB)

## **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

#### **Course Designer**

Dr. P. Thamizhini

| Semester IV | Internal Marks:25           | External Marks:75 |              |         |  |
|-------------|-----------------------------|-------------------|--------------|---------|--|
| COURSE CODE | COURSE TITLE                | CATEGORY          | Hrs/<br>Week | CREDITS |  |
| 22PCH4CCC3A | CHEMISTRY OF<br>NANOSCIENCE | CORE CHOICE       | 6            | 4       |  |

- To know the basic concepts of nanoscience and synthetic methods of various nanoparticles.
- > To know the ideas of nano clusters, reactions as semiconductors and its social applications like agriculture and food technology.

## **Prerequisites**

Synthesis, characterization, solar cells, nano structures.

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                                                         | Cognitive<br>Level |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| CO1          | Thorough knowledge of the general principles of physics, chemistry, electronics and biology that play a role on the nanometer scale       | K1                 |
| CO2          | Insight into the materials, fabrication and other experimental techniques that can be used on the nanoscale, as well as their limitations | K2                 |
| CO3          | In-depth knowledge of at least one specialisation area within the field of nanoscience and nanotechnology                                 | К3                 |
| CO4          | Sufficient scientific background to undertake research.                                                                                   | K4                 |
| CO5          | Proficiency in translating this knowledge into useful technological applications                                                          | K5                 |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO2 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 2   |
| CO3 | 2    | 3    | 3    | 3    | 3    | 2   | 3   | 3   | 3   | 2   |
| CO4 | 3    | 3    | 2    | 3    | 2    | 3   | 2   | 2   | 2   | 2   |
| CO5 | 2    | 3    | 1    | 2    | 3    | 3   | 3   | 3   | 2   | 3   |

<sup>&</sup>quot;1"-Slight (Low)Correlation

<sup>&</sup>quot;2"-Moderate (Medium)

<sup>&</sup>quot;3"-Substantial (High)Correlation

<sup>&</sup>quot;-"indicates there is no correlation

| UNIT | CONTENT                                                 | HOURS | COs | COGNITIVE |
|------|---------------------------------------------------------|-------|-----|-----------|
|      |                                                         |       |     | LEVEL     |
| Ι    | Synthetic Methods: Nano dimensional materials –         | 18    | CO1 | K1        |
|      | synthesis - hydrothermal synthesis- solvo thermal       |       | CO2 | K2        |
|      | synthesis - microwave irradiation- sol-gel -            |       | CO3 | K3        |
|      | precipitation technologies – chemical vapour            |       | CO4 | K4        |
|      | condensation process - sono chemical synthesis -        |       | CO5 | K5        |
|      | Microbial and plant-mediated synthesis.                 |       |     |           |
| II   | Characterization of Nanoscale Materials: Principles     | 18    | CO1 | K1        |
|      | of Atomic Force Microscopy (AFM) - Transmission         |       | CO2 | K2        |
|      | Electron Microscopy (TEM) Resolution and Scanning       |       | CO3 | K3        |
|      | Transmission Electron Microscopy (STEM) – Scanning      |       | CO4 | K4        |
|      | Tunneling Microscopy (STM) - Scanning Nearfield         |       | CO5 | K5        |
|      | Optical Microscopy (SNOM) and Scanning ion              |       |     |           |
|      | conductance microscope.                                 |       |     |           |
| III  | Carbon Clusters and Nanostructures: Nature of           | 18    | CO1 | K1        |
|      | carbon bond- new carbon structures - carbon clusters -  |       | CO2 | K2        |
|      | discovery of C60-alkali doped C60-superconductivity     |       | CO3 | K3        |
|      | in C60-larger - smaller fullerenes - carbon nanotubes - |       | CO4 | K4        |
|      | synthesis – single walled carbon nanotubes – structure  |       | CO5 | K5        |
|      | and characterization - chemically modified carbon       |       |     |           |
|      | nanotubes - applications of carbon nanotubes -          |       |     |           |
|      | nanowires -synthetic strategies - applications of       |       |     |           |
|      | nanowires                                               |       |     |           |
| IV   | Chemical Sensors and Biosensors:                        | 18    | CO1 | K1        |
|      | Biosensor and nanobiosensor - basic concepts -          |       | CO2 | K2        |
|      | characterization - Enzyme– meta NP hybrids for          |       |     |           |

