CAUVERY COLLEGE FOR WOMEN(AUTONOMOUS)

Nationally Accredited with 'A' Grade by NAAC ISO 9001:2015Certified

TIRUCHIRAPPALLI

PG AND RESEARCH DEPARTMENT OF MICROBIOLOGY

B.Sc.,MICROBIOLOGY

SYLLABUS

2022 -2023 and Onwards

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MICROBIOLOGY

VISION

Our vision is to encourage eminent research work through the conception of an attractive and vibrant environment to achieve goals of our department.

MISSION

- To impart relevant, ultimate, principle-oriented education and practical expertise in the field of Microbiology.
- To strive to provide quality education conjugated with innovative technology so as to be able to gain technical and educational expertise locally, nationally, internationally.
- Our prime focus is to enrich the ambitions of our students, staff and steer with constructive collaboration towards excellence.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEOs	Statements
PEO1	LEARNING ENVIRONMENT To facilitate value-based holistic and comprehensive learning by integrating
	innovative learning practices to match the highest quality standards and train the students to be effective leaders in their chosen fields.
PEO2	ACADEMIC EXCELLENCE
	To provide a conducive environment to unleash their hidden talents and to
	nurture the spirit of critical thinking and encourage them to achieve their
	goal.
PEO3	EMPLOYABILITY
	To equip students with the required skills in order to adapt to the changing
	global scenario and gain access to versatile career opportunities in
	multidisciplinary domains.
PEO4	PROFESSIONAL ETHICS AND SOCIAL RESPONSIBILITY
	To develop a sense of social responsibility by formulating ethics and equity
	to transform students into committed professionals with a strong attitude
	towards the development of the nation.
PEO5	GREEN SUSTAINABILITY
	To understand the impact of professional solutions in societal and
	environmental contexts and demonstrate the knowledge for an overall
	sustainable development.

PROGRAMME OUTCOMES FOR B.Sc., MICROBIOLOGY PROGRAMME

PONO.	On completion of B.Sc., Microbiology, the students will be able to							
PO1	Academic Excellence and Competence: Elicit firm fundamental knowledge in							
101	theoryaswellaspracticalforcoherentunderstandingofacademicfieldtopursuemultiandinter							
	disciplinary science careers in future.							
PO2	Holistic and Social approach: Create novel ideas related to the scientific research							
	concepts through advanced technology and sensitivity towards sustainable							
	Environmental practices as well as social issues.							
PO3	Professional ethics and Team Work: Explore professional responsibility							
103	through projects, internships, field trip/industrial visits and mentorship							
	Programmes to transmit communication skills.							
PO4	Critical and Scientific thinking: Equip training skills in Internships, Research							
104	Projectstodohigherstudiesinmultidisciplinarypathwithhigherlevelofspecializationto							
	become professionals of high-quality standards.							
PO5	Social Responsibility with ethical values: Ensure ethical, social and holistic							
103	values in the minds of learners and attain ender parity for building a healthy							
	nation.							

PROGRAMME SPECIFIC OUTCOMES FOR B.Sc., MICROBIOLOGY

PSO NO.	Students of B.Sc., Microbiology will be able to	Pos Addressed
PSO1	Improve their knowledge on the basic concepts for retaining competence and confidence which enables them to develop interest in the new arena of Microbiology	PO1, PO5
PSO2	Acquire expertise in practical work within dependent equipment Handling skill along with collection and interpretation of scientific data	PO2, PO3
PSO3	Legitimize knowledge by emerging multiple aspects of current research.	PO3, PO5
PSO4	PursuetheimportanceofsubstantialoriginalResearchtomeetthecurrent and future expectation.	PO4, PO1
PSO5	Beaware of theethicalissuesforthebenefitofthesocietybyaddingskilled scientific work for across the country.	PO5, PO2

Cauvery College for Women (Autonomous)

PG & Research Department of Microbiology B.Sc., Microbiology

Learning Outcome Based Curriculum Framework (CBCS-LOCF)
(For the Candidates admitted from the Academic year 2022-2023 and onwards)

er				Course Code				Exam	1	
est	Part	Course	Title			lits		Mark	S	-
Semester					Inst. Hrs.	Credits	Hrs.	Int	Ext	Total
			இக்கால இலக்கியம்	22ULT1						
		Language	Hindi Literature & Grammar-I	22ULH1						
	I	Course-I (LC) Tamil / other	Basic French-I	22ULF1	6	3	3	25	75	100
		languages	History of Popular Tales Literature and Sanskrit Story	22ULS1						
I	II	English Language Course- I(ELC)	Functional English for Effective Communication-I	22UE1	6	3	3	25	75	100
		Core Course – I(CC)	General Microbiology	22UMB1CC1	5	5	3	25	75	100
		Core Practical - I (CP)	General Microbiology (P)	22UMB1CC1P	3	3	3	40	60	100
	III	First Allied Course- I (AC)	Fundamentals of Biochemistry	22UMB1AC1	5	3	3	25	75	100
		First Allied Course- II (AC)	Fundamentals of Biochemistry (P)	22UMB1AC2P	3	3	3	40	60	100
	IV	Ability Enhancement Compulsory Course-I (AECC)	UGC Jeevan Kaushal-Universal Human Values	22UGVE	2	2	-	100	-	100
			TOTAL		30	22				700
		Language Course- II(LC)Tamil / Other languages	இடைக்கால இலக்கியமும் புதினமும்	22ULT2						
II	I		Hindi Literature & Grammar-II	22ULH2	5	3	3	25	75	100
11			Basic French-II	22ULF2						
			Poetry, Textual Grammar and Alankara	22ULS2						
	II	English Language Course- II(ELC)	Functional English for Effective Communication-II	22UE2	6	3	3	25	75	100
		Core Course – II (CC)	Microbial Physiology	22UMB2CC2	5	5	3	25	75	100
		Core Practical - II (CP)	Microbial Physiology (P)	22UMB2CC2P	3	3	3	40	60	100
	III	Core Course -III (CC)	Microbial Diversity	22UMB2CC3	3	3	3	25	75	100
		First Allied Course – III (AC)	Applied Biochemistry	22UMB2AC3	4	3	3	25	75	100
		Ability Enhancement Compulsory Course- II (AECC)	Environmental Studies	22UGEVS	2	2	-	100	-	100

			TOTAL		30	23				800	
Extra Credit Course		a Credit Course	SWAYAM	A Per UGC Recommendation							
		Compulsory Course-III (AECC)	Entrepreneursinp								
	IV	Ability Enhancement	Innovation and Entrepreneurship	22UGIE	2	1	-	100	-	100	

	I	Language Course- III(LC) Tamil*/Other Languages*	காப்பியமும் நாைகமும்	22ULT3						
			Hindi Literature & Grammar-III	22ULH3	5	3	3	25	75	100
			Intermediate French-I	22ULF3						100
			Prose, Textual Grammar and Vakyarachana	22ULS3						
III	II	English Language Course- II(ELC)	Learning Grammar Through Literature-I	22UE3	6	3	3	25	75	100
		Core Course–IV(CC)	Virology	22UMB3CC4	6	6	3	25	75	100
	III	Core Practical – III(CP)	Virology (P)	22UMB3CC3P	3	3	3	40	60	100
		Second Allied Course-I	Biostatistics	22UMB3AC4	4	3	3	25	75	100
		Second Allied Course- II (AP)	Biostatistics (P)	22UMB3AC5P	4	3	3	40	60	100
		Generic Elective	A. Mushroom Technology	22UMB3GEC1						
	IV	Course- I (GEC)	B. Basic Tamil-I	22ULC3BT1	2	2	3	25	75	100
			C. Special Tamil-I	22ULC3ST1						
	Extra	Credit Course	SWAYAM		s Per U	JGC R	ecom	menda	ation	-
			TO	OTAL	30	23				700

15 Days INTERNSHIP during Semester Holidays

	I	Language Course-IV	பண் டைய இலக்கியமும்	22ULT4						
		(LC) Tamil*/Other	உடைநடையும்							
		Languages*	Hindi Literature &	22ULH4	6	3	3	25	75	100
			Functional Hindi						, 0	100
			Intermediate French-II	22ULF4						
			Drama, History of	22ULS4						
			Drama Literature							
	II	English Language	Learning Grammar	22UE4	6	3	3	25	75	100
		Course -IV(ELC)	Through							
IV			Literature-II							100
	***	Core Course –	Immunology	22UMB4CC5	6	6	3	25	75	100
	III	V(CC)								
		Core Practical -IV(CP)	Immunology (P)	22UMB4CC4P	4	4	3	40	60	100
		Second Allied Course-	Bioinformatics	2211/4D44.06	4	3	3	25	75	100
		III (AC)	Bioinformatics	22UMB4AC6	4	3	3	25	13	100
		Internship	Internship	22UMB4INT	-	2	-	-	-	100
	IV		A. Biofertilizer Technology	22UMB4GEC2						
		Generic Elective	B. Basic Tamil-II	22ULC4BT2	2	2	3	25	75	100

			TOTAL	30	25				800
Extra Credit Course SWAYAM		As Per UGC Recommendation							
	Skill Enhancement Course–I(SEC)	Herbal Medicine (P)	22UMB4SEC1P	2	2	3	40	60	100
	Course- II (GEC)	C. Special Tamil-II	22ULC4ST2						

		Core Course –VI(CC)	Medical Microbiology	22UMB5CC6	6	6	3	25	75	100
	III	Core Course -VII(CC)	Agricultural and Environmental Microbiology	22UMB5CC7	6	6	3	25	75	100
	111	Core Course – VIII(CC)	Molecular Biology	22UMB5CC8	6	6	3	25	75	100
		Core Practical – V(CP)	Medical Microbiology, Agricultural and Environmental Microbiology and Molecular Biology (P)	22UMB5CC5P	3	3	3	40	60	100
			A. Organic Farming	22UMB5DSE1A	5	4	3	25	75	100
	IV	Discipline Specific	B. Medical Parasitology	22UMB5DSE1B						
V		Elective – I (DSE)		22UMB5DSE1C						
		Ability Enhancement Compulsory Course- IV(AECC)	UGC Jeevan Kaushal - Professional Skills	22UGPS	2	2	-	100	-	100
		Skill Enhancement	Biofertilizer Technology (P)	22UMB5SEC2P	2	2	3	40	60	100
		Course –II(SEC)								
	Extra C	redit Course	SWAYAM			GC Rec	comn	nendat	ion	
				TOTAL	30	29				700
		Core Course – IX(CC)	Fermentation Technology	22UMB6CC9	6	6	3		75	100
		Core Course –X(CC)	Food and Dairy Microbiology	22UMB6CC10	5	5	3	25	75	100
		Core Course –XI (CC)	Cyber security	22UGCS	5	4	3	25	75	100
	III	Core Practical – VI(CP)	Fermentation Technology and Food and Dairy Microbiology (P)	22UMB6CC6P	3	3	3	40	60	100
VI		Discipline Specific Elective – II (DSE)	A. Microbial Genetics and Recombinant DNA Technology	22UMB6DSE2A	5	4	3	25	7:	5 100
			B. Microbial Biotechnology							
		D : 4	C. Biological Techniques	22UMB6DSE2C	~	4			100	100
		Project Condon Studios	Project Work	22UMB6PW	5	4	-	-	100	
	V	Gender Studies	Gender Studies	22UGGS	1	1	-	-	-	100
		Extension activity		22UGEA	0	1	0	-	-	-
				TOTAL	30	28				700
				GRANDTOTAL	180	150				4400

Courses & Credits for UG Science Programmes

Part	Course	No. of	Credits	Total Credits
		Courses		
I	Tamil/ Other Language	4	12	12
II	English	4	12	12
	Core (Theory& Practical)	17	77	
	Project Work	1	4	
111	Internship	1	2	
III	First Allied	3	9	109
	Second Allied	3	9	
	DSE	2	8	
	GEC	2	4	
	SEC	2	4	
IV	AECC-I -Universal Human Values	1	2	15
	AECC-II-Environmental Studies	1	2	
	AECC-III-Innovation and Entrepreneurship	1	1	
	AECC-IV Professional Skills	1	2	
V	Gender Studies	1	1	02
	Extension Activities	_	1	
		44		150

Internalandexternal marksfortheoryandpractical papersareasfollows:

Subject	Internal Marks	External Marks
Theory	25	75
Practical	40	60

For Theory:

- a) The passing minimum for CIAshallbe40% out of 25marks (i.e. 10marks)
- b) ThepassingminimumforEndSemesterExaminationsshallb e40% outof75marks(i.e.30marks)

ForPractical:

- a) The passing minimum for CIA shall be40% out of40marks (i.e. 16marks)
- b) The passing minimum for End Semester

Examinations shall be 40% out of 60marks (i.e., 24 marks)

Internal Component (Theory)

Component	Marks
Quiz	10
Assignment &Seminar	10
CIA -I	05
Total	25

Question Paper Pattern for different courses+

Internal Component(Practical)

Component	Marks
Record Note	10
Continuous	15
Performance	
(Attendance and	
Observation)	
CIA	15
	40

Semester: I	Internal Ma	Internal Marks : 25 External Marks :		
COURSE CODE	COURSE TITLE	CATEGORY	Hrs./Week	CREDITS
22UMB1CC1	GENERAL MICROBIOLOGY	CORE	5	5

- This subject aims to introduce the history and development of Microbiology. The contents of this course will help students understand history, biology of microorganisms, growth and control of microbes.
- Thus, the beginners are rightly exposed to foundation of Microbiology which would lead them towards progressive advancement of the subject.

Course Outcome and Cognitive level Mapping

CO	CO Statement	Cognitive level
Number		
CO 1	Remember and understand the Development of Microbiology	K1, K2
CO 2	Analyze the Size and Shape of Microorganisms using Microscope	K3
CO 3	Evaluate the knowledge about Bacteria and Viruses	K4
CO 4	Compare the various Preservation Methods for preserving Microbes.	K5
CO 5	Create the various applications of Extremophiles	K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	3	3	3	2	3
CO2	3	2	3	3	2	2	3	2	3	3
CO3	3	2	2	3	3	3	2	3	3	2
CO4	2	3	3	2	3	3	3	2	3	2
CO5	3	3	2	3	2	3	3	3	2	2

[&]quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	Cos	COGNITIVE LEVEL
I	History and Scope of Microbiology: Introduction- Definition, scope and Spontaneous generation vs. biogenesis. History of Microbiology- Domain and kingdom concepts, Contributions of Anton von Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister, Alexander Flemming Role of microorganisms in fermentation, Germ theory of disease, Development of various microbiological techniques andgolden era of microbiology. Microscopy: Principles and applications of bright field, dark field, phase contrast, fluorescent SEM and TEM.	15	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
II	Structure of Bacteria: Difference between prokaryotic and eukaryotic microorganisms. Brief outline of Bergey's manual of systemic bacteriology. Structural organization of bacteria – Size, shape and arrangement of bacterial cells - Ultrastructure of a bacterial cell - cell wall, cell membrane, ribosomes, nucleoid, slime, capsule, flagella, fimbriae, spores, cysts, plasmid, mesosomes and cytoplasmic inclusions	15	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
III	Cellular and Acellular organisms: General characteristics and nature of Cellular and Acellular organisms- Archaeobacteria, Mycoplasma, Rickettsiae, Chlamydia, Spirochaetes, Actinobacteria, Protozoa, Algae, Fungi, lichens, Viruses, viroids and prions.	15	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
IV	Pure culture techniques: Sterilization: Principles and methods – physical methods-moist heat, dry heat, filtration and media preparation. Cultivation of microbes- Types of culture media-Stab, sland, broth, semisolid, solid media. Aerobic and Anaerobic culture techniques- Pure culture techniques – Maintenance and preservation of microbes. Principles and types of staining- Simple, differential, Capsule staining.	15	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.

V	Extremophiles:Introduction to Extremophiles—Thermophiles, Psychrophiles, barophiles, Halophiles, Alkanophiles, Acidophiles, Methanogenesis and their applications.	15	CO1, CO2, CO3,CO4, CO5.	K1, K2, K3, K4, K5.
VI	Self Study for Enrichment (Not to be included for External Examination) Microscopic operations, Criteria for Classification of Microorganisms, cellular organizations, Isolation and identification of Microorganisms, Cultivation methods for Extremophiles.	-	CO1, CO2, CO3, CO4, CO5	K1,K2,K3,K4 ,K5

Text Books

- 1. Dubey RC and Maheswari DK. (2015). A Text Book of Microbiology.5thEdition.S Chand, New Delhi
- 2. Ananthanarayan Paniker (2020). *A Text book of Microbiology*. 11thEdition. University Press. Singapore.
- 3. Madigan MT, Martinko JM, and Parker J.(2019). *Biology of Microorganisms*. 12th Edition, MacMillan Press.England.
- 4. Pelczar MJ, Chan ECS and Kreig NR. (2015). *Microbiology*, 5th edition. McGraw-Hill.Book Co. Singapore.
- 5. Atlas RA and Bartha R.(2019). *Microbial Ecology. Fundamentals and Application*. 4th edition Benjamin Cummings, New York.

ReferenceBooks

- 1. PrescottL.M, Harley, J.P. and Helin, D.A. (2017). *Microbiology*, 5th Edition. McGraw Hill.
- 2. Tortora GJ, Funke BR and Case CL.(2020). *Microbiology: An Introduction*. 9th Edition, Pearson Education, Singapore.
- 3. Black JG.(2018). *Microbiology-principles and explorations*, 6th edition.John Wiley and Sons, Inc. New York.
- 4. MoselioSchaechter and Joshua Leaderberg (2019). *The Desk encyclopedia of Microbiology*. 2nd edition. Elseiver Academic press, California.
- 5. Madigan MT, Martinko JM, and Parker J.(2019). *Biology of Microorganisms*, 12th Edition. MacMillan Press, England.