|    | biosensing - generation of nanostructures- Biomolecule                                         |    | CO3 | K3 |
|----|------------------------------------------------------------------------------------------------|----|-----|----|
|    | - different types of nanobiosensors - nano biosensors for                                      |    | CO4 | K4 |
|    | medical diagnostics -nanoprobes for analytical                                                 |    | CO5 | K5 |
|    | applications.                                                                                  |    |     |    |
| V  | Solar and Fuel Cells: Nanomaterials for solar cells-                                           | 18 | CO1 | K1 |
|    | Dye-sensitized solar cells- Organic-inorganic hybrid                                           |    | CO2 | K2 |
|    | solar cells- Polymer composites for solar cells- current                                       |    | CO3 | K3 |
|    | status and future prospects. Polymer membranes for fuel                                        |    | CO4 | K4 |
|    | cells, Acid/ alkaline fuel cells- carbon nanotubes for                                         |    | CO5 | K5 |
|    | energy storage- use of nanoscale catalysts to save energy                                      |    |     |    |
|    | and increase the industrial productivity.                                                      |    |     |    |
|    | Self-Study for Enrichment                                                                      | -  | CO1 | K1 |
| VI | (Not to be included for External Examination) Classification and properties of nano materials, |    | CO2 | K2 |
|    | Scanning Nearfield Optical Microscopy, applications                                            |    | CO3 | K3 |
|    | of carbon nanotube, nano biosensors for medical                                                |    | CO4 | K4 |
|    | diagnostics, Dye-sensitized solar cells.                                                       |    |     |    |

- 1. Rao, C. N. R., Muller, A. and Cheetham, A. K., (2004). The Chemistry of Nanomaterials: (Eds), Vol. 1 and 2 Wiley-VCH. Germany, Weinheim.
- 2. Poole, C. P., and Owens, F. J., (2003). Introduction to Nanotechnology. Wiley Interscience New Jersey.
- 3. Pradeep,T. (2007) Nano:The Essentials in Understanding Nanoscience and Nanotechnology. 1<sup>st</sup> Ed., Tata McGraw Hill, New York.
- 4. Balandin, A. A., Wang, K. L., (2006). Handbook of Semiconductor Nanostructures and Nanodevices Vol 1-5. American scientific publishers.
- 5. Frewer, Lynn. Willehm, Norde, J. Fischer, R. H., and Kampers, W. H., (2011).

  Nanotechnology in the Agri-food sector Wiley-VCH Verlag.

#### Reference Books

- 1. Klabunde, K.J., (2009). Nanoscale Materials in Chemistry; 2<sup>nd</sup> Ed., Wiley-Interscience, New York.
- 2. Fujita, H., (2003). Micromachines as Tools in Nanotechnology Springer-Verlag. Berlin.
- 3. Kain, W., & Schweder ski, B. (2013). Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2<sup>nd</sup> Ed., John-Wiley R Sons, New York.
- 4. Chaudry,Q., Castle, L., and Watkins, R., (2010) Nanotechnologies in Food. RSC Publications.

#### Web References

- 1. <a href="https://www.sathyabama.ac.in/sites/default/files/course-material/2020">https://www.sathyabama.ac.in/sites/default/files/course-material/2020</a> 10/note\_1519281517.pdf
- 2. https://www.britannica.com/technology/solar-cell
- 3. <a href="https://www.nano.gov/about-nanotechnology/applications-nanotechnology">https://www.nano.gov/about-nanotechnology/applications-nanotechnology</a>
- 4. <a href="https://www.iberdrola.com/innovation/nanotechnology-applications">https://www.iberdrola.com/innovation/nanotechnology-applications</a>

## **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar

## **Course Designers**

- 1. Dr. G. Sivasankari
- 2. Dr. K. Shenbagam

| Semester IV | Internal Marks:25 | External Marks:75 |           |         |  |
|-------------|-------------------|-------------------|-----------|---------|--|
| COURSE CODE | COURSE TITLE      | CATEGORY          | Hrs /Week | CREDITS |  |
| 22PCH4CCC3B | BIOFUELS          | CORE<br>CHOICE    | 6         | 4       |  |

- > To understand basic concepts about biomass derived energy
- To acquire the concept of 1st generation, 2nd generation and advance biofuels
- > To understand terminologies related to biomass conversion and biofuel production
- To describe techno-economic analyses of biofuel conversion technologies

## **Prerequisites**

Biomass derived energy, advance biofuels, biofuel production, environmental impact.

#### **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO<br>Number | CO Statement On the successful completion of the course, students will be able to                     | Cognitive<br>Level |
|--------------|-------------------------------------------------------------------------------------------------------|--------------------|
|              | Know the outline about introduction of biofuels, biorefineries and environmental impacts.             |                    |
| CO2          | Stabilize the knowledge on classifications and significance of biofuels in various fields.            | К3                 |
| CO3          | Interpret the characteristics and production methods of different biofuels and environmental impacts. | K4                 |
| CO4          | Recognize the technique for synthesis and purification of classified biofuels.                        | K5                 |
| CO5          | Predict the scope of different biofuels in various fields.                                            | K6                 |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

<sup>&</sup>quot;1"-Slight (Low)Correlation "2"-Moderate (Medium)Correlation

<sup>&</sup>quot;3"-Substantial (High)Correlation "-"indicates there is no correlation

| UNIT | CONTENT                                                      | HOURS | COs | COGNITIVE |
|------|--------------------------------------------------------------|-------|-----|-----------|
|      |                                                              |       |     | LEVEL     |
| I    | Biofuels: Classification of biofuels- solid-liquid -         | 18    | CO1 | K1        |
|      | gaseous fuels- production processes - raw materials -        |       | CO2 | K2        |
|      | products - Generation - first - second - third - fourth      |       | CO3 | K3        |
|      | generation of biofuels Concepts of biorefinery -             |       | CO4 | K4        |
|      | alternative energies - environmental - economic and          |       | CO5 | K5        |
|      | regulatory issues- value added processing of biofuel         |       |     |           |
|      | residues - co-products.                                      |       |     |           |
| II   | Solid biofuels: Structure - properties of cellulose -        | 18    | CO1 | K1        |
|      | isolation and applications of lignin -                       |       | CO2 | K2        |
|      | pretreatment/fractionation by dilute acid - steam explosion  |       | CO3 | К3        |
|      | - organo solvent and ammonia fiber explosion (AFEX)          |       | CO4 | K4        |
|      | methods - biochemical conversion of lignocellulosic to       |       | CO5 | K5        |
|      | alcohols by separate hydrolysis and fermentation (SHF) -     |       |     |           |
|      | simultaneous saccharification and fermentation (SSF)         |       |     |           |
|      | process - thermal conversion of biomass to liquid fuels by   |       |     |           |
|      | gasification – pyrolysis                                     |       |     |           |
| III  | Liquid Biofuels: Characteristics - significance of liquid    | 18    | CO1 | K1        |
|      | biofuels - production - refined oils as fuel hydrogenation   |       | CO2 | K2        |
|      | of unsaturated lipids - Fischer-Tropsch process for the      |       | CO3 | К3        |
|      | production of hydrocarbons from syngas - bioethanol- raw     |       | CO4 | K4        |
|      | materials - pretreatment processes- enzymatic hydrolysis     |       | CO5 | K5        |
|      | and fermentation - recovery - uses - regulations -           |       |     |           |
|      | production of Ethyl ter-butyl ether (ETBE) biodiesel-        |       |     |           |
|      | trans esterification - raw materials - pretreatment process- |       |     |           |
|      | separation – purification - quality- uses - regulations.     |       |     |           |
| IV   | Gaseous Biofuels: Characteristics and scope of gaseous       | 18    | CO1 | K1        |
|      | biofuels- Energy conversion process- anaerobic digestion     |       | CO2 | K2        |
|      | acidogenesis – acetogenesis – methanogensis -                |       | CO3 | К3        |
|      | disintegration – hydrolysis - environmental and              |       | CO4 | K4        |
|      | optimization conditions for production of gaseous biofuels   |       | CO5 | K5        |

|    | - temperature -pH - alkalinity nutrients - organic loading |    |     |    |
|----|------------------------------------------------------------|----|-----|----|
|    | rate - solid and hydraulic retention time - granulation of |    |     |    |
|    | anaerobic biomass.                                         |    |     |    |
| V  | Other Biofuels: Biobutanol production - Principles,        | 18 | CO1 | K1 |
|    | materials and feedstocks - Process technologies -          |    | CO2 | K2 |
|    | Biopropanol – Bioglycerol – Production of bio-oils via     |    | CO3 | К3 |
|    | catalytic pyrolysis - Life-Cycle environmental impacts of  |    | CO4 | K4 |
|    | biofuels and Co-products.                                  |    | CO5 | K5 |
|    | Self-Study for Enrichment                                  | -  | CO1 | K1 |
| VI | (Not to be included for External Examination)              |    | CO2 | K2 |
|    | Generation of biofuels -Integration of biofuels into       |    |     | К3 |
|    | biorefineries -Environmental sustainability of biofuels -  |    |     |    |
|    | Economic sustainability of biofuels.                       |    |     |    |

- 1) K. Sharma, Environmental chemistry, Krishanan pumblications, 2014.
- 2) Rao, M.N and Datta, A. K, Wastewater treatment, Oxfod and IBH publishers, 2007.
- 3) Robert C.Brown, Biorenewable resources: Engineering new products from Agriculture, Wiley Publishers, 2003.
- 4) Mousdale, Biofuels: Biotechnology, chemistry & Sustainble development, CRC Press,2008.

#### Reference Books

- 1) Mark Hammer, Water and Wastewater Technology, Pearson, 1975.
- 2) Sharma, B.K, An Introduction to Environmental pollution, Krishna Prakashan media, 2001.
- 3) Caye Drapcho, Terry Walker, Engineering Process Technology, Mc Graw Hill, 2008.
- 4) Sungyu Lee & Y.T. Shah, Biofuels and Bioenergy Process Technologies, CRC Press, 2013.