Web Reference

- 1.https://microbenotes.com/history-of-microbiology/
- 2.https://byjus.com/biology/prokaryotic-and-eukaryotic-cells/
- 3.https://byjus.com/biology/archaebacteria/
- 4.https://thebiologynotes.com/sterilization-physical-and-chemical-methods/
- 5.https://microbenotes.com/microbiology-of-extreme-environments/

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

Dr.V.Aruna

Semester : I	Internal	Marks:40	ExternalMarks:	60	
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22UMB1CC1P	GENERAL MICROBIOLOGY (P)	CORE PRACTICAL	3	3	

- To enable the students to understand the basic knowledge of aseptic techniques preparation and sterilization of media, pure culture techniques
- To acquire adequate skill to handle microscope to visualize microbes.

Course Outcomes and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive level
CO1	Recall the safety practice in microbiological laboratory	K1
CO2	Demonstrate the accuracy of sterilization	K2
CO3	Develop skills to observe microbes using microscopes	K3
CO4	Competently prepare and cultivate bacteria, fungi and cyanobacteria using media	K3
CO5	Explain various pure culture techniques	K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3	3	2	2	2	3
CO2	3	2	3	3	2	3	2	2	3	3
CO3	3	3	3	2	3	3	3	3	3	2
CO4	3	3	2	3	2	3	2	2	3	2
CO5	3	3	3	2	3	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

- 1. Safety &Good laboratory practices
- 2. Basic concepts of Microscope and its operation
- 3. Principles and operations—Autoclave, Hot Air Oven, Incubators, Laminar Air Flow chamber, Filtration, colony counter, Centrifuge, pH meter, Colorimeter and Spectrophotometer
- 4. Cleaning and sterilization of glassware.
- 5. Preparation of culture media-solid, semi-solid and liquid.
- 6. Isolation of bacteria, fungi and cyanobacteria from soil and water
- 7. Enumeration of bacterial numbers by viable count (Plate count)
- 8. Pure culture techniques Streak plate, Pour plate and Spread plate.
- 9. Test for motility of bacteria Hanging Drop Method
- 10. Staining techniques Simple staining, Gram's staining, Spore-staining, Capsular staining, LCB mount and Saline mount
- 11. Observation of permanent slides to study the structural characteristics of algae (Anabaena,Nostoc,Spirulina,Oscillatoria),fungi(Pythium,Rhizopus,Saccharomy ces,Penicillium, Aspergillus, Agaricus) and protozoa(Entamoeba histolytica and Plasmodiumspp.).

Reference Books

- 1. Bharti Arora, D.R. Arora (2020), Practical Microbiology, CBS Publishers & Distributors
- 2. Mudili J (2020), *Introductory Practical Microbiology*, Narosa Das S (2020), *Microbiology Practical Manual*, CBS Publishers
- 3. Saravanan R, D. Dhachinamoorthi, CH.MM.Prasada Rao,(2019), *A Hand book of Practical Microbiology*, LAP LAMBERT Academic Publishing.
- 4. Shukla Das and Rumpa Saha (2019). *Microbiology Practical Manual*, 1st Edition CBS Publishers and Distributors.
- 5. Amita Jain, Jyotsna Agarwal ,Vimala Venkatesh (2018), *Microbiology Practical Manual*, 1stEdition, Elsevier India.
- 6. Cappuccino and Sherman (2016), *Microbiology–A LaboratoryManual*,11th Edition, DorlingKindersley (India)Pvt. Ltd., New Delhi.
- 7. R.C. Dubey, Dr. D.K. Maheswari(2010), *Practical Microbiology*, Kindle Edition **Web References**
- 1. https://unitedvrg.com/2019/03/28/microbiology-a-laboratory-manual-11th-edition-2016-pdf/
- 2. https://www.youtube.com/watch?v=hxausVA8a3E
- 3. https://www.youtube.com/watch?v=sxa46xKfIOY
- 4. https://www.youtube.com/watch?v=lu9CvlF20pc
- 5. https://study.com/learn/lesson/simple-differential-staining-techniques.html
- 6. https://www.voutube.com/watch?v=xjYdOcT6s1Y
- 7. https://bitesizebio.com/853/5-laboratory-sterilisation-methods/
- 8. https://www.youtube.com/watch?v=QqWcUzpzZgw

Pedagogy

Power point presentations, Group Discussion, Quiz, Brain Storming Activity.

Course Designer

Dr.P.Bhuvaneswari

Semester : I	InternalMarks:25	ExternalMarks:75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB1AC1	FUNDAMENTALS OF BIOCHEMISTRY	ALLIED	4	3

To understand the structure, functions of various biomolecules and consequences ofdeviation from normal

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive level
CO1	Remember and understand the concept of macromolecules	K1,K2
CO2	Illustrate an idea about structure and function macromolecules	K2,K3
CO3	Categorize the sources of macromolecules	K4
CO4	Classify and relate properties o macromolecules	K3,K4
CO5	Recommend the daily allowances of vitamins and its Significance	K5

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	3	3	2	2	3	2	3
CO2	3	3	2	3	3	2	2	3	3	3
CO3	2	3	3	2	3	3	3	2	3	3
CO4	2	3	3	3	2	3	2	3	3	3
CO5	3	3	2	3	3	3	3	2	3	3

[&]quot;1"-Slight (Low) Correlation "2" – Moderate (Medium) Correlation

[&]quot;3"–Substantial (High) Correlation "-"indicates there is no correlation

UNIT	CONTENT	HOURS	COS	COGNITIV ELEVEL
I	Carbohydrates: Definition, sources, classification-monosaccharide, disaccharide, oligosaccharide and Polysaccharide, biological significance, digestion and absorption of carbohydrates	12	CO1, CO2,CO3, CO4	K1,K2,K3,K4
П	Proteins: Definition, sources, classification and structure of proteins-structural and non-structural proteins, Amino acids—structure-classification—essential and non essential, protein and non-protein amino acids. Biological Significance of Proteins.	12	CO1, CO2,CO3, CO4	K1,K2,K3,K4
III	Lipids: Definition, Properties, Sources, Classification of lipids and fatty acids- saturated, unsaturated and polyunsaturated. Compound lipids - Structure and functions of phospholipids and glycolipids. Biological significance of lipids.	12	CO1, CO2,CO3, CO4	K1,K2,K3,K4
IV	Nucleicacids: Definition, structure–Nucleoside, Nucleotides, forms and functions of DNA. Types, structure and functions of RNA. Difference between DNA & RNA (mRNA,tRNA, rRNA).	12	CO1, CO2,CO3, CO4	K1,K2,K3,K4
V	Vitamins: Definition, sources, deficiency disorders and functions of Fat soluble vitamins (A, D, E and K) and Water soluble vitamins (B complex and C).	12	CO1, CO2,CO3, CO4,CO5	K1,K2,K3,K4, K5

Text Books

- 1. Ambika Shanmugam(2016). *FundamentalsofBiochemistryforMedicalstudents*. 8thEdition, Wolters Kluwer(India) Pvt Ltd.
- 2. RafiMD,(2014) TextbookofBiochemistryformedicalstudents,2ndedition,UniversitiesPress,(India)Pvt. Ltd, Hyderabad,India.
- $3. \quad Charlotte WP ratt and Sathyanarayana U and Chakrapani U (2013) \textit{Biochemistry}, 4 the dition, Elsevier publishers.$
- 4. DebAC (2011). Fundamentals of Biochemistry, 10thedition, New Central Book Agency (p)ltd, London
- 5. Rajagopal G (2010). Concise textbook of biochemistry, 2nd edition, Ahuja Publishing House.

Reference Books

- 1. Lubert Stryer; Jeremy Berg; John Tymoczko; Gregory Gatto (2019). *Biochemistry*, 9th Edition. Macmillon Publication.
- 2. DeniseRFerrier,(2013) *Biochemistry*,6thedition,LWWpublishers.
- 3. ReginaldHGarrettand CharlesMGrisham(2012). *Biochemistry*, 5thedition. BrooksColepublishers.
- 4. Albert LLehninger, DavidLNelsonandMichaelMCox, (2010). *LehningerPrinciplesof Biochemistry*, 2nd edition, Wiley publisher

Web References

- 1. https://www.slideshare.net/namarta28/monosaccharides
- 2. https://www.tuscany-diet.net/proteins/classification/#:~:text=egg%20yolk%20phosvitin.

- 3. http://www.Protein%20classification%20based%20on%20shape,two%20classes%3A%2 0f ibrous%20and%20globular.
- 4. https://byjus.com/biology/lipids/#:~:text=There%20are%20two%20major%20types,than % 20alcohol%20and%20fatty%20acids.
- 5. https://www.thoughtco.com/dna-versus-rna-608191

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar

Course Designer

Dr.B.Thamilmaraiselvi

Semester:I	InternalMarks	ExternalMa	arks:60		
COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY			
22UMB1AC2P	FUNDAMENTALS OF BIOCHEMISTRY (P)	ALLIED PRACTICAL	4	3	

• This course enables the students to explore the basic biochemistry practical skills.

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO	CO Statement	Cognitive
Number		level
CO1	Identify the carbohydrates, amino acids, proteins	K1
	present in the given sample	
CO2	Interpret the amount of glucose present in the given sample	K2
	by Anthrone method.	
CO3	Calculate the amount of amino acid present in the given	K2
	sample by Ninhydrin method	
CO4	Analyse the amount of protein and cholesterol present in the	K4
	given sample	
CO5	Evaluate the amount of DNA present in the given sample by	K3
	Diphenylamine (DPA) method	

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	3	3	3	3	3	3
CO2	3	3	3	3	2	1	3	3	3	3
CO3	3	3	1	3	3	3	2	2	2	3
CO4	3	3	2	3	3	3	3	1	3	2
CO5	3	3	3	2	2	3	3	2	2	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

- 1. Qualitative analysis of carbohydrates, amino acids and proteins.
- 2. Quantitative estimation of Glucose by Anthrone Method
- 3. Quantitative estimation of Amino acids by Ninhydrin Method
- 4. Quantitative estimation of Protein by Lowry's Method
- 5. Quantitative estimation of Cholesterol by Jacks Method
- 6. Quantitative estimation of DNA by Diphenylamine (DPA)Method

Reference Books

- 1. Vasudevan and Sabir Kumar Doss (2022). Practical Text book of Biochemistry for Medical students
- 2. Damodaran Geetha K.(2016), Practical Biochemistry, JB brother medical publisher.
- 3. Ranjna Chawla.(2014). Practical clinical Biochemistry, JB brother medical publisher.
- 4. ManipalmanualofclinicalBiochemistry.2013,JB brother medical publisher.
- 5. Shawn O' Farrell and Ryan T Ranallo (2000). *Experiments in Biochemistry: A Handson Approach-A manual for the undergraduate laboratory*, Thomson Learning, Inc., Australia.

Web References

- 1. https://www.youtube.com/watch?v=wmhmAESv72E
- 2. https://www.youtube.com/watch?v=VzYDk4t97Ok
- 3. https://www.youtube.com/watch?v=JdXbTWfOc18
- 4. https://www.youtube.com/watch?v=2LiA_yNMIVs

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar

Course Designer

Dr. B. Thamilmaraiselvi

Semester: II	Internal Marks: 2	External M	arks: 75		
COURSE CODE	COURSE TITLE	COURSE TITLE CATEGORY			
22UMB2CC2	MICROBIAL PHYSIOLOGY	CORE COURSE	5	5	

- To provide basic knowledge nutritional requirements of microbes
- To understand microbial growth and its measurement
- To impart knowledge about carbohydrate and protein metabolism
- To learn the pathways and its importance

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive level
CO 1	State the Nutritional requirements of microorganisms and its uptake	K1, K2
CO 2	Explain different phases of growth and its assessment	K2, K3
CO 3	Describe the Carbohydrate metabolism	K4
CO 4	Illustrate the Protein Metabolism	K3, K4
	Compute the importance of Anaerobic Respiration and fermentation pathway	K5

COS	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	3	3	2	2	3	2	3
CO2	3	3	2	3	3	2	2	3	3	3
CO3	2	3	3	2	3	3	3	2	3	3
CO4	2	3	3	3	2	3	2	3	3	3
CO5	3	3	2	3	3	3	3	2	3	3

[&]quot;1" - Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	COS	COGNITIVE LEVEL
I	Nutrition: Nutritional requirement of microorganisms – micro and macro elements, nutritional classification (Autotrophs, heterotrophs, photoautotrophs, chemoautotrophs, chemolithotrophs, oligotrophs). Uptake of nutrients by the cell – Passive diffusion, Facilitated diffusion, Active transport and group translocation – Iron uptake.	12	CO1, CO2, CO3, CO4	K1, K2, K3, K4
II	Growth: Phases of Growth, Growth curve. Factors influencing the growth of microorganisms – temperature, pH, salt, Osmotic pressure, and radiations. Synchronous growth- continuous growth and Diauxic culture. Quantitative measurement of growth- Direct microscopic method, Direct plate count, membrane filter count, turbidometry and micrometry.	18	CO1, CO2, CO3, CO4	K1, K2, K3, K4
III	Carbohydrate metabolism: Anabolism – photosynthesis – oxygenic – anoxygenic, synthesis of carbohydrate– catabolism of glucose – Embden Mayer– Hoff – Parnas pathway (EMB) – Pentose pathway, Entener- Doudoroff (ED) pathway, Kreb's cycle (TCA) – Electron Transport System and ATP production. Respiration: Anaerobic Respiration – Nitrate, sulphate& Methane respiration – Fermentations – alcohol, mixed acid, lactic acid fermentation	18	CO1, CO2, CO3, CO4	K1, K2, K3, K4
IV	Protein metabolism – metabolic pathways of nitrogen utilization, synthesis of amino acids (Proline, glycine, threonine), peptides, proteins. Biosynthesis of bacterial cell wall.	12	CO1, CO2, CO3, CO4	K1, K2, K3, K4
V	Lipid metabolism – biosynthesis of saturated and unsaturated fatty acids and degradation of fatty acids - ß Oxidation - Nucleic acid metabolism – biosynthesis and degradation of purines and pyrimidines.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not to be included for End Semester Examination) Bacterial enzymes – classification – Enzymes of aerobic & anaerobic respiration – role of enzymes in metabolism of carbohydrate, protein and lipid.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5

Text books

- 1. Dubey RC and Maheswari DK. (2015). A Text Book of Microbiology. 5th Edition. S Chand, New Delhi.
- 2. AnanthanarayanPaniker (2020). A Text book of Microbiology. 11th Edition. University Press. Singapore.
- 3. Madigan MT, Martinko JM, and Parker J.(2019). Biology of Microorganisms. 12th Edition, MacMillan Press. England.
- 4. Atlas RA and Bartha R.(2019). Microbial Ecology. Fundamentals and Application. 4th edition Benjamin

- Cummings, New York.
- 5. Pelczar MJ, Chan ECS and Kreig NR. (2015). Microbiology, 5th edition. McGraw-Hill. Book Co. Singapore.
- 6. Meenakumari S, Microbial Physiology (2006), Volume 1, MJP Publishers.
- 7. Alber G. Moat, John W. Foster, Michael P. Spector Microbial Physiology (2002), 4th Edition, Wiley-Liss.

Reference Books

- 1. Tortora GJ, Funke BR and Case CL.(2020). Microbiology: An Introduction. 9th Edition, Pearson Education, Singapore.
- 2. Black JG. (2018). Microbiology-principles and explorations, 6th edition. John Wiley and Sons, Inc. New York
- 3. MoselioSchaechter and Joshua Leaderberg (2019). The Desk encyclopedia of Microbiology. 2nd edition. Elseiver Academic press, California.
- 4. Madigan MT, Martinko JM, and Parker J.(2019). Biology of Microorganisms, 12th Edition. MacMillan Press, England.
- 5. Michel Mandigan, Kelly S.Bender, Daniel buckley, W Mathew Sattley and David Stahl (2019) Borck biology of miccroorganisms 15th Edition, Pearson.
- 6. Prescott L.M, Harley, J.P. and Helin, D.A. (2017). Microbiology, 5th Edition. McGraw Hill.

Web References

- 1. https://uomustansiriyah.edu.iq/media/lectures/6/6_2017_08_09!09_50_48_AM.pdf
- 2. https://biologydictionary.net/anaerobic-respiration/
- 3. https://bio.libretexts.org/Bookshelves/Microbiology/Book%3A_Microbiology_(Kaiser)/Unit_7%3A_Microbial_Genetics_and_Microbial_Metabolism/18%3A_Microbial_Metabolism/18.3%3A_Aerobic_Respiration
- 4. https://bio.libretexts.org/Bookshelves/Biochemistry/Fundamentals_of_Biochemistry_(LibreTexts)/02%3 A_Unit_II-_Bioenergetics_and_Metabolism 22%3A_Biosynthesis_ f Amino Acids Nucleotides and Related Molecules/22.02%3A Biosynthesis of Amino Acids
- 5. https://www.youtube.com/watch?v=9CPIs-Qhg-M

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar

Course Designer

Dr. P.Bhuvaneswari

Semester: II	Internal Marks: 40		External Marks	60
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB2CC2P	MICROBIAL PHYSIOLOGY (P)	CORE PRACTICAL	3	3

- To enable the students to understand the basic knowledge of
- To acquire adequate skill to handle microscope to visualize microbes.