## **Web References**

- 1. https://www.slideshare.net/flanzashebarina/biofuels-28535080.
- 2. https://unstats.un.org/unsd/energy/meetings/2016iwc/19renewables.ppsx.
- 3. <a href="https://www.slideshare.net/AjaySinghLodhi/biofuel-226702434">https://www.slideshare.net/AjaySinghLodhi/biofuel-226702434</a>.
- 4. https://www.rgpv.ac.in/PDF/05%20Biomass.ppt.
- 5.<u>https://www.slideshare.net/tarun316/biobutanol-ppt.</u>

# Pedagogy

Chalk and talk, PPT, E-content, Discussion, Assignment, Demo, Quiz, Seminar

# Course Designer

Dr. K. Uma Sivakami

| Semester IV        | Internal Marks            | Exter       | External Marks:75 |         |  |
|--------------------|---------------------------|-------------|-------------------|---------|--|
| COURSE CODE        | COURSE TITLE              | CATEGORY    | Hrs<br>/Week      | CREDITS |  |
| <b>22PCH4CCC3C</b> | BIOINORGANIC<br>CHEMISTRY | CORE CHOICE | 6                 | 4       |  |

- ✓ To learn the basic concepts of bioinorganic chemistry
- ✓ To give ideas of biological membrane
- ✓ To learn the concepts of oxygen transport
- ✓ To study the role of biological enzymes

## **Prerequisites**

Biological enzymes, Enzyme functions, metallo enzymes

## **Course Outcomes**

**Course Outcome and Cognitive Level Mapping** 

| CO     | CO Statement                                                                         | Cognitive |
|--------|--------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                 | Level     |
| CO1    | Recall and summarize the fundamentals of bioinorganic chemistry                      | K1, K2    |
| CO2    | Interpret the concept to structure, function and transport of enzymes.               | K3        |
| CO3    | Categorize the interaction and effect of biological enzymes                          | K4        |
| CO4    | Evaluate the role of metals in function of biological system                         | K5        |
| CO5    | Predict the favorable conditions of application of metals and enzymes in daily life. | K6        |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

 $<sup>\</sup>hbox{``1''-Slight (Low)} Correlation \\ \hbox{``2''-Moderate (Medium)} Correlation$ 

<sup>&</sup>quot;3"-Substantial (High)Correlation "-"indicates there is no correlation

| UNIT | CONTENT                                                | HOURS | COs  | COGNITIVE |
|------|--------------------------------------------------------|-------|------|-----------|
|      |                                                        |       |      | LEVEL     |
| I    | General Principles of Bioinorganic Chemistry:          | 18    | CO1, | K1,       |
|      | Occurrence and availability of Inorganic elements in   |       | CO2, | K2,       |
|      | biological systems- Metal ion interactions with purine |       | CO3, | К3,       |
|      | and pyrimidine bases, nucleosides, nucleotides and     |       | CO4, | K4,       |
|      | nucleic acids - DNA and RNA, metal ions in genetic     |       | CO5  | K5, K6    |
|      | information transfer- Different possible ways of DNA   |       |      |           |
|      | interaction                                            |       |      |           |
| II   | Function and Transport of Alkali and Alkaline          | 18    | CO1, | K1,       |
|      | earth metals: Uptake, transport and storage of metal   |       | CO2, | K2,       |
|      | ions by organisms - structure and functions of         |       | CO3, | K3,       |
|      | biological membranes - the generation of concentration |       | CO4, | K4,       |
|      | gradients (the Na+ -K + pump) - mechanisms of ion-     |       | CO5  | K5, K6    |
|      | transport across cell membranes – bleomycin -          |       |      |           |
|      | siderophores (e.g. enterobactin and desferrioxamine) - |       |      |           |
|      | transport of iron by transferring - storage of iron by |       |      |           |
|      | ferritin - bio chemistry of calcium as hormonal        |       |      |           |
|      | messenger.                                             |       |      |           |
| III  | Metalloporphyrins/Metalloenzymes: Dioxygen             | 18    | CO1, | K1,       |
|      | transport and storage - hemoglobin and myoglobin:      |       | CO2, | K2,       |
|      | electronic and spatial structures - hemeythrin and     |       | CO3, | К3,       |
|      | hemocyanine - synthetic oxygen carriers, model         |       | CO4, | K4,       |
|      | systems - blue copper proteins (Cu) - iron-sulfur      |       | CO5  | K5, K6    |
|      | proteins (Fe)- cytrochromes electron transport chain - |       |      |           |
|      | carbon monoxide poisoning.                             |       |      |           |
| IV   | Redox enzymes: Catalase, peroxidase, super oxide       | 18    | CO1, | K1,       |
|      | dismutase (SOD), cytochrome P-450, nitric oxide        |       | CO2, | K2,       |
|      | synthases (NOS), ascorbate oxidase, aldehyde oxidase - |       | CO3, | K3,       |
|      | molybdo enzymes- xanthene oxidase, nitrate reductase,  |       | CO4, | K4,       |
|      | sulfite oxidase including some model study.            |       | CO5  | K5, K6    |
|      |                                                        |       |      |           |
|      | •                                                      |       |      | •         |

| V  | Bioenergetics                                           | 18 | CO1, | K1,    |
|----|---------------------------------------------------------|----|------|--------|
|    | DNA polymerization, glucose storage, metal complexes    |    | CO2, | K2,    |
|    | in transmission of energy- chlorophylls, photo system I |    | CO3, | К3,    |
|    | and photo system II in cleavage of water - Model        |    | CO4, | K4,    |
|    | systems.                                                |    | CO5  | K5, K6 |
|    |                                                         |    |      |        |
|    | Self-Study for Enrichment:                              |    | CO1, | K1,    |
| VI | (Not to be included for External Examination)           |    | CO2  | K2,    |
|    | Medicinal bioinorganic chemistry: platinum complexes    |    | CO3  | K3,    |
|    | in cancer therapy - cis-platin and its mode of action - |    |      | K4     |
|    | metal toxicity. Metals in medicine: anticancer agents,  |    |      |        |
|    | diabetes, arthritis, radionuclides and related          |    |      |        |
|    | applications                                            |    |      |        |
|    |                                                         |    |      |        |

- 1. Lippard, S. J., and Berg, J. M., Principles of Bioinorganic Chemistry, (1997)
  Panima Publishing Company, New Delhi
- 2. Kaim W., and Schewederski, B., Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life (2013 John Wiley & Sons, New York, USA,
- 3. Bertini, I., Gray, H. B., Lippard, S. J. and Valentine, J. S., Bioinorganic Chemistry, 1 st South Asia edition, (2007) Viva books Pvt. Ltd
- 4. Huheey, J. E., Keiter, E. A. and Keiter, R. L., and Medhi, O. K., Inorganic Chemistry Principles of Structure and Reactivity,4<sup>th</sup> edition (2006), Pearson Education,
- 5. Behrens, P., Bauerlein, E., Hand Book of Biomineralization, 1<sup>st</sup> edition, Vol. 1& 2 Wiley-VCH.
- 6. Arnikar, H. J., Essentials of Nuclear Chemistry, 4<sup>th</sup> edition (1995), New Age International Publishers Ltd., New Delhi,
- 7. Loveland, W. D., Morrissey, D. J., Seaborg, G. T., Modern Nuclear Chemistry (2006), Wiley-VCH Verlag GmbH Co. KGaA
- 8. Glasstone, 'Source Book on Atomic Energy', 3<sup>rd</sup> edition (1979), Affiliated East West Press.
- 9. Lee, J. D. Concise Inorganic Chemistry, 5<sup>th</sup> edition (1996) Blackwell Science.
- 10. S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry (1994), University Science Books,

Mill Valley, California.

## **Reference Books**

- 1. Purcell, K. F. and Kotz, J. C., Inorganic Chemistry, (2012) Cengage Learning.
- Cotton, F. A., Wilkinson, G., Carlos A. Murillo, Manfred Bochmann, Advanced Inorganic Chemistry, 6th edition (2007) A Wiley - Interscience Publication, John – Wiley & Sons, USA.
- 3. Atkins, P., Overton, T., Rourke, J., Weller M., and Armstrong, F., Inorganic Chemistry, 5<sup>th</sup> edition (2010) Oxford University Press.
- 4. Lehninger, A., Nelson, D. L., Cox, M. M, Principles of Biochemistry, 5<sup>th</sup> edition (2008) W.H Freeman.
- 5. Alessio, E., Bioinorganic Medicinal Chemistry, 1<sup>st</sup> Edition (2012) Wiley-VCH Verlag GmbH Co. KGaA.

## **Web References**

- 1. <a href="https://www.youtube.com/watch?v=jrkqvZSCsQU">https://www.youtube.com/watch?v=jrkqvZSCsQU</a>
- 2. https://www.sciencedirect.com/science/article/pii/S2772422022000283
- 3. https://www.slideshare.net/fatimasaleh94214/enzymes-2-30256325
- 4. <a href="https://www.slideshare.net/iqbal1313/bioenergetics-25078367">https://www.slideshare.net/iqbal1313/bioenergetics-25078367</a>

## **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

## **Course Designer**

Dr. K. Shenbagam

| Semester IV | Internal Marks:25             | External Marks:75 |          |         |  |  |
|-------------|-------------------------------|-------------------|----------|---------|--|--|
| COURSE CODE | COURSE TITLE                  | CATEGORY          | Hrs/Week | CREDITS |  |  |
| 23PCH4CC5P  | PHYSICAL<br>CHEMISTRY –II (P) | CORE              | 6        | 5       |  |  |

- To construct the phase diagram of two component system forming congruent melting solid and find its eutectic temperatures and compositions
- To understand the principle of conductivity experiments through conductometric titrations.
- To understand the principle of potentiometric experiments through emf measurements.