Course Outcomes and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive level
CO 1	Develop the skills to grow microbes in the laboratory	K1
CO 2	Illustrate effect of pH, temperature and salt on microbes	K2
CO 3	Measure the growth of microbial cell	K3
CO 4	Summarize biochemical test to identify the bacteria	K3
CO 5	Interpret the results of biochemical reaction by microbes	K4

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3	3	2	2	2	3
CO2	3	2	3	3	2	3	2	2	3	3
CO3	3	3	3	2	3	3	3	3	3	2
CO4	3	3	2	3	2	3	2	2	3	2
CO5	3	3	3	2	3	3	3	3	3	2

[&]quot;1" - Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" indicates there is no correlation

- 1. Effect of pH on the growth of microbes
- 2. Effect of Temperature on the growth of microbes
- 3. Effect of salt on the growth of microbes
- 4. Determination of growth curve spectrophotometric assay
- 5. Measurement of microbial cell by micrometry
- 6. Cultivation of anaerobes- Wrights tube method and McIntosh method
- 7. Oxidase test
- 8. Catalase test
- 9. Biochemical test -Indole test, Methyl Red test, Voges Proskauer test, Citrate Utilization test, Triple Sugar Iron test and Carbohydrate fermentation test

Reference Books

- 1. Bharti Arora, D.R. Arora (2020), *Practical Microbiology*, CBS Publishers & Distributors
- 2. Mudili J (2020), Introductory Practical Microbiology, NarosaDas S (2020), *Microbiology Practical Manual*, CBS Publishers
- 3. Saravanan R, D. Dhachinamoorthi, CH. MM. Prasada Rao, (2019), *A Handbook of Practical Microbiology*, LAP LAMBERT Academic Publishing.
- 4. Shukla Das and RumpaSaha (2019). *Microbiology Practical Manual*, 1st Edition CBS Publishers and Distributors.
- 5. Amita Jain , Jyotsna Agarwal , Vimala Venkatesh (2018), *Microbiology Practical Manual*, 1st Edition, Elsevier India.
- 6. Cappuccino and Sherman (2016), *Microbiology A Laboratory Manual*, 11th Edition, Dorling Kindersley (India) Pvt. Ltd., New Delhi.
- 7. R.C.Dubey, Dr.D.K. Maheswari (2010), Practical Microbiology, Kindle Edition

Web References

- 1. https://www.youtube.com/watch?v=yDAcepSV-tU
- 2. https://www.youtube.com/watch?v=qGkpw5W25K0
- $3. \quad https://www.jove.com/v/10511/growth-curves-generating-growth-curves-using-colony-forming-units$
- $4. \quad https://bio.libretexts.org/Courses/North_Carolina_State_University/MB352_General_Microbiology_Laboratory_2021_(Lee)/07\%3A_Microbial_Metabolism/7.01\%3A_Introduction_to_Biochemical_Tests_Part~I$
- 5. https://www.youtube.com/watch?v=gkZ1CMKeP0w
- 6. https://microbiologyinfo.com/category/biochemical-test/

Pedagogy

Power point presentations, Group Discussion, Quiz, Brain Storming Activity.

Course Designer

Dr.P.Bhuvaneswari

SEMESTER: I	INTERNAL MA	RKS :25	EXTERNAL M	ARKS : 75
COURSE CODE	COURSE TITLE	CATEGORY	Hrs./Week	CREDITS
22UMB2CC3	MICROBIAL	CORE	3	3
	DIVERSITY	COURSE		

- To make the students to understand the different aspects to the classification of Prokaryotes and Eukaryotes.
- To make the students knowledgeable on the diversity of microbes.
- To in-depth an on knowledge on the different groups and species of microbes

Course Outcome and Cognitive level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive level
CO 1	Remember taxonomy and classification of microorganisms	K1, K2
CO 2	Apply in the field study about viruses classification	К3
CO 3	Analyze characteristics of different groups of microorganisms	K4
CO 4	Evaluate applications of diversified microorganisms	K5
CO 5	Create knowledge on microbial taxonomy and diversity	K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	3	3	3	2	3
CO2	3	2	3	3	2	2	3	2	3	3
CO3	3	2	2	3	3	3	2	3	3	2
CO4	2	3	3	2	3	3	3	2	3	2
CO5	3	3	2	3	2	3	3	3	2	2

[&]quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	General Classification: General principles of classification of microorganisms – Haekel's three kingtom concept – Whittaker's five kingdom concept – three domain concept of Carl Woese. Evolutionary methods in classification – International codes of nomenclature - Taxonomic approaches and Phylogeny		CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
II	Virology: Classification and salient features of viruses. Nature and Properties in relation to classification. Structure and in-depthstudy of T_4 , λ , M_{13} . Brief outline on virions and Prions.	09	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
III	Bacteriology: Classification and salient features of bacteria according to Bergey's manual of determinative bacteriology, In-depth study of <i>E. coli</i> , <i>Rhizobiun</i> sp., <i>Rhodomicrobium</i> sp., Methane oxidizing bacteria <i>Methanobacteria</i> sp.,.	09	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
IV	Phycology and Mycology: Classification and salient features of algae – nutrition, thallus characteristics and reproduction. Characteristics of green algae, diatoms, euglenoids, brown Rhodophyta, pyrrophyta. Economic importance of algae. Principles and outline classification of fungi: Myxomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes, Zygomycetes, Acrasiomycete sand Oomycetes. In-depth study of Aspergillussp., Candida sp., Mucor sp. Economic importance of fungi.	09	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
V	Protozology: Principles and outline classification of protozoa: Sarcodina, Mastigophora, Ciliata and Sporozoa. Structure and in-depth study of Entamoebahistolytica and Plasmodium vivax.	09	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
VI	Self Study Enrichment (Not to be included for External Examination) General Classification of Microbes, taxonomy and diversity of different microorganisms, execute field projects on the diversity of microorganisms.		CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.

Text Books

- 1. Pelczar, Jr., Michael, E. C. S. Chan and Noel Kreig. (2000). Microbiology. V Ed. Tata McGraw Hill Book Company.
- 2. Alexopoulos, C.J. and Mims, C.W. (1979). Introductory Mycology, John Wiley, New York.
- 3.Lansing M. Prescott, John P. Harley and Donald A. Klein. 2002. Microbiology. V Ed. WCB/McGraw Hill Company. pp: 335 to 553.
- 4. John G. Holt. 1994. Bergey's Manual of Determinative Bacteriology. Lippincott Williams and Wilkins. Pp. 351-352; 597-724.
- 5. Dubey H. C. 1978. A Textbook of Fungi, Bacteria and Viruses. Vikaas Publishing House Ltd. Ltd. Pp: 1-341.

Reference Books

- 1. Jeffery C. Pommerville (2016). Alcamo's Fundamentals of Microbiology (Third Edition). Jones and Bartlett Learning. LLC, Burlington, MA 01803.
- 2. HansG. Schlegel. 2012. General Microbiology. VII Ed. Cambridge

Web Reference

- 1. http://www.microbiologyonline.org.uk/links.html
- 2. http://www.bac.wise.edi/microtextbook/index.php
- 3. http://www.microbeworld.org.uk
- 4. http://www.staff.ncl.ac.uk/n.y.morris/lectures/class2007.html

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Demo, Quiz, Seminar.

Course Designer

Dr.V.Aruna

Semester: II	Internal Marks: 2	External M	arks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB2AC3	APPLIED BIOCHEMISTRY	FIRST	4	3
		ALLIED		
		COURSE		

- To know about the Types of Blood cells, composition, function, deficiency diseases of RBC and WBC.
- To enable the students to know about the structural features of plasma membrane, cellular transport mechanisms with specific examples.
- To know about the Endocrine glands and it's structure, classification of Hormones and it's biosynthesis, functions and deficiency diseases.
- Acquire the knowledge about the structure and function of plant hormones and secondary metabolites-Alkaloids and flavonoids.

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO	CO Statement	Cognitive
Number		level
CO 1	Illustrate the basic Concept of Blood and its components,	K2
	Deficiency Diseases	
CO 2	Explain the various models of cell Membrane and transport	K2
	mechanisms	
CO 3	List out the Endocrine Glands and their hormones with deficiency	K3
	diseases	
CO 4	Compare the Plant pigments with their biosynthesis and	K4
	Significance	
CO 5	Determine the structure of Plant hormones with its structure and	K5
	function	

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	3	2	3	2	2	3
CO2	2	2	3	2	2	3	2	3	3	3
CO3	3	2	1	3	2	2	2	3	2	2
CO4	2	2	3	2	3	3	3	2	3	2
CO5	3	3	2	3	2	3	2	3	2	3

[&]quot;1" – Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	COS	CONGNITIVE LEVEL
I	Haematology: Types of Blood cells – origin - Composition characterization and coagulation- RBC –Formation – Haemoglobin - Structure and function – Deficiency diseases – Anaemia – Types – WBC – Types – Structure and function – Role in immunity – Leukopenia	12	CO1, CO2 CO3, CO4	K1, K2, K3, K4
II	Cytochemistry – structure and biochemical composition of plasma membrane – fluid mosaic model, Trilaminarmodel. Transport mechanisms –Active, Passive and Facilitated diffusion- Uni, sym and antiports – Na ⁺ - K ⁺ ATPase and mitochondrial Calcium transport	12	CO2, CO3, CO4, CO5	K2,. K3, K4, K5
III	Endocrine glands – pituitary, thyroids, parathyroid, pancreas, adrenal, testis and ovary. Hormones – Definition – classification –protein hormone, steroid hormones, functions, regulations, diseases associated with deficiency of hormones.	12	CO1, CO3, CO4, CO5	K1, K3, K4, K5
IV	Structure and functions of plant hormones - Auxins, Gibberellin, Cytokinin and Abscisic acid.	12	CO1, CO2, CO3, CO5	K2, K3, K4, K5
V	Plant pigments – chlorophyll, carotenoids- astaxanthin, Phycobilins and anthocyanin structure - Biosynthesis - functions	12	CO1, CO2, CO3, CO4	K1, K3, K4, K5
VI	Self Study for Enrichment (Not to be included for End Semester Examination) Hemophilia-Leucocytosis-Polycythemia-Thalassemia-Van willebrand disease	_	CO1, CO2, CO3, C04	K1, K3, K4, K5

Text Books

- 1. William, J.Marshall and Stephan, K.Bangert.2014. 3rd Edition. Clinical Biochemistry Metabolic and Clinical Aspects Churchill Livingston, New York.
- 2. Ambika Shanmugam.2016. Biochemistry for Medical Students.8th Edition. Wolters Kluwer India Pvt. Ltd.
- 3. Satyanarayana.U. 2020.Biochemistry.5th Edition. Elsevier. RELX India pvt. ltd,
- 4. Seema Pavgi Upadhye.2020. Textbook of Biochemistry.4th Edition. Dreamtech Press.
- 5. Harper's.2018. Illustrated Biochemistry.31st Edition. McGraw Hill / Medical Publishers.

References

- 1. Stryer, L.1995.Biochemistry. 4th Edition. W.H. Freeman and Company, New York.
- 2. Dinesh puri.2020. Textbook of Medical Biochemistry.4th Edition. Elsevier India
- 3. Donald voet and Judith voet.1990. Biochemistry. John Wiley and Sons, New York.
- 4. Hubert, Stryer, 1995. Biochemistry Freeman and Company, New York.
- 5. Dawn, B.Markus, 1994. Biochemistry. Harwal Publishing, New York.

Web References

- 1. https://byjus.com/neet/plant-hormones/
- $2.\ https://www.hopkinsmedicine.org/health/conditions-and-diseases/hormones-and-the-endocrine-system$
- 3. https://byjus.com/neet/types-of-blood-cells-notes/

Pedagogy

Power point presentations, Group Discussion, Brain Storming Activity.

Course Designer

Dr.N.Pushpa

Semester : II	Internal Marks: 100							
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS				
22UGEVS	ENVIRONMENTAL STUDIES	ABILITY ENHANCEMENT COMPULSORY COURSE	2	2				

To train the students to get awareness about total environment and its related problems and to make them to participate in the improvement and protection of the environment.

Course Outcome and Cognitive Level Mapping

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Outline the nature and scope of environmental studies	K1, K2
	Illustrate the various types of natural resources and its importance.	K2
	Classify various types of ecosystem with its structure and function.	K2, K3
	Develop an understanding of various types of pollution and biodiversity.	K3
	List out the various types of social issues related with environment and explain protection acts	K4, K5

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2	3	3	2	2	3	2	3
CO2	3	3	2	3	3	3	2	3	3	3
CO3	2	3	3	2	3	3	3	3	3	2
CO4	2	3	3	3	2	3	2	3	3	3
CO5	3	3	2	3	3	3	3	2	3	3

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;1" – Slight (Low) Correlation
"3" – Substantial (High) Correlation

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	COS	COGNITIVE LEVEL
I	Introduction to environmental studies Definition, scope and importance. Need for public awareness	06	CO1, CO2, CO3, CO4	K1, K2, K3,
II	Natural Resources: Renewable and non-renewable resources: Forest resources: use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams benefits and problems. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity. Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies. Land resources: Land as resources, land degradation, man induced Landslides, soil erosion and desertification. Role of an individual in conservation of	06	CO1, CO2, CO3, CO4	K1, K2, K3
III	natural resources. Ecosystems Concept, Structure and function of an ecosystem. Producers, consumers and decomposers Energy flow in the ecosystem and Ecologicalsuccession. Food chains, food webs and ecological pyramids Introduction, types, characteristic features, structure and function of the following ecosystem:-Forest ecosystem, Grassland ecosystem and Desert ecosystem, Aquatic ecosystems, (ponds, streams, lakes, rivers, oceans, estuaries)	06	CO1, CO2, CO3, CO4	K1, K2, K3

	<u> </u>		T	
IV	Biodiversity and Environmental Pollution		CO1,	K1,
	Introduction, types and value of biodiversity.		CO2,	K2,
	India as a mega diversity nation. Hot-spots of	06	CO3,	K3,
	biodiversity. Threats to biodiversity: habitat		CO4,	K4,
	loss, poaching of wildlife, man-wildlife		CO5	K5
	conflicts. Endangered and endemic species of			120
	India. Conservation of biodiversity: In-situ			
	and			
	Ex-situ conservation of biodiversity.			
	Definition, Causes, effects and control			
	measures of:			
	a. Air Pollution			
	b. Water Pollution			
	c. Soil Pollution			
	d. Noise pollution			
	e. Nuclear hazards			
	Solid waste Management: Causes, effects and			
	control measures of urban and industrial			
	wastes. E-Waste Management: Sources and			
	Types of E-waste. Effect of E-waste on			
	environment and human body. Disposal of E-			
	* * * * *			
	waste, Advantages of Recycling E-waste.			
	Role of an individual in prevention of			
	pollution. Disaster management: floods,			
	earthquake, cyclone and landslides.			
V	Social Issues and the Environment	06	CO1,	K1,
	Water conservation, rain water harvesting,		CO2,	K2,
	watershed management. Climate change,		CO3,	K3,
	global warming, acid rain, ozone layer		CO4,	K4,
	depletion, Wasteland reclamation.		CO5	K5
	Environment Protection Act			
	Wildlife Protection Act. Forest Conservation			
	Act. Population explosion – Family Welfare			
	Programmes Human Rights - Value			
	Education. HIV/ AIDS - Women and Child			
	Welfare. Role of Information Technology in			
	Environment and human health.			
			CO1	I/ 1
171	Self-Study for Enrichment		CO1,	K1,
VI	(Not to be included for End	-	CO2,	K2,
	SemesterExamination)		CO3,	K3,
	Global warming – climate change –		CO4,	K4,
	importance of ozone – Effects of ozone		CO5	K5
	depletion. Biogeography- history, ecology			
	and conservation. International laws and			
	policy			
I				

References

- 1. Beard, J.M. 2013. Environmental Chemistry in Society (2nd edition). CRC Press.
- 2. Girard, J. 2013. Principles of Environmental Chemistry (3rd edition). Jones & Bartlett.
- 3. Brebbia, C.A. 2013. Water Resources Management VII. WIT Press.
- 4. Pandit, M.K. &Kumar, V. 2013. Land use and conservation challenges in Himalaya: Past, present and future. In: Sodhi, N.S., Gibson, L. & Raven, P.H. Conservation Biology: Voices from the Tropics. pp. 123-133. Wiley-Blackwell, Oxford, UK (file:///Users/mkpandit/ Downloads /Raven%20et%20al.%202013.%20CB%20Voices %20from %20Tropics%20(2).pdf).
- 5. Hites, R.A. 2012. Elements of Environmental Chemistry (2nd edition). Wiley & Sons.
- 6. Harnung, S.E. & Johnson, M.S. 2012. Chemistry and the Environment. Cambridge University Press.

- 7. Boeker, E. & Grondelle, R. 2011. Environmental Physics: Sustainable Energy and Climate Change. Wiley.
- 8. Forinash, K. 2010. Foundation of Environmental Physics. Island Press.
- 9. Evans, G.G. & Furlong, J. 2010. Environmental Biotechnology: Theory and Application (2nd edition). Wiley-Blackwell Publications.
- 10. Williams, D. M., Ebach, M.C. 2008. Foundations of Systematics and Biogeography. Springer
- 11. Pani, B. 2007. Textbook of Environmental Chemistry. IK international Publishing House.
- 12. Agarwal, K.C. 2001 Environmental Biology, Nidi Public Ltd Bikaner.

Pedagogy

Chalk and talk, PPT, Discussion, Assignment, Quiz, Seminar

Course Designer

Dr.B.Thamilmaraiselvi

Assessment Rubrics for 100 Marks

- 1. Documentary (or) Poster Presentation (or) Elocution-25 Marks
- 2. Quiz (or) MCQ Test-25 Marks
- 3. Album Making (or) Case study on a topic (or) Field Visit -25 Marks
- 4. Essay Writing (or) Assignment (Minimum 10 pages) -25 Marks

There will be no End Semester Examination for this course. However, the subject teacher will evaluate the above mentioned components based on the performance of the students and submit the marks out of 100 (in the format to be supplied by the COE) with the approval of the concerned Head of the Department to the COE along with CIA marks of other courses.

Semester : III	Internal Marks:	External Marks: 75			
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22UMB3CC4	VIROLOGY	CORE	6	6	

Preamble:

To enable the students to understand the basic knowledge about Viruses and their Specific Isolation, Cultivation Techniques. To provide the students awareness about the etiology, Pathogenesis, Treatment and prophylaxis of some Plant and Animal viral diseases.