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                                                           | Cognitive |
|--------|--------------------------------------------------------------------------------------------------------|-----------|
| Number | On the successful completion of the course, students will be able to                                   | Level     |
| CO1    | To remember the principle involved in various physical-chemical experiments.                           | K2 & K3   |
| CO2    | To Plan and carry out all experiments scientifically.                                                  | К3        |
| CO3    | Monitor and systematically record the readings of all experiments.                                     | K4        |
| CO4    | Calculate and process experimentally measured values and compare graphically data.                     | K4        |
| CO5    | Scientifically interpret experimental data to improve the effectiveness of student social development. | K5        |

| COs | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 2    | 3    | 2    | 3    | 2    | 2   | 3   | 3   | 2   | 3   |
| CO2 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 2   | 3   |
| CO3 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |
| CO4 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 2   | 3   |
| CO5 | 3    | 3    | 3    | 3    | 3    | 3   | 3   | 3   | 3   | 3   |

<sup>&</sup>quot;1"-Slight (Low) Correlation

<sup>&</sup>quot;2"-Moderate (Medium) Correlation

<sup>&</sup>quot;3"-Substantial (High) Correlation

<sup>&</sup>quot;-"indicates there is no correlation.

# Any TEN experiments (to be decided by the course teacher) out of the following experiments

## I. Non-Electrical Experiments

- 1. Phase diagram -Construction of phase diagram for a simple binary system
  - a) Naphthalene- Phenanthrene
  - b) Benzophenone- diphenylamine
  - c) Benzoic acid and Cinnamic acid
- 2. Determination of heat of solution of a substance (benzoic acid or ammonium oxalate) by the measurement of its solubility as a function of temperature.
- 3. Comparison of the strength of acids by the kinetic study of iodination of acetone.

## **II Electrical Experiments**

#### 1. Conductivity Experiments

- a) Determination of equivalent conductance of a strong electrolyte & the verification of DHO equation.
- b) Verification of Kohlrausch's Law for weak electrolytes.
- c) Determination of solubility of a sparingly soluble salt.
- d) Acid-base titration (strong acid and weak acid vs. NaOH).
- e) Precipitation titrations (mixture of halides only).
- f) Verification of Henderson equation.
- g) Estimation of acetic acid sodium acetate buffer.

#### 2. Potentiometric Experiments

- a) Potentiometric titration of a mixture of Chloride and Iodide vs. AgNO<sub>3</sub>.
- b) Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel Electrode.
- c) Determination of dissociation constant of weak acids.
- d) Potentiometric redox titration Ce<sup>4+</sup> Fe<sup>2+</sup> system.

#### **Text Books**

- 1. Viswanathan, B., and Raghavan, P. S. (2009). Practical Physical Chemistry, Viva Books, New Delhi.
- 2. Athawale, V. D., and Mathur, P. (2008). Experimental Physical Chemistry, New Age International (P) Ltd., New Delhi.
- 3. Sundaram, Krishnan and Raghavan. (1996). Practical Chemistry (Part II), S. Viswanathan Co. Pvt.

- 4. Sinha, S. K. (2014). Physical Chemistry: A laboratory Manual, Narosa Publishing House Pvt, Ltd., New Delhi.
- 5. Jensen, F. (2016). Introduction to Computational Chemistry, 3<sup>rd</sup> Ed., Wiley Blackwell.

## Reference books

- 1. Yadav, J. B. (2001). Advanced Practical Physical chemistry", 20<sup>th</sup>edn. GOEL publishing House, Krishna Pakashan Media Ltd.
- 2. Levitt, B. P. (1985). Findlay's Practical Physical Chemistry, 9<sup>th</sup> ed., Longman, London.
- 3. Gurtu, J. N., and Gurtu, A. (2008). Advanced Physical Chemistry Experiments, Pragati Prakashan, Uttar Pradesh.