Course Outcome and Cognitive Level Mapping:

CO Number	СО	Cognitive		
	Statement	Level		
CO 1	Define the basic knowledge of Viruses	K1,K2, K4		
CO 2	Select the suitable Purification and Characterization methodsof Viruses	K1,K2, K3		
CO 3	Compare and Contrast Bacteriophages Life cycle	K1,K2, K3		
CO 4	Illustrate impacts of the Plant Viral diseases	K1,K2, K4		
CO 5	Organised views of Animal Viruses	K1,K2, K4		

Mapping of CO with PO and PSO

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	3	3	3
CO2	2	3	2	3	3	3	3	2	3	3
CO3	3	2	3	3	2	2	3	3	3	2
CO4	3	3	3	3	3	3	3	3	2	3
CO5	2	3	2	2	3	3	2	3	3	2

1- Slight (Low) correlation

2- Moderate (Medium) correlation

3- Substantial (High) correlation

"-" indicates there is no correlation

UNIT	CONTENT	HOURS	COS	COGNITIVE	
				LEVEL	
I	Introduction – Definition, History of virology. General properties of viruses– Cultivation of Viruses– Structure and replications of viruses–classification of Viruses (ICTV classification).	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5	
II	Purification and Characterization of Viruses, Separation and Characterization of Viral Components and quantification of viruses. Assay of viruses – physical and chemical methods (protein, nucleic acid, radioactivity tracers, electron microscopy). Infective assay of Bacteriophages (plaque method, end point method). Infective assay of Plant Viruses.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5	
III	Bacterial Viruses—Classification and structure of Bacteriophage, The Lytic life cycle (T- Even coli phages) – Lysogenic life cycle (Escherichia coli, Phage Lambda). Bacteriophage typing, Phage therapy (Bacteriophage therapy).	18	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5	
IV	Plant Viruses: Common Plant Viral Diseases: TMV, Bunchy top of Banana, Cauliflower Mosaic Virus, Potato Leaf Roll Virus, and Rice Tungro Virus. Satellite Viruses, Viroid. Transmission of Plant Viruses with Vectors - Insects, Nematodes, Fungi - without vectors (Contact, Seed and Pollens). Control Measures of Plant Viruses- Generation of Virus- Virus free planting material, Vector Control.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6	
V	Animal viruses: Common Animal Viral Diseases: Prions, Rinder pest, Blue tongue, Raniketdion, Foot and Mouth Disease. Human Viruses—Retro, Hepatitis Pox, Polio, Rabies, Dengue, SARS—COVID and Oncogenic Viruses. Viral Vaccines. Prevention and Treatment of Viral Diseases. Antiviral agents.	18	CO1, CO2, CO3, CO4, CO5	K1 K2, K3, K4, K5,	
VI	Self Study for Enrichment	-	CO1, CO2,	K1, K2,	
	(Not included for End Semester Examination) Baltimore Classification and LHT viral classification. Study of Animal and Plant viral Replications. Visit to Virology Labs.		CO3, CO4, CO5	K3, K4, K5, K6	

Text Books:

- 1. Geo. Brooks, Karen C. Carroll, Janet Butel, Stephen Morse. Jawetz Mel nick & Adelbergs Medical Microbiology. 28th Edition, McGraw-Hill Education. 2019.
- 2. Mahendra Pal Yadav, Raj Kumar Singh, Yashpal Singh Malik. Recent Advances in Animal Virology. Springer. 2020
- 3. P. Saravanan. Virology. 1st edition, MJP Publishers, Delhi 2021.
- 4. Ananthanarayan and Paniker's Textbook of Microbiology. 12th E-edition, UniversitiesPress .United States. 2022.
- 5. Baijayantimala Mishra. Textbook of Medical Virology. 2nd Edition, CBS Publishers & Distributors Pvt Ltd, India. Churchill Livingstone. 2022.

References:

- Apurba S Sastry, Sandhya Bhat. Essentials of Medical Microbiology 4th edition. Jaypee brothers med Pub Pvt Ltd 2022.
- 2. Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller MD. Medical Microbiology, 9th edition. Elsevier Publishers 2020.
- 3. Levinson. Review of Medical Microbiology and Immunology. Mc Graw Hill / Medical Publishers 2021
- 4. Yi-Wei Tang, Charles W. Stratton. Advanced Techniques in Diagnostic Microbiology. 3rd edition. Springer Publishers 2018.
- 5. Abbas. Cellular and Molecular Immunology, 10th edition, Elsevier Publishers 2021

Web links:

- 1. http://www.bocklabs.wisc.edu/ed/virustax.html
- 2. http://www.bocklabs.wisc.edu/ed/genomes.html
- 3. http://www.virology.net/Big_Virology/BVHomePage.html
- 4. https://www.youtube.com/watch?v=Iy-kidfj7Wc
- 5. https://www.youtube.com/watch?v=Kt0miFrXMaY
- 6. https://www.youtube.com/watch?v=zw4jydUY1S8
- 7. https://www.youtube.com/watch?v=Y5XU61wQS6E
- 8. https://www.youtube.com/watch?v=4ua3qf1tij8

Pedagogy

Chalk and talk, Power Point Presentation, Quiz, Assignments, Group Discussions, Seminar and Assignment.

Course Designer

Dr. S. Jeyabharathi

Semester : III	Internal Marks: 40		External	nl Marks: 60	
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22UMB3CC3P	VIROLOGY (P)	CORE PRACTICAL	3	3	

Course Objective

The practical aims to engage the students with virus detection, diagnosis and laboratory methods that are used in a wide range of Virology and biomedical research settings. To enable the students to perform hands-on training experience on methods and techniques used in virology. The practicals are also designed to offer an alternative learning situation for theideas that underlie both the virus detection and the techniques.

Course Outcome and Cognitive Level Mapping:

CO Number	CO Statement	Knowledge level
CO 1	Define the basic knowledge of Viral sample collections	K1,K2, K4
CO 2	Select the suitable isolation and Characterization methods of Bacteriophages	K1,K2, K3
CO 3	Illustrate impacts of the Plant Viral transmission methods	K1,K2, K3
CO 4	Understand the suitable Animal virus transmission methods	K1,K2, K4
CO 5	Demonstration of Plant, Animal and Bacterial Viruses	K1,K2, K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	3	3	3
CO2	2	3	2	3	3	3	3	2	3	3
CO3	3	2	3	3	2	2	3	3	3	2
CO4	3	3	3	3	3	3	3	3	2	3
CO5	2	3	2	2	3	3	2	3	3	2

¹⁻ Slight (Low) correlation

²⁻ Moderate (Medium) correlation

³⁻ Substantial (High) correlation "-" indicates there is no correlation

- 1. Laboratory detection of viral samples (Collection and transport of samples).
- 2. Isolation of Bacteriophage from sewage.
- 3. Demonstration of Phage Titration.
- 4. Demonstration of mechanical transfer of viruses in plants.
- 5. Cultivation of Viruses in Embryonated eggs Amniotic, Allantoic, Yolk sac routes and Chorio-allantoic membrane.
- 6. Observation of selected bacterial, plant and animal viruses T4 and M13 Phage, TMV,

CaMV, HIV, Influenza, HSV, HBV, Rabies and Blue tongue virus

7. Visit to Hospitals, Viral Research Institutes and Clinical laboratories.

References:

- 1. Ananthanarayan and Paniker's Textbook of Microbiology. 12th E-edition, UniversitiesPress .United States. 2022.
- 2. Yi-Wei Tang, Charles W. Stratton. Advanced Techniques in Diagnostic Microbiology. 3rd edition. Springer Publishers 2018.
- 3. Baijayantimala Mishra. Textbook of Medical Virology. 2nd Edition, CBS Publishers & Distributors Pvt Ltd, India. Churchill Livingstone. 2022.
- 4. Geo. Brooks, Karen C. Carroll, Janet Butel, Stephen Morse. Jawetz Mel nick & Adelbergs Medical Microbiology. 28th Edition, McGraw-Hill Education. 2019.
- 5. Apurba S Sastry, Sandhya Bhat. Essentials of Medical Microbiology 4th edition. Jaypee brothers med Pub Pvt Ltd 2022.

Web links:

- 6. https://www.youtube.com/watch?v=Iy-kidfj7Wc
- 7. https://www.youtube.com/watch?v=Kt0miFrXMaY
- 8. https://www.youtube.com/watch?v=zw4jydUY1S8
- 9. https://www.youtube.com/watch?v=Y5XU61wQS6E
- 10. https://www.youtube.com/watch?v=4ua3qf1tij8

Pedagogy

Power point presentations, Group Discussion, Quiz, Brain Storming Activity.

Course Designer

Dr. S. Jeyabharathi

Semester : III	Internal Mark	Internal Marks: 25		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB3GEC1	MUSHROOM	GENERIC	2	2
	TECHNOLOGY	ELECTIVE		
		COURSE		

Course Objective

To enable the students to identify the edible and poisonous mushrooms. To provide the students awareness about the marketing trends of Mushrooms. To give the students exposure to the experiences of experts in the field and to functioning mushroom farms.

Course Outcome and Cognitive Level Mapping

CO		Cognitive Level
Number	CO Statement	
CO1	Differentiate edible and Poisonous mushrooms	K5
CO2	Examine Spawn preparation	K4
CO3	Illustrate the cultivation of mushroom	K6
CO4	Discuss about nutritional value of mushroom	K6
CO5	Determine medicinal value of mushroom	K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3	3	3	3	3	3
CO2	2	3	2	3	3	3	3	2	3	3
CO3	3	2	3	3	2	2	3	3	3	2
CO4	3	3	3	3	3	3	3	3	2	3
CO5	2	3	2	2	3	3	2	3	3	2

- 1- Slight (Low) correlation 2- Moderate (Medium) correlation
- 3- Substantial (High) correlation "-" indicates there is no correlation

UNIT	CONTENT	HOURS	COS	COGNITIVE
				LEVEL
I	Introduction – History of mushroom cultivation;	6	CO1,	K1,
	Classification and distribution of mushroom; life		CO2, CO3,	K2,
	cycle of mushroom. Identification of poisonous		CO3, CO4,	K3,
	mushrooms.		CO5	K4, K5
II	Spawn preparation - Isolation of pure culture;	6	CO1,	K1,
	Nutrient media for pure culture; layout of spawn		CO2,	K2,
	preparation room; raw material of spawn;		CO3,	К3,
	sterilization; preparation of mother spawn and		CO4,	K4,
	multiplication.		CO5	K5
III	Cultivation of mushroom, layout of mushroom	6	CO1,	K1,
	shed - small scale and large scale production		CO2,	K2,
	unit. Types of raw material – preparation and		CO3,	К3,
	sterilization; Mushroom bed preparation –		CO4,	K4,
	maintenance of mushroom shed; harvesting		CO5	K5
	method and preservation of mushrooms. short			
	and long term storage of mushroom;			
IV	Cultivation of following types of mushroom –	6	CO1,	K1,
	milky mushroom, oyster mushroom, button		CO2,	K2,
	mushroom and medically valuable mushroom -		CO3,	К3,
	shiitake mushroom and Reishi mushroom. Spent		CO4,	K4,
	mushroom compost.		CO5	K5, K6
V	Nutrient values of mushroom - protein,	6	CO1,	K1
	carbohydrate, fat, fibre, vitamins and minerals.		CO2,	K2, K3,
	Preparation of various dishes - soup, sauce, cutlet, omelette, samosa, pickles, curry &		CO3,	K3, K4,
	biriyani. Pharmacological and economic values		CO4,	K4, K5,
	of mushroom.		CO5	K6
VI	Self Study for Enrichment	-	CO1,	K1
	(Not included for End Semester Examination)		CO2,	K2,
	Visit to relevant Labs/Field Visits of mushroom		CO3,	К3,
	cultivation		CO4,	K4,

	CO5	K5,
		K6

Text Books

- 1. Paul Stamets, J.S. and Chilton, J.S (2019) Mushroom cultivation A practical guide to growing mushrooms at home, Agarikon Press.
- 2. Tewan and Pankaj Kapoor S.C. (2020) Mushroom cultivation. Mittal Publication. Delhi.
- 3. Nita Bahl. 2016. Hand book of Mushrooms, 2nd Edition, Vol I & II.
- 4. Shu Fing Chang, Philip G. Miles and Chang, S.T. (2004) Mushrooms Cultivation, nutritional value, medicinal effect and environmental impact. 2nd ed., CRC press.
- 5. R.Gogoi, Y.Rathaiah, T.R.Borah (2019) Mushroom Technology Cultivation, Scientific Publisher.

Reference Books

- 1. Russell, Stephan (2018) The Essential Guide to Cultivating Mushrooms: Simple and Advanced Techniques for Growing Shiitake, Oyster, Lion's Maneand Maitake Mushroom at Home. Storey Publishing.
- 2. B.C.Suman, Sharma V.P(2017) Mushroom India Cultivation in India. Daya Publishing House.
- 3. Marimuth, (1991) Oyster Mushrooms. Dept. of Plant pathology, TNAU, Coimbatore.

Web References

- 1. http://www.fungi.com
- 2. http://www.mushworld.com/home
- 3. http://forums.mycotopia.net/faq-frequently-asked-questions/5594-mushroom-growershandbook-1-mushworld-com.html.
- 4. http://forums.mycotopia.net/faq-frequently-asked-questions/6556-mushroom-growershandbook-2-mushworld-com.html
- 5. http://www.americanmushroom.org/news.html
- 6. https://www.brainkart.com/article/Mushroom-Cultivation_39985/

Pedagogy

Chalk and talk, Power Point Presentation, Quiz, Assignments, Group Discussions, Seminar, and Assignment.

Course Designer

Dr. E.Priya

Semester: IV	Interna	al Marks:25	External N	Marks :75
Course Code	Course Title	Category	HOURS/WEEK	CREDIT
22UMB4CC5	IMMUNOLOGY	CORE COURSE	6	6

Course Objectives

The aim of the course is to teach the types of immunity, immune system, antigen, antigen – antibody reaction, T and B cell activation, lymphokines and cytokines, hyper sensitivity reaction, autoimmune diseases and transplantation of immunity.

Prerequisites

Basic knowledge and concepts of immunology

Course Outcome and Cognitive Level Mapping

COs	CO Statement	Cognitive Level
CO1	Understand the history and types of immunity.	K1, K2, K4
CO2	Demonstrate the various antigen- antibody techniques.	K3, K4
CO3	Differentiate the structure of MHC, Cytokines and lymphokines.	K4, K5,K6
CO4	Explain immune technology and its applications.	K4, K6
CO5	Explain the knowledge about hypersensitivity reactions	K5, K6

Mapping with Programme Outcomes

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	3	3	3	2	3
CO2	3	2	3	3	2	2	3	2	3	3
CO3	3	2	2	3	3	3	2	3	3	2
CO4	2	3	3	2	3	3	3	2	3	2
CO5	3	3	2	3	2	3	3	3	2	2

[&]quot;1" – Slight (Low) Correlation "2" – Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation "-"indicates there is no correlation

UNIT	CONTENT	HOURS	cos	COGNITIVE LEVEL
I	History and overview of the Immune system: Cells and organs of the Immune system - Origin, development. Immuno haematology - blood groups, blood transfusion, Rh incompatibility. Immunity - types of immunity - cell mediated, Innate and acquired immunity. Differentiation of T and B cells and their receptors.	18	CO1, CO2, CO4, CO5	K1, K2, K3, K4, K5
II	Antigen - antibody reactions: Antigens- properties, types, biology of antigens, Haptens, adjuvants, epitope, paratope, cross reactivity and Forssman antigen. Immunoglobulin - structure, properties, types and functions. Theories of antibody production. Complement- alternative and classical pathways. Antigen - Antibody reaction - Precipitation, Agglutination, Immunodiffusion and Complement Fixation.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Immune response: Cell mediated and humoral. MHC, Cytokines, lympokines - structure, function and their receptors. Vaccines - types, toxoids and anti-toxin. Transplantation Immunology- types of transplants, Tissue typing, Graft - rejection mechanism. Hyper acute, acute and chronic Reactions	18	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5
IV	Immuno techniques: Monoclonal antibody production, properties and its applications. ELISA, RIA, Immuno fluorescence - FISH, Immuno electrophoresis and WIDAL.	18	CO1, CO2, CO3, CO4, CO5	K2, K4 K5, K6
V	Hypersensitivity Reactions: Introduction, Definition - allergy, allergens, types – Immediate (Type I, Type II, Type III) and delayed (Type IV) Hypersensitivity reactions. Cancer Immunology - Introduction, tumour of immune system, tumour antigens, types of tumours and immuno therapy. Basic concept of autoimmunity – Organ specific and systemic auto immune diseases.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment (Not included for End Semester Examinations Clinical manifestations of graft rejection – CRP, Pregnancy test, RPR and VDRL	-	CO1, CO2, CO3, CO4, CO5	K2, K3, K4, K5

Text Books

- 1. AbulK. Abbas, Andrew, H.Lichtman, ShivPillai (2019).Basic Immunology :Functions and Disorders of the Immune System 6th Edition, Elsevier
- 2. Robert R. Rich, Thomas A Fleisher, William T. Shearer, Harry Schroeder, Anthony
- 3. J. Frew, Cornelia, M. Wey and (2018). Clinical Immunology: Principles and Practice, Elsevier
- 4. Abul K. Abbas, Andrew, H. Lichtman, ShivPillai (2017). Cellular and Molecular Immunology 9thEdition. Elsevier
- 5. Peter J. Delves, Seamus J. Martin, Dennis R. Burton, Ivan M. Roitt (2017). Roitt's Essential Immunology, Wiley- Black well

Reference Books

- 1. AWesley Burks, Stephen T Holgate, Robyn EO' Hehir, Leonard B.Bacharier, David
- 2. H. Broide, Gurjit K. Khurana Hershey, Jr. R. Stokes Peebles (2019). Middleton's Allergy E-Book: Principles and Practice, Elsevier
- 3. Lauren M. Sompayrac (2019). How the Immune System Works, Wiley-Blackwell
- 4. KennethMurphy, CaseyWeaver (2016). Janeway'sImmunobiology9thEdition, GarlandScience
- 5. William E. Paul (2012). Fundamental Immunology 7th Edition, Kindle Edition

Web links

- 1. https://www.immunology.org/public-information/what-is-immunology
- 2. https://aacijournal.biomedcentral.com/articles/10.1186/1710-1492-7-S1-S1
- 3. https://onlinelibrary.wiley.com/journal/13652567
- 4. https://www.frontiersin.org/articles/10.3389/fimmu.2019.00684/full
- 5. https://emedicin.e.medscape.com/allergy_immunology

Pedagogy

Power point presentations, Group Discussion, Seminar, Quiz, Assignment, Brain Storming activity

Course Designer

Dr.B.Thamilmaraiselvi

Semester: IV	Internal Mar	Internal Marks:40		Marks:60
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB4CC4P	IMMUNOLOGY (P)	CORE PRACTICAL	4	4

Course Objective

To enable the students to identify, analyze and observe various techniques in immunology.