#### **Web References**

- 1. <a href="https://web.iitd.ac.in/~nkurur/2015-16/Isem/cmp511/lab\_handout\_new.pdf">https://web.iitd.ac.in/~nkurur/2015-16/Isem/cmp511/lab\_handout\_new.pdf</a>
- 2. <a href="https://mhchem.org/222/pdfLabs222/Kinetics.pdf">https://mhchem.org/222/pdfLabs222/Kinetics.pdf</a>
- 3. https://staff.buffalostate.edu/nazareay/che301/lab5.pdf
- 4. https://www.youtube.com/watch?v=4BbFCcqF\_Ww

## Pedagogy

Demonstration and practical sessions

### **Course Designer**

Dr. K. Shenbagam

| Semester IV | Internal Marks: 2 | 25              | External Marks: 75 |         |  |
|-------------|-------------------|-----------------|--------------------|---------|--|
| COURSE      | COURSE TITLE      | CATEGORY        | Hrs./              | CREDITS |  |
| CODE        |                   |                 | Week               |         |  |
| 22PCH4GEC2  | CORROSION AND     | GENERIC         | 3                  | 2       |  |
|             | POLLUTION         | <b>ELECTIVE</b> |                    |         |  |
|             | MANAGEMENT        | COURSE          |                    |         |  |

- To describe the forms, mechanism, and kinetics of corrosion.
- ➤ To determine the probable corrosion, corrosion rate, and corrosion mechanism of the metallic material in the given environment.
- > To recommend a suitable corrosion protection method for sustainable materials use.

## **Prerequisites**

Corrosion, pollution, solid waste, e-waste

## **Course Outcomes**

## **Course Outcome and Cognitive Level Mapping**

| CO     | CO Statement                                                               |    |  |  |  |
|--------|----------------------------------------------------------------------------|----|--|--|--|
| Number | On the successful completion of the course, students will be able to       |    |  |  |  |
| CO1    | Recall the basic concept of corrosion and pollutions.                      | K1 |  |  |  |
|        | Understand the types of corrosion and objectives of pollution management.  | K2 |  |  |  |
| CO3    | Illustrate the significance of corrosion inhibition and pollution control. | К3 |  |  |  |
| CO4    | Analyze the methods to prevent corrosion and pollution.                    |    |  |  |  |
| CO5    | Propose a way to avoid corrosion and pollution.                            | K5 |  |  |  |

| Cos | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|------|------|------|------|------|-----|-----|-----|-----|-----|
| CO1 | 3    | 3    | 1    | 3    | 2    | 3   | 1   | 1   | 1   | 3   |
| CO2 | 3    | 2    | 1    | 3    | 2    | 2   | 3   | 1   | 1   | 2   |
| CO3 | 3    | 3    | 1    | 1    | 2    | 3   | 2   | 2   | 2   | 3   |
| CO4 | 3    | 3    | 2    | 2    | 3    | 3   | 2   | 1   | 2   | 3   |
| CO5 | 3    | 3    | 2    | 3    | 3    | 3   | 3   | 2   | 1   | 3   |

<sup>&</sup>quot;1" - Slight (Low) Correlation

<sup>&</sup>quot;2" - Moderate (Medium) Correlation

<sup>&</sup>quot;3" – Substantial (High) Correlation

<sup>&</sup>quot;-" Indicates there is No Correlation.

# **SYLLABUS**

| UNIT | CONTENT                                              | HOURS | COs  | COGNITIVE       |
|------|------------------------------------------------------|-------|------|-----------------|
|      |                                                      |       |      | LEVEL           |
| I    | Basic aspects of corrosion:                          | 09    | CO1, | K1, K2, K3, K4, |
|      | Importance of corrosion studies - EMF and            |       | CO2, | K5              |
|      | galvanic series - categorization of corrosion -      |       | CO3, |                 |
|      | dry corrosion and electrochemical corrosion -        |       | CO4, |                 |
|      | difference between chemical and                      |       | CO5  |                 |
|      | electrochemical corrosion - factors influencing      |       |      |                 |
|      | corrosion.                                           |       |      |                 |
| II   | Types of corrosion:                                  | 09    | CO1, | K1, K2, K3, K4, |
|      | Pitting, inter-granular, waterline corrosion, stress |       | CO2, | K5              |
|      | corrosion, erosion corrosion, galvanic corrosion,    |       | CO3, |                 |
|      | dezincification - atmospheric corrosion -            |       | CO4, |                 |
|      | classification, factors influencing atmospheric      |       | CO5  |                 |
|      | corrosion - microbiological corrosion - soil         |       |      |                 |
|      | corrosion.                                           |       |      |                 |
| III  | <b>Effective Coatings:</b>                           | 09    | CO1, | K1, K2, K3, K4, |
|      | Introduction - classification - metallic coating,    |       | CO2, | K5              |
|      | non - metallic coating - organic coatings - pre-     |       | CO3, |                 |
|      | treatment of the surface - metallic coatings - hot   |       | CO4, |                 |
|      | dipping, spraying, cladding inorganic non-           |       | CO5  |                 |
|      | metallic coating - chromate coating, phosphate       |       |      |                 |
|      | coating and oxide coating - organic coatings -       |       |      |                 |
|      | paints - requirements of good paint.                 |       |      |                 |
| IV   | Control Measures of air and soil pollution:          | 09    | CO1, | K1, K2, K3, K4, |
|      | Control of particulate emissions - gravitational     |       | CO2, | K5              |
|      | settling chambers - cyclone separators - fabric      |       | CO3, |                 |
|      | filters - electrostatic precipitators - wet          |       | CO4, |                 |
|      | scrubbers - control of gaseous pollutants -          |       | CO5  |                 |
|      | control of nitrogen oxides pollution - control of    |       |      |                 |
|      | SOx pollution - control measures to prevent soil     |       |      |                 |
|      | pollution - integrated plant nutrient management     |       |      |                 |