Prerequisites

To acquire adequate skill to handle immune techniques.

Course Outcomes and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number		level
CO1	Recall the immunological reactions.	K1
CO2	Demonstrate the advance immunological techniques.	K2
CO3	Develops kills to hem agglutination.	K3
CO4	Competently count blood cells and its differentiation	K3
CO5	Explain various techniques in immunology.	K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3	3	2	2	2	3
CO2	3	2	3	3	2	3	2	2	3	3
CO3	3	3	3	2	3	3	3	3	3	2
CO4	3	3	2	3	2	3	2	2	3	2
CO5	3	3	3	2	3	3	3	3	3	2

[&]quot;1"-Slight (Low)Correlation

[&]quot;3"-Substantial (High)Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

Syllabus (60 Hours)

- 1. Haemagglutination ABO Blood grouping.
- 2. Rh Typing
- 3. Total count(RBC and WBC).
- 4. Differential Count (WBC).
- 5. Agglutination reactions-WIDAL, RPR, CRP.
- 6. ASO
- 7. Precipitation reactions: Single and Double immune diffusion.
- 8. Demonstration of ELISA
- 9. Demonstration of western blotting

Reference Books

- 1. AbbasAK, LichtmanAH, ShivPillai. Cellular and Molecular Immunology, 10th Edition. Elsevier, 2021.
- 2. Tobili Y. Sam-Yellowe. Immunology: Overview and Laboratory Manual. 2021(1st edition) Elsevier.
- 3. Saha r. Microbiology practical manual (2nd edition). Cbs publishers & distributors pvt. Ltd,2022.
- 4. Fumiichiro Yamamoto. ABO +logy (1st edition). Assign me a free ISBN; 2023.
- 5. Abbas. Cellular and Molecular Immunology(10th edition). South Asia Edition Paperback,2021.
- 6. Shrimati Dharmapal Shetty. CMR-NIIH Practical Guide to Laboratory Immuno hematology (1stedition). Jaypee Brothers Medical Publishers, 2020.

Web link

- 1. https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/labs/frelingerlab/doc uments/Immunology-Lab-Manual.pdf
- 2. https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/labs/fr
- 3. Monica Cheesbrough. District Laboratory Practice in TropicalCountries -Part Iand II (Second Edition). Cambridge University Press, New Delhi.
- 4. https://www.sciencedirect.com/book/9780128180068/clinical-immunology
- 5. https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/labs/frelinger-lab/documents/Immunology-Lab-Manual.pdf
- 6. https://www.scribd.com/doc/53764085/Immunotechniques

Pedagogy

Power point presentations, Group Discussion, Quiz, Brain Storming Activity.

Course Designer

Ms.R. Kiruthiga

Semester: IV	Internal Marks:25		External Marks:75		
COURSE CODE	COURSE TITLE	E TITLE CATEGORY		CREDIT	
22UMB4AC6	BIOINFORMATICS	ALLIED			
		COURSE		3	

Course Objective:

This course is designed to provide comprehensive knowledge to the students regarding Bioinformatics.

Prerequisites

To Comprehend and analyze the basics of bioinformatics.

Course Outcomes and Cognitive Level Mapping

COs	CO Statement	Cognitive Level
CO1	Define the basics of bioinformatics	K1
CO2	Recite the knowledge about biological databases	K1
CO3	Critique knowledge about sequences	K4
CO4	Generalize the basic idea of metadata	K6
CO5	Expand the role of molecular biology	K6

Mapping with Programme Outcomes:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3	3	2	2	2	3
CO2	3	2	3	3	2	3	2	2	3	3
CO3	3	3	3	2	3	3	3	3	3	2
CO4	3	3	2	3	2	3	2	2	3	2
CO5	3	3	3	2	3	3	3	3	3	2

"1" – Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-"indicates there is no correlation

UNIT	CONTENT	HOURS	cos	COGNITIVE LEVEL
I	Introduction to bioinformatics: Bioinformatics-Definition, History, Scope and Applications. Opportunities in Bioinformatics. Emerging areas of Bioinformatics	12	CO1, CO2, CO4, CO5	K1, K2, K3, K4, K5
II	Basic concepts in Molecular Biology: Introduction to Molecular Biology and genetics. Central dogma of life: DNA – RNA - Protein. Role of Bioinformatics in Human Genome Project. Introduction to Medline, Pubmed, OMIM. Genomics and proteomics (Basic concepts), Data mining.	12	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Biological database: Biological databases, Importance of databases, Sequence and structure databases: EMBL, DDBJ, GenBank, PIR, SwissProt, CSD, PDB, NCBI.	12	CO1, CO2, CO3, CO4	K2, K3, K4, K5
IV	Sequence Alignments and Visualization: Introduction to Sequences, alignments and Dynamic Programming, Local alignment and Global alignment (algorithm and example), Pairwise alignment (BLAST and FASTA Algorithm) and multiple sequence alignment (Clustal W algorithm).	12	CO1, CO2, CO3, CO4	K2, K4 K5, K6
V	Meta data and Search: Introduction to Metadata and search; Indices, Boolean, Fuzzy, Neighboring search. The challenges of data exchange and integration. Ontologies, interchange languages and standardization efforts. General Introduction to XML, UMLS, CORBA, PYTHON.	12	CO1, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment (Not included for End Semester Examinations EXPASY, OMG / LIFESCIENCE, ENTREZ and SRS.	-	CO1, CO2, CO3, CO4	K2, K3, K4, K5

Text Books

- 1. Tiago Antao (2022). Bioinformatics with Python Cookbook, Packt Publishing Limited.
- 2. R. Sundaralingam, V. Kumaresan (2021). Bioinformatics, Saras Publication.
- 3. Vinita Chougule And MasiddKhalate (2020). Basics in Bioinformatics, Notion Press.

- 4. Andreas D. Baxevanis, Gary D. Bader, David S. Wishart (2020). BIOINFORMATICS Fourth Edition, Wiley.
- 5. Arthur Lesk (2019). Introduction to Bioinformatics Fifth Edition, OUP Oxford.

Reference Books:

- 1. Jonathan Pevsner(2022). Bioinformatics and functional genomics, 3rd edition, John Wiley.
- 2. Namita Mendiratta, Parag Rastogi, S.C. Rastogi (2022). Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery, PHI Learning.
- 3. Dr. Prachi Srivastava, Dr. Neha Srivastava, Er. Prekshi Garg, Er. Payal Trivedi (2021).
- 4. Bio Informatics (Vision and Approaches), Vayu Education of India.
- 5. Ken Youens-Clark (2021). Mastering Python for Bioinformatics: How to Write Flexible, Documented, Tested Python Code for Research Computing, Shroff/O'Reilly.
- 6. S.Gladis Helen Hepsyba, C.R.Hemalatha (2021). Basic Bioinformatics, MJP Publishers.

Weblinks:

- 1. https://en.wikipedia.org/wiki/Bioinformatics#:~:text=Bioinformatics%20(%2F%CB%8Cba%C9%AA.,sets%20are%20large%20and%20complex.
- 2. https://www.genome.gov/genetics-glossary/Bioinformatics
- 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1122955/
- 4. https://academic.oup.com/bioinformatics
- 5. https://www.britannica.com/science/bioinformatics

Pedagogy

Power point presentations, Groupdiscussion, Seminar, Quiz, Assignment, Brain storming activity

Course Designer

Dr.P.F.Steffi

Semester: IV	Internal Marks	Internal Marks:25		
COURSE CODE	COURSE TITLE	CATEGORY	HRS./WEEK	Credits
22UMB4GEC2	BIOFERTILIZER TECHNOLOGY	GENERIC ELECTIVE COURSE	2	2

Course Objectives

To enable the students to understand the role of beneficial microorganisms in biofertilizer production technology.

Prerequisites

Basic knowledge and concepts of Biofertilizer Technology

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Define and understand importance of biofertilizer	K1, K2
CO2	Analyze and explain mass production of <i>Rhizobium</i>	K3, K4
CO3	Determine and apply Azospirillum and Azotobacter biofertilizer	K3, K4
CO4	Evaluate and categorize Blue green algae biofertilizer	K4, K5
CO5	Criticize and manage production of phosphate biofertilizer and VAM	K5, K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	1	3	2	3	3	2
CO2	2	2	2	2	2	3	2	3	2	2
CO3	2	3	1	2	3	3	2	3	2	2
CO4	3	2	3	2	2	3	2	3	2	1
CO5	3	3	3	3	2	3	2	3	3	2

[&]quot;1" - Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	COS	COGNITIVE LEVEL
I	Biofertilizers : Definition - types,	6	CO1,	K1,
	importance of biofertilizers in		CO2,	K2,
	agriculture. Advantages and		CO3	K3,
	applications of Biofertilizers.			K4
II	Rhizobium: characteristics, isolation,	6	CO1,	K1,
	identification, mass multiplication,		CO2,	K2,
	carrier-based inoculants, Field		CO3,	K3,
	applications.		CO4	K4,
				K5
III	Azospirillum and Azotobacter:	6	CO1,	K1,
	isolation and mass multiplication		CO2,	K2,
	carrier-based inoculant, field		CO3,	K3,
	applications. Azotobacter-		CO4,	K4,
	characteristics, isolation, mass			K5,
	multiplication and field applications.			
IV	Blue green algae as biofertilizer:	6	CO1,	K1,
	isolation, mass culture and field use of		CO2,	K2,
	BGA inoculants. Azolla – mass		CO3,	K3,
	cultivation and field application.		CO4,	K4,
			CO5	K5,
				K6,
V	Phosphate biofertilizers : isolation, mass	6	CO1,	K1,
	production and field application. VAM-		CO2,	K2,
	isolation, mass production, importance		CO3,	K3,
	and field application.		CO4,	K4,
			CO5	K5,
				K6
VI	Self Study for Enrichment (Not	-	CO1,	K1,
	included for End Semester		CO2,	K2,
	Examinations)		CO3,	K3,
	Green manure, organic manure, organic		CO4,	K4,
	farming, bio compost,		CO5	K5,
	vermicomposting – field Application.			K6

Text Books

- 1. Kannaiyan S, Kumar, K., Govindarajan K. (2010). Biofertilizer Technology. 1st Edition. Scientific Publishers.
- 2. Kumaresan V. (2015). Biotechnology. 1st Edition. Saras Publication.
- 3. Eric Davis. (2018). Biofertilizer Technology: Importance and their uses. 1st Edition. DSR Book distributors.
- 4. Dubey R.C. (2022). A Textbook of Biotechnology. 1st Edition. S Chand and company Ltd.
- 5. Malati Hitendra Aher. (2022). Biofertilizer and Algal Technology. 1stEdition. Sahitya Sagar Publications.

6. Namita Nath, Dharmeswar Barman. (2022). Biofertilizer. 1st Edition. ARB Publications.

Reference Books

- 1. Anil K Thakur, Susheel K Bassi, Kamajit Singh, Dinesh. (2020). Biofertilizers (Skill Enhancement course). 1st Edition. S Dinesh & Co.
- 2. Himadri Panda. (2022). The complete technology book on Biofertilizer and organic farming. 3rd Edition. NIIR Project consultancy services.
- 3. Joanne Willey, Kathleen Sandman, Dorothy Wood. (2022). Prescott's Microbiology. 12thEdition. Mc Graw Hill.
- 4. Krishnendu Acharya, Surjit Sen, Manjula Rai. (2019). Biofertilizers and Biopesticides. 1st Edition. Techno World.
- 5. Amitava Rakshit, Vijay Singh Meena, Manoj Parihar, Singh H B, Singh A K. (2021). Biofertilizers: Advances in bio- inoculants. 1st Edition. Woodhead Publishing.
- 6. Ramanathan N. (2019). Biofertilizer Technology. 1st Edition. Kalyani Publisher.

WebReferences

- 1. https://byjus.com/biology/biofertilizers/
- 2. https://www.onlinebiologynotes.com/biofertilizer-advantages-types-methods-of-application-and-disadvantages/
- 3. https://biocyclopedia.com/index/biotechnology/plant_biotechnology/biofertilizers/biotech_masscultivation .php#:~:text=Mix%20this%20carrier%20based%20culture,105%20to%20106.
- 4. https://biotecharticles.com/Agriculture-Article/Blue-Green-Algae-Bio-Fertilizer-1073.html
- 5. https://krishi.icar.gov.in/jspui/bitstream/123456789/45882/1/AAU-PSB%20Biofertilizer.pdf
- 6. https://www.biotechnologynotes.com/biotechnology/vesicular-arbuscular-mycorrhiza-vam-biotechnology/1153

Pedagogy

Power point presentations, Group Discussion, Seminar, Quiz, Assignment, Brain Storming Activity.

Course Designer

Dr. S. Jenny

Semester: IV	Internal Marks: 40	External Marks: 60			
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22UMB4SEC1P	HERBAL MEDICINE (P)	SKILL ENHANCEMENT COURSE	2	2	

Course Objective:

To create a traditional knowledge of medicinally important plants in day to day life.

Prerequisites

To acquire a Practical Knowledge in collection and processing of Medicinal Plants

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive level
CO1	Cultivation of Medicinal Plants	K1
CO2	Recite the knowledge about medicinally important plants.	K2
CO3	Describe about tribal medicine and their uses in diseases.	К3
CO4	Apply the traditional knowledge of medicinal plants in Tamil nadu	K4
CO5	Associate of plants in day to day life	K5

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	2	3	2	3	3	2
CO2	2	2	2	2	1	3	2	3	2	2
CO3	2	3	1	2	3	3	2	3	2	2
CO4	3	2	3	2	2	3	2	3	2	1
CO5	3	3	3	3	2	3	2	3	3	2

[&]quot;1" Slight (Low) Correlation

[&]quot;3"- Substantial (High) Correlation

[&]quot;2"- Moderate (Medium) Correlation

[&]quot;-" indicate there is no correlation

- 1. Cultivation of Medicinal Plants, Aloe vera, Senna auriculata ,Zingiber Officinale, Curcuma aromatic, and Curcuma aromatic.
- 2. Standardization of herbal Raw material, Extract and Formulation of herbal plants.
- 3. Preliminary Phytochemical Screening, Quantitative of plant extract.
- 4. Determination of Aldehyde content.
- 5. Determination of Total Alkaloids
- 6. Determination of Flavonoids
- 7. Determination of Phenols
- 8. Preparation and evaluation of Turmeric cream.
- 9. Preparation and Standardization of Herbal lotion.
- 10. Preparation of herbarium and storage (Herbaira, Museum)

Text Books

- 1. Iris F. F. Benzie and Sissi Wachtel-Galor,2011. Herbal Medicine, 2nd editionCRC Press/Taylor &Francis;
- 2. Joanne Barnes, Linda A. Anderson, John David Phillipson. 2007, Herbal Medicine.
- 3. K. G. Ramawat, 2013. Herbal Drugs: Ethnomedicine to Modern Medicine.
- 4. Dr.Pragati Kumar (Author), Dr. Pranay Wal (Author), Mr. Yatendra Singh (Author), 2022.A Text Book of herbal drug technology.

Reference Books

- 1. Evans M, Shaw A, Thompson E. A, Falk S, Turton P, Thompson T, Sharp D. 2007. BMC Complement Altern Med. 25. Vol. 7. Decisions to use complementary and alternative medicine (CAM) by male cancer patients: Information-seeking roles and types of evidence used.
- 2. Finkel T, Holbrook N. J. . 2000.Oxidants oxidative stress and the biology of ageing. Nature;408:239–47.
- 3. Akhtar M.A, Hatwar S.K. 1996.Efficacy of Aloe vera extract cream in management of burn wound. J Clin Epidemiol. ;49 1:24.
- 4. Ashley F.L, O'Loughlin B.J, Peterson R, Fernandez L, Stein H, Schwartz A.N.2010 The use of Aloe vera in the treatment of thermal and irradiation burns in laboratory animals and humans. Plast Reconstr Surg. 20:383–96.

Web Reference

- 1. 1.https://openstax.org/books/introduction-anthropology/pages/17-2-ethnomedicine#
- 2. 2.https://en.wikipedia.org/wiki/Plant morphology

Pedagogy

Power point presentations, Group Discussion, Seminar, Quiz, Brain Storming Activity.

Course Designer

Dr. J. Ambika

Semester V	Internal Ma	arks: 25	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS	
22UMB5CC6	MEDICAL MICROBIOLOGY	CORE	6	6	

Course Objective

To impart the students with advanced knowledge of the characteristics of medically important human diseases. To focus the pathogenicity of the medically important microorganisms. To familiarize the lab diagnosis, prophylaxis and treatment of the diseases

Prerequisite

Basic knowledge of different types of pathogens, diseases and their diagnosis.

Course Outcome and Cognitive Level Mapping:

CO Number	CO Statement	Cognitive level
CO 1	Describe and Classify the various pathogens and its Characterization.	K3,K4
CO 2	Analyze pathogenicity of bacterial, fungal, viral and protozoan disease	K4, K5
CO 3	Evaluate diagnostic methods of various diseases	K4, K5
CO 4	Explain prevention and treatment of diseases	K3, K5
CO 5	Collection of clinical samples and Identification of pathogens	K5, K6

Mapping with Programme Outcomes:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	2	3	3	3	3	2	3
CO2	3	2	3	3	2	2	3	2	3	3
CO3	3	2	3	2	3	3	2	3	3	2
CO4	2	3	3	2	3	1	3	2	3	2
CO5	3	3	2	3	2	3	3	3	2	3

[&]quot;1" - Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-"indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
I	Introduction - History, Koch's and River's Postulates-Normal microbial flora of the healthy human body, Host-pathogen interactions: Definitions of infection, invasion, primary and opportunistic pathogens, pathogenicity - virulence - toxigenicity, carriers and its types, endemic, epidemic, pandemic diseases and epidemiology – Infectious disease cycle.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	Bacterial Diseases - Diseases of various organ systems: Causative agent, clinical symptoms, pathogenesis, mode of transmission, prevention and treatment of the following bacterial diseases (a) Streptococcal pneumonia infections (b) Staphylococcus aureus infections (c) Meningitis - Neisseria, (d) Leprosy, (e) Leptospirosis, (f) Respiratory diseases: Tuberculosis (g) Gastrointestinal disorders: Typhoid (h) Sexually transmitted diseases: Syphilis (i) Anaerobic wound infection – Tetanus.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Viral Diseases - Diseases of various organ systems: Causative agent, clinical symptoms, pathogenesis, mode of transmission, prevention and treatment of the following viral diseases (a) Respiratory diseases: common cold and influenza (b) Neurological diseases: Rabies (c) Muscular diseases - Polio (d) Liver diseases: Viral hepatitis (e) Immunodeficiency disease: - AIDS. A brief account on Prion diseases.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Fungal & Protozoan Diseases - Causative agent, clinical symptoms, pathogenesis, mode of transmission, prevention and treatment of the following fungal and protozoan diseases (a) Fungal – superficial and subcutaneous mycoses, (b) Protozoan: Amoebiasis, Malaria (c) Helminths – Filariasis, Ascariasis. Zoonotic diseases, Nosocomial and Community acquired infections.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
V	Lab Diagnosis - Isolation and identification of pathogens from an infected patient: Collection and transport of various clinical specimens (Urine, stool, sputum and blood) for diagnosis – General methods of isolation and identification of bacterial, fungal, viral pathogens and protozoan parasites.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
VI	Self-Study for Enrichment (Not to be included for End Semester Examination) Chemotherapy — Mechanism of action of antibiotics, Mechanism of development of antibiotics resistance. Alternative antibiotics — Probiotics, prebiotics and synbiotics.			

Text books

- 1. Aejaz Iqbal and Zafar Nowshad (2020). Medical microbiology: Millennium Edition, Notion Press
- 2. Baveja V and Baveja C P (2019). Medical Parasitology, Arya Publishing company
- 3. Mishra B (2018), Text Book of Medical Virology, CBS
- 4. Ananthanarayan and Paniker (2013). A Text book of Microbiology, Kindle Edition

Reference books

- 1. Sastry Apurba S and Bhat Sandhya (2020). Essentials of Medical Microbiology, Jaypee brothers, Medica publishers
- 2. Patrick R Murray, Ken S, Rosenthal and Michael A and PFaller (2020), Medical Microbiology, Elsevier
- 3. Ananthanarayan Paniker (2020). A Text book of Microbiology, University Press
- 4. Kenneth J Ryan, Nafees Ahmad and Andrew Alspaugh J (2018). Sherris Medical Microbiology, McGraw- Hill Education

Web References

- 1. https://www.cdc.gov/tb/education/corecurr/pdf/chapter2.pdf
- 2. http://apps.searo.who.int/PDS_DOCS/B5123.pdf3. http://apps.searo.who.int/PDS_DOCS/B5123.pdf3. http://loyce2008.free.fr/Microbiologie/%20Micro%20%20Gillespie%20Hawkey%20%20Principles%20And%20Practice%20Of%20Clinical%20Bacteriology%202Nd%20Ed.pdf

Pedagogy

Power Point Presentations, Group Discussion, Seminar, Quiz, Assignment and Brain Storming Activity.

Course Designer

Dr. P. Bhuvaneswari

Semester V	Internal Marks: 25	Ex	ternal Marks:75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB5CC7	AGRICULTURAL AND ENVIRONMENTAL MICROBIOLOGY	CORE COURSE	6	6

Course Objective:

To enable the students to get exposure on relationship between microbes and nature, its roles and its utilization for the creation of sustainable environment and their concept, Biofertilizer role, Biogeochemical cycle and Plant diseases.

Prerequisites:

Basic knowledge about Agricultural and Environment Microbiology.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive level
CO1	Define the basic view of soil Microorganisms.	K1
CO2	Explain the Microbial association in water.	K2
CO3	Understand the production of Biofertilizer	K3
CO4	Discuss about Plant diseases and Control measures	K4,K5
CO5	Discuss about Water pollution and water quality.	K6

COs	PO1	PO2	PO3	PO4	PO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	2	3	3	3	3	3
CO2	3	3	3	2	3	2	2	3	2	2
CO3	3	3	1	2	3	3	3	3	3	1
CO4	3	3	2	3	2	2	3	2	2	2
CO5	2	3	3	2	3	1	3	3	3	3

[&]quot;1"- Slight(Low) Correlation

[&]quot;3"- Substantial(High) Correlation

[&]quot;2"- Moderate (Medium) Correlation

[&]quot;-" indicate there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Bacterial diseases of agricultural crops: pathogens, symptoms, control measures with reference to paddy, cotton, maize, tomato, citrus, mango and potato. Plant protection —Phenolics — phytoalexins and related compounds. Bioinsecticides — viral (Baculovirus, NPV)- bacterial (Bacillus thuringiensis) and fungal (Trichoderma) - a brief note.	18	CO1, CO2, CO3	K1, K2, K3, K4
П	Bio-geo chemical cycles in soil: Carbon cycle, Nitrogen cycle – Nitrogen fixation, nitrification, denitrification, sulfur, iron and phosphorus cycles. Aerobiology – a brief introduction - droplet nuclei – aerosols - air-borne transmission of microbes and diseasesand assessment of air quality.	18	CO1, CO2, CO3, CO4	K1, K2, K3, K4,
III	Diversity and distribution of microorganisms in soil: Soil Microflora- Bacteria, Fungi and Actinomycetes. Microbial interactions -mutualism, synergism, commensalism, amensalism, parasitism, predation and competition. Microbial interactions with plants – phyllosphere, mycorrhizae, rhizosphere and symbiotic association in root nodules. Biofertilizer – VAM, Rhizobium, Frankia, Azospirillum, Azotobacter, Cyanobacteria, Phosphobacteria and Azolla.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K6
IV	Types of wastes: solid and liquid wastes. Treatment of solid wastes - Thermal Treatment: Incineration, Gasification, Pyrolysis. Bioreactor Landfills-Biological Waste Treatment: Composting, Vermicomposting and vermicomposting. Treatment of liquid wastes –primary, secondary, tertiary treatment; anaerobic (methanogenesis), aerobic, Trickling, activated sludge, oxidation pond. Production of biogas from waste.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	Aquatic microbiology: factors affecting microbial growth – temperature – pressure – light – salinity - turbidity – pH -inorganic and organic constituents. Aquatic habitats - freshwater - lakes, ponds and streams; marine habitats - estuaries, deep sea, hydrothermal vents, saltpans, coral reefs and mangroves and their microbial communities; zonation – food chain and food web.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	Self-Study for Enrichment (Not to be included for End Semester Examination) Soil microbes and fertility of soil, bioaugmentation, xenobiotics degradation, plant growth promoting Rhizobacteria (PGPR), Role of biofertilizer in integrated nutrient management.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,

Textbooks

- 1. Alexander M. (1997). Introduction to soil microbiology, New York: John Wiley & Sons, Inc.
- 2. Ec Eldowney S., Hardman, D.J. and Waite, S. (1993). Pollution Ecology and Biotreatment.
- 3. Madigan, M.T., Martinka, M., Parker, J. and Brock, T.D. (2000). Environmental microbiology. Twelth Edition, Biology Microorganisms, New Jerry: Prentice Hall. Mark Wheelis, (2010).
- 4. P.D.Sharma (2005). Microbiology-Rastogi Publication, India
- 5. D.J.Bagyaraj, G.Rangaswami. (2007). Agricultural Microbiology. Prentice, Hall of India Pvt New Delhi.

References

- 1. Mehrotra, R.S. (2000). Plant Pathology, New Delhi: Tata McGraw Hill Publishing Company Ltd. Pandy,
- 2. B.P. (1997). Plant Pathology (Pathogen & Plant Disease), New Delhi: S.Chand & Company Ltd.
- 3. Ray Chadhuri, S.P. (1999). A Manual of Virus Diseases of Tropical Plants, New Delhi: MacMillan Company of India Ltd.
- 4. Rengaswami, G. and Rajagopalan, S. (2007). Bacterial Plant Pathology. Coimbatore: Tamil Nadu Agriculture University.
- 5. Subba Rao, N.S. (1995). Soil Microorganisms and Plant Growth (3rd ed). New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd.
- 6. Mark Wheelis, (2010). Principles of Modern Microbiology, New Delhi: Jones & Bartlett India Pvt.

Web References

- 1. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119525899
- 2. https://agri-bsc.kkwagh.edu.in/uploads/department course/plant course.pdf
- 3. https://www.slideshare.net/ShanidShanu1/agricultural-microbiology
- 4. https://agribooks.co/agricultural-microbiology-b-sc-agriculture-icar-e-course-pdf-download/
- 5. https://books.google.co.in/books/about/Environmental and Agricultural Microbiol.ht ml?id=BnQ-EAAAQBAJ&redir_esc=y

Pedagogy

Power point presentations, Group Discussion, Seminar, Quiz, Assignment, Brain Storming Activity.

Course Designer

Dr.J.Ambika

Semester: V	Internal Marks: 2	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB5CC8	MOLECULAR BIOLOGY	CORE COURSE	6	6

Course Objective

To encompasses the basic study and understanding the central dogma and helps in understanding the basic organization of the genome of prokaryotes and eukaryotes. It is followed by prokaryotic and eukaryotic replication, transcription, translation processes and regulation.

Prerequisite

Basic knowledge and concepts of Molecular biology.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive level
CO 1	State the Basic concept of Prokaryotic Genes	K1
CO 2	Define the Prokaryotic DNA Replication	K1
CO 3	Explain the DNA & RNA Transcription in Prokaryotes	K2
CO 4	Apply the view of Gene Transfer Mechanisms	К3
CO 5	Prepare the Mutation and DNA Repair Mechanisms	К3

COS	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	3	3	2	2	3	2	3
CO2	3	3	2	3	3	2	2	3	3	3
CO3	2	3	3	2	3	3	3	2	3	3
CO4	2	3	3	3	2	3	2	3	3	3
CO5	3	3	2	3	3	3	3	2	3	3

[&]quot;1" - Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	COS	COGNITIVE LEVEL
I	Milestones in history—Definition of nucleic acids-Experimental proofs of DNA as the genetic material (Griffith and Hershey Chase) – Experimental proofs of RNA as the genetic material - Molecular structure of DNA double helix – Discovery of DNA structure – Brief account on types and forms of DNA –Definition of a gene. Organization of DNA in eukaryotic cell; Palindromic DNA; Types of RNA- rRNA, mRNA, SnRNA the 5' cap, non- coding region, initiation, coding region, termination codon; Poly (A) region, post transcriptional modification. Brief note on plasmids: structure and its types.	18	CO1, CO2, CO3, CO4	K1, K2, K3, K4
II	DNA Replication: Watson and Crick's model of DNA replication (experimental evidence); Enzyme involved in DNA replication (DNA polymerase I, Pol II, Pol III, DNA ligase); Mechanism of DNA replication; Models of DNA replication, inhibitors of DNA replication. Exonuclease and endonuclease. Theta replication and Rolling circle replication. Replication of RNA – reverse transcriptase.	18	CO1, CO2, CO3, CO4	K1, K2, K3, K4
III	DNA Transcription: Definition — Brief account on transcriptional machinery and mechanism of transcription — RNA Translation: Definition — Brief account on translational machinery, mechanisms of translation and Splicing mechanism. Regulation of gene expression: Concept of Gene, Genetic code & itsproperties. Wobble concept, prokaryotic and eukaryotic ribosomes, detailed account of structure, function and regulation of <i>lac</i> operon, <i>trp</i> operon and <i>ara</i> operon.	18	CO1, CO2, CO3, CO4	K1, K2, K3, K4
IV	Gene transfer mechanisms: Conjugation, Transformation and Transduction. Discovery of Transformation, Natural competence and its mechanism - Conjugation - Discovery, F+ v/s F-, Hfr+ v/sF. Transduction - Generalized and specialized transductions. Transposons - Structure, genetic organization and mechanismof transposition. Polymerase Chain Reaction & types.	18	CO1, CO2, CO3, CO4	K1, K2, K3, K4

V	Mutation: Definitions of mutations, mutagenesis and mutants - types of mutations; Gene diversity; Split genes, overlapping gene; Molecular nature of Mutation, Spontaneous and Induced mutation; DNA damage repair – Types of damage (deamination, Oxidative damage, Alkylation, Pyrimidine dimmers. Hybridization techniques: Southern, Northern & Western Blotting. Physical and Chemical mutagens, Carcinogenicity testing (AMES Test) - Applications of Mutations.	18	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment	-	CO1,	K1,
	(Not to be included for End Semester		CO2,	K2,
	Examination)		CO3,	K3,
	prokaryotic and eukaryotic replication,		CO4,	K4,
	transcription, translation processes and		CO5	K5
	regulation			
	-			

Text Books

- 1. David P. Clark, Nanette J. Pazdernik, Michelle R. McGehee. Molecular Biology (3rd edition), Academic Cell, 2019.
- 2. Lizabeth A. Allison. Fundamental Molecular Biology (3rd Edition). Wiley-Blackwell, 2021.
- 3. Bruce Alberts, Rebecca Heald, Alexander Johnson, David Morgan, Martin Raff, Keith Roberts, Peter Walter, John Wilson, Tim Hunt. Molecular Biology of the Cell (7th edition) W. W. Norton & Company, 2022.
- 4. Rupal Sengar. Textbook of Microbial Genetics (1st edition), LAP LAMBERT Academic Publishing, 2021.
- 5. Pradeep D. Devkate, Samina R. Khan, Dipak G. Puri, Sachin S. Shinde. A Textbook of Microbial Genetics (1st edition), Booksclinic Publishing, 2023.

Reference Books

- 1. Hartl, Daniel L. Genetics: Analysis of genes and genomes. (9thEdition), Jones & Bartlett Learning, 2019
- 2. Arumugam N. Cell Biology and Molecular Biology (9th Edition), Saras Publication, 2019.
- 3. Poonam Agrawal, Lippincott Illustrated Reviews: Cell and Molecular Biology (SAE- 2nd edition), WoltersKluwer India Pvt Ltd, 2022.
- 4. Jordanka Zlatanova. Molecular Biology: Structure and Dynamics of Genomes and Proteomes (2nd Edition), Garland Science, 2022.
- 5. Joanne Willey, Kathleen Sandman, Dorothy Wood. Prescott's Microbiology (12th edition), Mc Graw Hill,2022.
- 6. Bernard R. Glick, Cheryl L. Patten. Molecular Biotechnology: Principles and Applications of Recombinant DNA (ASM Books) (6th Edition). ASM Press, 2022.

Web References

- 1. http://www.freebookcentre.net/Biology/Molecular-Biology-Books.html
- 2. http://www.freebookcentre.net/medical_text_books_journals/genetics_ebooks_onlinetext_sdownload.html
- 3. https://www.nature.com/scitable/ebooks/
- 4. http://www.digitalbookindex.org/_search/search010biolmolecularcellbiologya.asp
- 5. https://microbenotes.com/dna-structure-properties-types-and-functions/#types-of-dna
- 6. https://www.biologydiscussion.com/dna/dna-damage-types-and-repair-mechanisms-with-diagram/16332
- 7. https://www.biologydiscussion.com/gene/transposons-or-jumping-genes-types-structure-mechanism-and-functions/16499

Pedagogy

Power point presentations, Group Discussion, Seminar, Quiz, Assignment.

Course Designer

Dr.V.Aruna

Semester: V	Internal Marks: 4	External M	Iarks: 60	
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB5CC5P	MEDICAL	CORE	3	3
	MICROBIOLOGY,	PRACTICAL		
	AGRICULTURAL AND			
	ENVIRONMENTAL			
	MICROBIOLOGY AND			
	MOLECULAR BIOLOGY (P)			

Course Objective

To impart the knowledge on isolation, identification of medically important organisms and perform water and soil analysis and isolation of chromosomal and plasmid DNA.

Prerequisites

To acquire a Skills about the various Techniques Medical Microbiology, Agricultural and Microbiology and Molecular Biology.

Course Outcomes and Cognitive Level Mapping

CO Number	CO Statement	Cognitive level
CO 1	Illustrate the isolation procedures	K2
CO 2	Explain the symptoms of diseases	K2
CO 3	Sketch out the water borne microbes	К3
CO 4	Demonstration of auxotrophic mutants	К3
CO 5	Analyze agarose gel electrophoresis	K4

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3	3	2	2	2	3
CO2	3	2	3	3	2	3	2	2	3	3
CO3	3	3	3	2	3	3	3	3	3	2
CO4	3	3	2	3	2	3	2	2	3	2
CO5	3	3	3	2	3	3	3	3	3	2

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;-" indicates there is no Correlation

MEDICAL MICROBIOLOGY (25 Hours)

- 1. Isolation of bacterial flora of skin by swab method.
- 2. Isolation of bacteria from urine, stool and sputum.
- 3. Identification of Gram-positive organisms (using laboratory strains): *Streptococcus pneumoniae*, *Staphylococcus aureus* and *Bacillus sp.* and Gram-negative organisms (using laboratory strains): *Escherichia coli*, *Proteus sp.* and *Klebsiella pneumoniae* on the basis of microbiological, cultural and biochemical characteristics.
- 4. Saline and iodine wet mount to demonstrate protozoan parasites
- 5. Giemsa staining for the demonstration of blood parasites
- 6. KOH and Lactophenol cotton blue mount to demonstrate fungi.
- 7. Antibacterial sensitivity test Kirby- Bauer method.