|    | - integrated pest management - bioremediation -  |    |      |                 |
|----|--------------------------------------------------|----|------|-----------------|
|    | phytoremediation.                                |    |      |                 |
| V  | Solid and e-waste management:                    | 09 | CO1, | K1, K2, K3, K4, |
|    | Objectives of solid waste management -           |    | CO2, | K5              |
|    | municipal solid waste treatment - dumping -      |    | CO3, |                 |
|    | composting - vermi composting - sanitary land    |    | CO4, |                 |
|    | fill - incineration of municipal solid waste -   |    | CO5  |                 |
|    | industrial solid waste treatment - recycling     |    |      |                 |
|    | techniques - e-waste - composition - recovery of |    |      |                 |
|    | metals and recycling.                            |    |      |                 |
| VI | Self-Study for Enrichment:                       | -  | CO1, | K1, K2          |
|    | (Not to be included for External Examination)    |    | CO2  |                 |
|    | Forms of metallic corrosion, corrosion failure   |    |      |                 |
|    | analysis, corrosion testing and monitoring -     |    |      |                 |
|    | control of pollutant emission from mobile        |    |      |                 |
|    | sources - biodegradability of organic matter,    |    |      |                 |
|    | cellulosic waste and lignin - solid waste        |    |      |                 |
|    | management by biotechnology.                     |    |      |                 |

- 1. Pletcher, D., & Walsh, F. C. (1993) Industrial Electrochemistry, Vol. II, Blakrid Academic Professional, London.
- 2. Jones, D. (1992) Principles and prevention of corrosion, Macmillan Publications, New York.
- 3. Meketta, J. J. (1993) Cathodic protection Theory and practice, Marcel Dekker Publication, New York.
- 4. Kaur, H. (2016). Environmental Chemistry, A Pragati Prakashan Meerut Publication.

#### Reference Books

- 1. Schweitzer, P. A. (2009). Fundamentals of Corrosion, CRC Press, 1<sup>st</sup> Edition.
- 2. R. Winston Revie, R., & Uhlig, H. H. (2008). Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, Wiley, 4<sup>th</sup> Edition.
- 3. Washington, D. C. (2011). Research Opportunities in Corrosion Science and Engineering, National Academic Press.

4. De, A. K. (2018). Environmental Chemistry. 9<sup>th</sup> Edition, New Age International Publishers, New Delhi.

#### **Web References**

- 1. <a href="https://www.slideshare.net/rayhan\_u01/corrosion-engineering-54230652">https://www.slideshare.net/rayhan\_u01/corrosion-engineering-54230652</a>.
- 2. <a href="https://www.usna.edu/NAOE/\_files/documents/Courses/EN380/Course\_Notes/Ch05\_Corrosion\_Types.pdf">https://www.usna.edu/NAOE/\_files/documents/Courses/EN380/Course\_Notes/Ch05\_Corrosion\_Types.pdf</a>.
- 3. <a href="https://www.slideshare.net/Faisal419/coating-chemistry">https://www.slideshare.net/Faisal419/coating-chemistry</a>.
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963874/
- 5. <a href="https://ec.europa.eu/echo/files/evaluation/watsan2005/annex\_files/WEDC/es/ES07CD">https://ec.europa.eu/echo/files/evaluation/watsan2005/annex\_files/WEDC/es/ES07CD</a>
  <a href="https://ec.europa.eu/echo/files/evaluation/watsan2005/annex\_files/WEDC/es/ES07CD">https://ec.europa.eu/echo/files/evaluation/watsan2005/annex\_files/WEDC/es/ES07CD</a>
  <a href="https://ec.europa.eu/echo/files/evaluation/watsan2005/annex\_files/WEDC/es/ES07CD">https://ec.europa.eu/echo/files/evaluation/watsan2005/annex\_files/WEDC/es/ES07CD</a>
- 6. <a href="https://cpcb.nic.in/displaypdf.php?id=em9iZW5nYWx1cnUvQVBDRHMucGRm">https://cpcb.nic.in/displaypdf.php?id=em9iZW5nYWx1cnUvQVBDRHMucGRm</a>

## **Pedagogy**

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

## **Course Designers**

- 1. Dr. K. Uma Sivakami
- 2. Dr. S. Devi