AGRICULTURAL AND ENVIRONMENTAL MICROBIOLOGY (10 Hours)

- 8. Water analysis by MPN technique presumptive coliform test confirmed coliform test and confidence test.
- 9. Microbial assessments of air quality open plate method and air sampler technique.
- 10. Isolation and counting of faecal bacteria from water.
- 11. Soil Analysis -pH, chlorides, nitrate, calcium, magnesium and total phosphorus.
- 12. Isolation of cyanobacteria from water.
- 13. Isolation of *Rhizobium* form legume nodule.
- 14. Isolation of phosphobacteria from soil.
- 15. Observation of VAM from plant root.

MOLECULAR BIOLOGY (10 Hours)

- 16. Isolation of Chromosomal DNA from bacteria
- 17. Isolation of Plasmid DNA from bacteria
- 18. Isolation of Auxotrophic mutants.
- 19. Demonstration of Bacterial transformation technique.
- 20. Demonstration of Agarose gel electrophoresis (to study DNA/ RNA) and SDS PAGE(to study proteins).

Reference Books

- 1. Ananthanarayan, Paniker (2020), Textbook of Microbiology, Universities Press.
- 2. SubbaRao NS(2020), Soil Microbiology, Oxford Publishing.
- 3. Mangesh Y Dudhe, (2020), Agriculture- Microbiology, New VishalPublications.
- 4. Michael J Leboffe and Burton EPierce (2019). Microbiology: LaboratoryTheory &
- 5. Application, Morton PublishingCompany...
- 6. Ashwani Kumar, Gakhar S K and Monika Miglani (2019), Molecular Biology: A Laboratory Manual, Dreamtech Press

Web References

- 1. https://www.mlsu.ac.in/econtents/159 Experiment.%204 Isolation%20bacteria%20fr om%20skin.pdf
- 2. https://microbenotes.com/water-quality-analysis-by-most-probable-number-mpn/
- 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577976/
- $4. \ \underline{https://www.cdc.gov/dpdx/diagnosticprocedures/stool/microexam.html}$
- 5. https://www.youtube.com/watch?v=k2xx7jIW3E8

Pedagogy

Power point presentations, Group Discussion, Quiz, Brain Storming Activity.

Course Designer

Dr.V.Aruna

Semester V	Internal N	Internal Marks : 25		arks : 75
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDIT
22UMB5DSE1A	ORGANIC FARMING	DISCIPLINE SPECIFIC ELECTIVE – I (DSE)	5	4

Course Objectives

This course focuses on the need and generating knowledge and skill on various organic farming practices, so as to carry out organic agricultural production and management system that sustains the health of soils and ecosystems.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Knowledge level
CO1	Determine the origin and importance of organic farming	K1,K2,K4
		, ,
CO2	Explain the scope of organic farming	K2,K3,K4
CO3	Evaluate the methodology practiced in organic farming	K4,K5,K6
CO4	Generalize the management strategies in crop protection	K3,K4,K6
CO5	Compile the strategies for the commercialization of organic products	K5,K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	3	3	3	2	3
CO2	3	2	3	3	2	2	3	2	3	3
CO3	3	2	2	3	3	3	2	3	3	2
CO4	2	3	3	2	3	3	3	2	3	2
CO5	3	3	2	3	2	3	3	3	2	2

[&]quot;1" – Slight (Low) Correlation"
"3" – Substantial (High) Correlation

^{2&}quot; – Moderate (Medium) Correlation "-" indicates there is no correlation

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
I	Introduction: Concept, Principles and development of organic farming. Types - Natural farming- Biodynamic farming. Conventional farming v/s Organic farming.	16	CO1, CO2, CO3 CO4, CO5	K1, K2, K3, K4, K5
II	Scope of organic farming: requirements for organic farming. Organic nutrients resources and their management, organic ecosystems and their concepts- Bioinoculants.	14	CO1, CO2, CO3 CO4, CO5	K1, K2, K3, K4, K5
III	Composting: principles – stages - types and factors. Composting methods – Vermicomposting.Biofertilizers - methods of application, advantages and limitations.	13	CO1, CO2, CO3 CO4, CO5	K1, K2, K3, K4, K5
IV	Plant protection: Insect Pest and disease management in organic farming-biopesticides, - biocontrol agents, Weed management in organic farming- preventive practices, biological control of weeds-mechanical control.	16	CO1, CO2, CO3 CO4, CO5	K1, K2, K3, K4, K5
V	Organic crop production, certification process and standards of organic farming in India, economic viability of organic farming, marketing and export potential of organic products.	16	CO1, CO2, CO3 CO4, CO5	K1, K2, K3, K4, K5
VI	Self Study for Enrichment (Not to be included for End Semester Examination) Plant Nutrients-Micro and Macro, Importance and deficiency syndrome, crop rotation: need and benefits		CO1, CO2, CO3 CO4, CO5	K1, K2, K3, K4, K5

Text books

- 1. Maliwal P L (2020). Principles of OrganicFarming, Scientific Publisher
- 2. Joanne M Willey, Kathleen M Sandman and Dorothy H Wood (2019). Prescotts Microbiology, McGraw-Hill Education
- 3. Joanne M Willey, Kathleen M Sandman and Dorothy H Wood (2019). Prescotts microbiology, McGraw-Hill Education
- 4. Unni M R and Sabu Thomas (2018). Organic Farming Global Perspectives and Methods, Woodhead publishing
- 5. Amitava Rakshit and H B Singh (2018). ABC of Organic Farming, Jain Brothers

Reference books

- 1. Bansal M (2020). Basics of Organic Farming, CBS publishers and Distributors Pvt. Ltd.
- 2. Janet Wilson (2020). Composting: Sustainable and Low- Cost Techniques for Beginners, Drip Digital Publisher
- 3. Debabrata Biswas, Shirley A. Micallef (2019). Safety and Practice for Organic Food Academic press, Elsevier Science.
- 4. Rhonda Sherman (2018). The Worm Farmer's Handbook Chelsea Green Publishing Company
- 5. Vinaya KumarSethi (2018). Organic farming andbio-fertilizers, Discovery publishing house Pvt. Ltd.

Web References

- 1. http://agrimoon.com/organic-farming-pdf-book/
- 2. https://www.britannica.com/topic/organic-farming
- 3. https://agritech.tnau.ac.in/org farm/orgfarm introduction.html
- 4. https://agritech.tnau.ac.in/org_farm/orgfarm_vermicompost.html
- 5. https://agritech.tnau.ac.in/org_farm/IPM%20Booklet%20for%20OF-Dr.P.D.pdf
- 6. https://agritech.tnau.ac.in/org_farm/orgfarm_oc%20guidelines.html

Pedagogy

Power Point Presentations, Group Discussion, Seminar, Quiz, Assignment and Brain Storming Activity

Course Designer

Dr.B.Thamilmaraiselvi

Semester: V	Internal Marks	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS./WEEK	Credits
22UMB5DSE1B	MEDICAL PARASITOLOGY	DISCIPLINE SPECIFIC ELECTIVE	5	4

Course Objectives

To enable the students to understand the clinically important protozoa, helminths and arthropods and acquire knowledge about the areas in which parasitic infections are endemic.

Prerequisites

Basic knowledge and concepts of clinically important parasites

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	Define and understand diagnostic techniques in parasitology	K1, K2
CO2	Analyze and explain clinical significance of <i>Entamoeba</i> histolytica	K3, K4
CO3	Determine and apply the treatment of Leishmania donovani	K3, K4
CO4	Evaluate and categorize the <i>Plasmodium</i> spp.	K4, K5
CO5	Criticize and manage Taenia solium	K5, K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	1	3	2	3	3	2
CO2	2	2	2	2	2	3	2	3	2	2
CO3	2	3	1	2	3	3	2	3	2	2
CO4	3	2	3	2	2	3	2	3	2	1
CO5	3	3	3	3	2	3	2	3	3	2

[&]quot;1" – Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

UNIT	CONTENT	HOURS	COS	COGNITIVE LEVEL
I	Introduction and Classification of Parasites	15	CO1,	K1,
	 Protozoa and helminthic infection. 	_	CO2,	K2,
	Laboratory Diagnostic Techniques in Parasites		CO3	K3,
	 Direct Identification and Indirect 			K4
	Identification. Concentration methods -			
	flotation techniques and sedimentation			
	techniques			
II	Amoebae: Morphology, Clinical Significance,	15	CO1,	K1,
	Symptoms, Pathogenicity, Lab Diagnosis,		CO2,	K2,
	Treatment and Prevention - Entamoeba		CO3,	K3,
	histolytica, Acanthamoeba spp. and Naegleria		CO4	K4,
	fowleri			K5
III	Flagellates: Morphology, Clinical Significance,	15	CO1,	K1,
	Symptoms, Pathogenicity, Lab Diagnosis,		CO2,	K2,
	Treatment and Prevention - Giardia intestinalis,		CO3,	K3,
	Leishmania donovani, Trypanosoma spp.		CO4,	K4,
				K5,
IV	Sporozoans : Morphology, Clinical	15	CO1,	K1,
	Significance, Symptoms, Pathogenicity, Lab		CO2,	K2,
	Diagnosis, Treatment and Prevention -		CO3,	K3,
	Toxoplasma gondii, Plasmodium spp and		CO4,	K4,
	Cryptosporidium sp.		CO5	K5,
				K6,
V	Cestodes and Nematodes: Morphology, Clinical	15	CO1,	K1,
	Significance, Symptoms, Pathogenicity, Lab		CO2,	K2,
	Diagnosis, Treatment and Prevention – Taenia solium, Ancylostoma duodenale and Wuchereria		CO3,	K3,
	bancrofti.		CO4,	K4,
	ouncrojn.		CO5	K5,
***			001	K6
VI	Self Study for Enrichment (Not included for	-	CO1,	K1,
	End Semester Examinations)		CO2,	K2,
	Isolation, identification, clinical manifestations		CO3,	K3,
	of medically important parasites		CO4,	K4,
			CO5	K5,
				K6

- 1. Apurba S Sastry, Sandhya Bhat. (2018). Essentials of Medical Parasitology. 2nd Edition. Jaypee Brothers Medical Publishers.
- 2. Sougata Ghosh. (2021). Paniker's Text book of Medical Parasitology. 9th Edition. Jaypee Brothers Medical Publishers.
- 3. Nagoba, B.S. (2020). Medical Microbiology and Parasitology: Prep Manual for Undergraduates, 4th Edition. Elsevier India.
- 4. Baveja, V. and Baveja, C.P. (2019). Medical Parasitology. 4th Edition. Arya Publishing Company.
- 5. Sumeeta Khurana, Abhishek Mewara. (2021). Textbook of Medical Parasitology. 1st Edition. Universities Press India Pvt. Ltd

Reference Books

- 1. Nanda Maheshwari. (2022). Clinical Microbiology & Parasitology for DMLT Students. 4th Edition. Jaypee Brothers Medical Publishers.
- 2. Arora. D.R. (2020). Medical Parasitology. 5th Edition. CBS Publisher.
- 3. Shyamasundari, K. and Hanumantha Rao. K. (2021). Medical Parasitology.1st Edition. MJP Publishers.
- 4. Rajan, S. and Selvi Christy, R. (2018). Essentials of Microbiology. 4th Edition. CBS Publishers and Distributors Pvt. Ltd.
- 5. Joanne M. Willey, Kathleen M. Sandman and Dorothy H. Wood (2022). Prescott's Microbiology. 12th Edition. McGraw-Hill Education.
- 6. Apurba S Sastry and Sandhya Bhat. (2022). Essentials of Medical Microbiology. 4th Edition. Jaypee brothers med Pub Pvt Ltd.

Web References

- 1. https://byjus.com/biology/parasites-symbiosis/
- 2. https://www.brainkart.com/article/Parasite-and-Host 41024/
- 3. https://byjus.com/biology/entamoeba-histolytica-life-cycle/
- 4. https://microbenotes.com/giardia-duodenalis/
- 5. https://www.onlinebiologynotes.com/plasmodium-falciparum-morphology-life-cycle-pathogenesis-and-clinical-disease/
- 6. https://www.meduniwien.ac.at/hp/fileadmin/tropenmedizin/Lehre/Helminths_and_He lminthiasis Kompatibilitaetsmodus.pdf

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment, Brain Storming Activity.

Course Designer

Dr. S. Jenny

Semester: V	Internal Marks	External Marks: 75		
COURSE CODE	COURSE TITLE	CATEGORY	HRS./WEEK	Credits
22UMB5DSE1C	FUNDAMENTALS OF BOTANY AND ZOOLOGY	DISCIPLINE SPECIFIC ELECTIVE	5	4

To gain the basic knowledge about plants and animals. To impart knowledge on botanical nomenclature, classifications, merits and demerits of various systems of classifications. To understand the systematic of the selected families of the flowering plants with their economic importance. To help our students to distinguish various animal kingdoms to know the evolutionary sequence of them.

Course Outcome and Cognitive Level Mapping:

CO	CO Statement	Cognitive level
Number		
CO 1	State the Basic knowledge of Plant Nomenclature	K1,K2
CO 2	Describe the Salient features and Economic importance of Monocot and Dicot Plants	K2,K4
CO 3	Illustrate the views of Plant Physiology and Reproduction	K2,K3
CO 4	Prepare Animal Kingdom and Reproduction	K3,K
CO 5	Prepare the Process of Animal Cell reproduction	K3,K5

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	3	3	2	3	3	3	2
CO2	2	3	3	3	3	3	3	2	2	3
CO3	3	3	3	3	2	2	2	3	3	2
CO4	3	3	3	2	2	3	3	3	2	3
CO5	3	3	2	2	3	2	2	2	3	3

- 1- Slight (Low) correlation 2- Moderate (Medium) correlation
- 3- Substantial (High) correlation "-" indicates there is no correlation

Syllabus

UNIT	CONTENT	HOURS	COS	COGNITIVE
				LEVEL
I	Binomial Nomenclature: ICBN rules – taxonomic types, systems of Classification – Phylogenetic Artificial and Natural. Bentham and Hooker classification - merits and demerits. Plant taxonomy, Plant Nomenclature - Forms of Scientific names. Technical description of flower and floral diagram.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
II	General characteristics and economic importance: Algae, Fungi, Lichens, Bryophytes, Pteridophytes, Gymnosperms and Angiosperms.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Plant Physiology: Photosynthesis, Respiration and Transpiration. Reproduction of plants in Angiosperms - Vegetative, Asexual and Sexual.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
IV	Taxonomy and outline classification of Animal Kingdom: Invertebrates - Prolifera, Cnidaria, Worms, Echinoderms, Molluscs and Arthropods. Vertebrates - Mammals, Birds, Reptiles, Fish and Amphibians. Darwin's and Lamarck's theory of evolution.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
V	Animal Physiology: Digestive, Respiratory, Circulatory, Excretion and Nervous system. Cell division – Mitosis and Meiosis.	15	CO1, CO2, CO3, CO4,	K1 K2, K3, K4, K5,
VI	Self Study for Enrichment (Not included for End Semester Examination) Darwin's and Lamarck's theory of evolution.	-	CO1, CO2, CO3, CO4, CO5	K1 K2, K3, K4, K5,

Text Books

- 1. Kishore R Pawar and Ashok E Desai (2020) An Introduction to Zoology, Nirali Prakashan Press.
- 2. Sunidhi Miglani (2016) Text Book of Economic Botany, ABS Publications.
- 3. Kotpal R L (2016) Modern text book of Zoology, Rastogi Publications.
- 4. AfrozAlam (2015) Textbook of Botany, I K International Publishing House Pvt. Ltd.
- 5. Nanda A K (2015) Text Book of Botany, Kitab Mahal Cuttack.

Reference Books

- 1. James Bidlack and Shelley Jansky (2020) Plant Biology, McGraw-Hill Education.
- 2. James D Mauseth (2019) An introduction to plant biology, Jones & Bartlett Learning.
- 3. Smithsonian (2019) Zoology, DK; Illustrated edition.
- 4. Stephen Miller and Todd A. Tupper (2018) Zoology, McGraw-Hill Education.

Web References

- 1. https://www.biologydiscussion.com/plant-taxonomy/quick-notes-on-plant-taxonomy/47582
- 2. https://www.studyandscore.com/studymaterial-detail/international-code-of-botanical-nomenclature-icbn-history-principles-and-aim
- 3. https://byjus.com/biology/plant-physiology/
- 4. https://www.slideshare.net/mjnepa/cell-reproduction-notes
- **5.** https://biologywise.com/vertebrates-invertebrates

Pedagogy

Power Point Presentations, Group Discussion, Seminar, Quiz, Assignment and Brain Storming Activity.

Course Designer

Dr. E.Priya

Semester: V	Internal M	External M	arks: 60	
COURSE CODE	COURSE TITLE	CATEGORY	HRS./WEEK	CREDITS
22UMB5SEC2P	BIOFERTILIZER TECHNOLOGY (P)	SKILL ENHANCEMENT COURSE	2	2

To enable the students to understand the importance of biofertilizers in agriculture and production technologies.

Prerequisites

Basic knowledge and concepts of Biofertilizer production technologies.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number		Level
CO1	Define and understand Biofertilizers and Production technology	K1, K2
CO2	Analyze and explain mass production methods of Symbiotic Biofertilizers	K3, K4
CO3	Determine and apply Non- Symbiotic Biofertilizers cultivation methods	K3, K4
CO4	Evaluate and categorize Phosphate solubilizing bacteria cultivation methods	K4, K5
CO5	Criticize and manage Mycorrhizae and Carrier based inoculum production methods	K5, K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	1	3	2	3	3	2
CO2	2	2	2	2	2	3	2	3	2	2
CO3	2	3	1	2	3	3	2	3	2	2
CO4	3	2	3	2	2	3	2	3	2	1
CO5	3	3	3	3	2	3	2	3	3	2

[&]quot;1" - Slight (Low) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;2" – Moderate (Medium) Correlation

[&]quot;-" indicates there is no correlation

Syllabus

BIOFERTILIZER TECHNOLOGY (P)

- 1. Isolation, identification and cultivation of *Rhizobium* from leguminous plant roots
- 2. Isolation, identification and cultivation of Azospirillum
- 3. Isolation, identification and cultivation of *Azotobacter*
- 4. Isolation, identification and cultivation of Cyanobacteria from paddy field soil and water.
- 5. Isolation, identification and cultivation of Azolla.
- 6. Isolation, identification and cultivation of Phosphate solubilizing bacteria from soil.
- 7. Isolation, identification and cultivation of Mycorrhizae (VAM)
- 8. Preparation of carrier based and liquid based inoculums.

Text Books:

- Krishnendu Acharya, Surjit Sen & Manjula Rai. (2019). Biofertilizer and Biopesticide. 1st Edition. Techno World.
- 2. S. Rajan & R. Selvi Christy. (2018). Experimental Procedures in Life Sciences. CBS Publications
- 3. Reeta Khosla. (2017). Biofertilizers and Biocontrol Agents for Organic Farming. 1st Edition. Kojo Press
- 4. Hyma. (2017). Biofertilizers: Commercial Production Technology and Quality Contrtol. 1st Edition. Random Publications.
- 5. Anil K Thakur, Susheel K Bassi, Kamajit Singh, Dinesh. (2020). Biofertilizers (Skill Enhancement course). 1st Edition. S Dinesh & Co.

Reference Books:

- 1. Rao B.N.S. (2019). Biofertilizers in Agriculture and Forestry. 3rd Edition. Oxford & IBH Publishing House.
- 2. Sharma R.A. (2019). Biofertilizer Technology. 1st Edition. Agro tech Publishing Academy.
- 3. Ameta O.P and Sharma U.S. (2018). Biopesticides for Sustainable Agriculture. 1st Edition. Agro tech Publishing Academy.
- 4. Somani L. (2018). Biofertilizers: Commercial Production Technology and Quality control. 1st Edition. Agrotech Publishing Academy.
- 5. Subha Rao N.S. Biofertilizers in Agriculture and Forestry. 4th Edition. Medtech scientific International Pvt Ltd.

Weblinks:

- 1. https://agritech.tnau.ac.in/ta/org_farm/orgfarm_biofertilizers.html
- 2. https://agritech.tnau.ac.in/org_farm/orgfarm_biofertilizertechnology.html
- 3. http://www.techno-preneur.net/technology/new-technologies/food-agro/vam-fungi.html
- 4. http://14.139.187.9/ta/org_farm/orgfarm_faq's.html
- $5. \ \ \, \underline{https://www.iihr.res.in/large-scale-production-vesicular-arbuscular-mycorrhizal-fungi-finger-millet} \\$
- 6. https://agriinfo.in/large-scale-production-of-biofertilizers-1932/
- 7. https://www.fnca.mext.go.jp/english/bf/bfm/pdf/3_Carriers_for_Biofertilizer0331final.pdf

Pedagogy

Power point presentations, Group Discussion, Quiz, Brain Storming Activity.

Course Designer

Dr. S. Jenny

Semester : VI	Internal Marks	External	Marks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB6CC9	FERMENTATION TECHNOLOGY	CORE	6	6

Fermentation technology gives the knowledge about Industrial developments with respect to Microorganisms and find out the suitable technology for cultivating them under Industrial scale so as to develop them for employment in bioprocess industry. To learn the screening of industrial strains, fermenters, media, fermentation process and downstream process.

Course Outcome and Cognitive Level Mapping

CO		Cognitive Level
Number	CO Statement	
CO1	Outline view of Concept and History of Strain development	K1, K2
CO2	State the types of Fermentor and Fermentation process	K1, K3
CO3	Explain the components of Fermentation media	K2, K3
CO4	Prepare the Production and Purification Industrial Important Microbial Products.	K4, K5
CO5	Describe the Production of Pharmaceutical Products	K1, K6

Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	3	3	3	2	2	3
CO2	3	2	3	2	2	3	3	3	2	3
CO3	3	2	2	2	2	3	3	3	2	2
CO4	2	3	3	3	3	3	3	3	3	3
CO5	2	2	3	2	2	3	3	3	3	3

- 1- Slight (Low) correlation 2- Moderate (Medium) correlation
- 3- Substantial (High) correlation "-" indicates there is no correlation

Syllabus

UNIT	CONTENT	HOURS	COs	COGNITIV E LEVEL
I	Introduction to Fermentation technology: History, Scope and Development of Fermentation technology; Isolation and screening of industrially important microorganisms – primary and secondary screening; Maintenance of Strains; Strain improvement: Mutant selection and Recombinant DNA technology.	18	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
II	Upstream Processing: Fermentor design: Basic designs of Fermentor; Type of fermenters- Waldhof, Tower, Deep jet, Cyclone column, Packed tower and airlift fermenter. Types of fermentation process - Batch, Fed batch and continuous. Fermentation media: Natural and Synthetic media; Basic components of media (Carbon sources; Nitrogen sources; Vitamins; Minerals) Role of Anti-foaming agents and buffers in media.	18	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
III	Downstream processing: The recovery and purification of fermentations products (intracellular and extracellular), cell disruption, precipitation (Ammonium sulphate and Solvents), filtration, centrifugation, solvent recovery, chromatography (TLC), ultra filtration, drying, cell immobilizations and its applications.	18	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
IV	Mass Production of Microbial Products: Production of alcohol; Organic acid – Citric acid, Lactic acid and Vinegar; Antibiotic – Penicillin, Tetracycline, Amino acid – Glutamic acid; Vitamin – B12, Enzymes-Amylase, Protease, Antibiotics-Penicillin, tetracycline, Biopolymers, Recombinant vaccine (Hep B vaccine).	18	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.
V	Safe disposal of effluents and Industrial Standards and Assays: Recycling and Safe disposal of industrial wastes by Trickling filter, Activated sludge and Oxidation ponds, Industrial standards- National and International. Assays: Amino acids-	18	CO1, CO2, CO3, CO4, CO5.	K1, K2, K3, K4, K5.

	Ninhydrin assay, Vitamins- Riboflavin assay, Antibiotics- dilution and diffusion assays, Harmons-chemiluminescence assay.			
VI	Self Study for Enrichment	-	CO1,	K1,
	(Not to be included for External		CO2,	K2,
	Examination)		CO3,	K3,
	Strain Preservation, Bubble column		CO4,	K4,
	fermenter, Prosthetic group, Lysine,		CO5	K5.
	Rabies recombinant vaccine and SCP.			

- 1. Ema Sushan Minj (2024). Handbook on Fermentation Technology: Industrial Microbiology. Astitva Prakashan publishers, Chhattisgarh.
- 2. Patel, A.H (2022). Industrial microbiology. Published by Mac Millan India Ltd., Chennai.
- 3. Devarajan Thangadurai, Jeyabalan Sangeetha (2021). Industrial Biotechnology. Apple Academic Press Inc. India
- 4. Casida, L.E.J.R (2019). Industrial Microbiology. New Age International Private Limited, India
- 5. Prescott L.M, Harley J.P, Helin D.A, (2018). Microbiology, 5th edition, McGraw Hill, New Delhi.
- 6. Peter F Stanbury, Allan Whitaker, Stephen J Hall (2017). Principles of Fermentation Technology. Butterworth-Heinemann Press. UK.
- 7. Crueger W, Crueger A (2017). Biotechnology: A Test Book of Industrial Microbiology, 3rd edition. Panima Publishing corporation, New Delhi.

Reference Books

- 1. Dhakane R Zate A Masalkar S Upadhye V Hirani D Adhao A Upadhyay U Patil N Barua S Ambawade M Chahal K Taware A (2022). Fermentation Technology I and Agricultural Microbiology: Practical Handbook of Microbiology. International Journal of Microbial Science publishers, India.
- 2. Aydin Berenjian (2020), Essentials in Fermentation technology. Springer Verlag
- 3. H. J. Peppler, D. Perlman (2014). Microbial Technology: Fermentation Technology. Academic Press.
- 4. Hongzhang Chen (2013). Modern Solid State Fermentation: Theory and Practice. Springer Press, Germany.
- 5. Sivakumar, P.K., Joe, M.M., Sukesh, K., 2010. An introduction to Industrial Microbiology. 1st edition, S. Chand and Company Ltd, New Delhi.

Web Links:

- 1.https://www.shahucollegelatur.org.in/NAAC/CRII/ictppttool/Microbiology/MaskeMadam5.pdf
- 2. https://www.slideshare.net/MDCrules/basic-design-of-a-fermenter-53452713
- 3. https://www.brainkart.com/article/Fermentors 41001/
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232202/

- 5. https://www.slideshare.net/AmanChauhan8/organic-acids-production-copy
- 6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7121293/

Pedagogy:

Power point presentation, Group Discussion, Seminar, Quiz, Assignment, Animations.

Course Designer

Dr. S.Jeyabharathi

Semester: VI	Internal Ma	External Ma	rks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS./WEEK	Credits
22UMB6CC10	FOOD AND DAIRY MICROBIOLOGY	CORE COURSE	5	5

To enable the students to acquire knowledge in key concepts of food and dairy microbiology and to know various methods of food fermentation, types of food borne diseases and their prevention.

Course Outcome and Cognitive Level Mapping

CO	CO Statement	Cognitive
Number		Level
CO1	Define and understand food microbes and methods of fermentation	K1, K2
CO2	Analyze and explain food borne infections and intoxications	K3, K4
CO3	Determine and apply Asepsis techniques in food preservation	K3, K4
CO4	Evaluate and categorize properties of milk and its assessment	K4, K5
CO5	Criticize and manage fermented dairy products.	K5, K6

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	2	3	3	2	3	3	2
CO2	2	2	2	2	2	3	2	3	2	2
CO3	2	3	2	2	3	3	2	3	2	2
CO4	3	2	3	2	2	3	2	3	2	1
CO5	3	3	3	3	2	3	2	3	3	2

[&]quot;1" - Slight (Low) Correlation

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" - Substantial (High) Correlation

[&]quot;-" indicates there is no correlation=

UNIT	CONTENT	HOU RS	COS	COGNITIVE LEVEL
I	Food Microbes and Fermentation: Microorganisms in food-Bacteria, molds, yeast. Factors influencing microbial growth in food-pH, moisture, oxidation—Reduction potential, Nutrient content and Inhibitory substances. Methods of fermentations and organisms used - bread, wine, beer. Fermented vegetables-pickled cucumber, sauerkraut—soy sauce. Prebiotics, Probiotics, Synbiotics - Advantages.	15	CO1, CO2, CO3	K1, K2, K3, K4
II	Food Borne infections and intoxications: Food borne infections and food poisoning. Food spoilage and contamination — Staphylococcus, Clostridium, Escherichia coli and Salmonella infections, Hepatitis, Amoebiosis and Mycotoxins.	15	CO1, CO2, CO3, CO4	K1, K2, K3, K4, K5
III	Food preservations : General principles- Physical and chemical methods. Canning of food items, Asepsis - Techniques of removal – use of temperature (low & high). Drying, radiation and chemical preservatives. Preservation of cereals, vegetables, fruits, meat, Fish, poultry and dairy products. Food sanitation and control measures, Food standards- HACCP, FDA, FSSAI, WHO.	15	CO1, CO2, CO3, CO4,	K1, K2, K3, K4, K5
IV	Dairy Microbiology: Introduction - Composition - Physical and chemical properties of milk. Microbes in milk, Starter cultures, sources of contamination. Processing of milk - homogenization, Pasteurization, storage, and transportation. Microbiological analysis of milk- Direct Microscopic count, standard plate count, MBRT, Resazurin test, Alkaline phosphatase test.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
V	Fermented Dairy products- Fluid milk products and dried milk Products. Skimmed milk powder, other dairy products: Ice Cream, Butter, Whey. Milk Fermentation – Yoghurt, cheese, butter milk and Kefir.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,
VI	Self Study for Enrichment (Not included for End Semester Examinations) Spoilage in canned foods, frozen dairy products, Detection of food-borne pathogens.	-	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5,

- 1. Frazier. W.C and D.C Westhoff (2017). Food Microbiology. 5th Edition. Tata Mc Graw Hill publishing Co.
- 2. Aneja. K.R. (2018). Modern Food Microbiology. 1st Edition. Med tech. Scientific International.
- 3. Virendra Kumar Pandey. (2021). Text book of Food Microbiology. 1st Edition. INSC International Publishers.
- 4. Foster. W.M. (2020). Food Microbiology. 1st Edition. CBS Publishers & Distributors Pvt. Ltd.
- 5. Adam M. and Dick M. (2023). Food Microbiology: An Introduction. 3rd Edition. Scientific International Pvt. Ltd.
- 6. Vijaya Ramesh. R. (2021). Food Microbiology. 1st Edition. Mjp Publishers.

Reference Books

- 1. Rajan, S. and Selvi Christy, R. (2018). Essentials of Microbiology. 4th Edition. CBS Publishers and Distributors Pvt. Ltd.
- 2. Joanne M. Willey, Kathleen M. Sandman and Dorothy H. Wood (2022). Prescott's Microbiology. 12th Edition. McGraw-Hill Education.
- 3. Neelima Garg, Garg, K.L. and Mukerji, K.G. (2020). Laboratory Manual of Food Microbiology. 1st Edition. Dream tech Press.
- 4. Suresh Chandra, Ratnesh Kumar, Ruchi Verma. (2022). Food Technology: Objective Food Microbiology. 1st Edition. New India Publishing Agency (NIPA), New Delhi.
- 5. Joshi, R. D., Kulkarni, R. V., Mule, P. R. (2018). Dairy Microbiology & Technology. 1st Edition. Oxford Book Company.
- 6. Getachew Osei (2018). Food and Dairy Microbiology. 1st Edition. Bio-Green Publishers.

Web References

- 1. https://www.wikilectures.eu/w/Micro-organisms_in_Foods
- 2. https://byjus.com/biology/role-of-microbes-in-food-processing/
- 3. https://www.healthline.com/nutrition/probiotics-and-prebiotics
- 4. https://byjus.com/biology/food-preservation-methods-food-poisoning/
- 5. https://www.britannica.com/topic/food-preservation
- 6. https://www.onlinebiologynotes.com/food-borne-disease-food-poisoning-and-food-infection-with-example/
- 7. https://microbenotes.com/spoilage-of-milk-and-milk-products/

Pedagogy

Power point presentations, Group Discussions, Seminar, Quiz, Assignment, Brain Storming Activity.

Course Designer

Dr. S. Jenny

Semester : VI	Internal Marks	: 40	External	Marks: 60
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB6CC6P	FERMENTATION TECHNOLOGY AND FOOD AND DAIRY MICROBIOLOGY(P)	CORE PRACTICAL	3	3

Fermentation technology is used to produce both primary and derived metabolites from microorganisms. Food and dairy microbiology learn various methods of isolation, detection and Identification of spoilage microorganisms in food. Understand the application of principle of effect of temperature on spoilage of food products.

Course Outcome and Cognitive Level Mapping

CO		Cognitive Level
Number	CO Statement	
CO1	Recall the safety practice in food microbiology laboratory	K1,K2
CO2	Explain Bacterial growth curve studies	K2
CO3	Identify the microorganism in various food	K3
CO4	Determine the antibiotic producing microorganisms	K4
CO5	Discuss the TDP and TDT of microorganisms	K6

Mapping of CO with PO and PSO

11 0										
Cos	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	3	2	3	2	3	2
CO2	3	2	2	2	2	3	3	2	3	3
CO3	3	2	2	2	2	3	2	3	2	2
CO4	2	3	3	3	2	3	3	2	2	3
CO5	2	2	3	2	2	3	2	2	3	3

- 1- Slight (Low) correlation
- 2- Moderate (Medium) correlation
- 3- Substantial (High) correlation
- "-" indicates there is no correlation

Syllabus

Fermentation Technology

- 1. Production of Media preparation and Sterilization.
- 2. Bacterial growth curve of industrial important microorganisms Batch and continuous culture
- 3. Isolation of Antibiotic producing organism.
- 4. Production of Citric Acid using Aspergillus niger.
- 5. Microbial enzyme production of amylase, lipase and protease.
- 6. Visit to fermentation industry/ Science Institute/ Research laboratory.

Food and Dairy Microbiology

- 1. Microscopic observation of microorganisms commonly found in food: Gram smear preparation and Tease mount preparation of fungi.
- 2. Isolation of spoilage microorganisms from bread, cheese and butter milk, vegetables and fruits.
- 3. Microbial Examinations of Foods: Isolation of Bacteria Standard Plate Count Method.
- 4. Determination of Thermal Death Point (TDP) of Microorganisms.
- 5. Determination of Thermal Death Time (TDT) of Microorganisms.
- 6. Water Examination: Multiple Tubes Method MPN Techniques : Presumptive, Confirmative and Completed
- 7. Milk Examination: Methylene Blue Reduction Test and Alkaline Phosphatase Test

Reference Books

- 1. Saha, R (2022). Microbiology Practical Manual (2nd edition) CBS Publishers & Distributors Pvt. Ltd. India.
- 2. Das, S (2020). Microbiology Practical Manual (1st edition) CBS Publishers & Distributors Pvt. Ltd. India.
- 3. Gunasekaran, P. (2018). Laboratory manual in Microbiology. New Age International Ld., Publishers, New Delhi.
- 4. R C Dubey and D K Maheswari (2010). Practical Microbiology. S. Chand Publishing.
- 5. James G Cappucino and N. Sherman MB(2013). A lab manual Benjamin Cummins, New York.

Web References

- 1. https://www.ifsc.usp.br/~ilanacamargo/FFI0740/4.pdf
- 2. http://www.lucp.net/books-pdf/Lab%20Manual%20Dr.%20Idris%20Adewale%20Ahmed/18.%20FERMENTATION%20TECHNO LOGY.pdf
- 3. https://content.kopykitab.com/ebooks/2016/06/7633/sample/sample_7633.pdf
- 4. https://sacmicro.files.wordpress.com/2016/09/food-safety-lab-manual.pdf
- 5. file:///C:/Users/HP/Desktop/FMS-122%20food%20microiology%20practical.pdf

Pedagogy

Chalk and talk, Power Point Presentation and Group Discussions

Course Designer

Dr. E.Priya

Semester: VI	Internal Marks:	External	Marks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB6DSE2A	MICROBIAL GENETICS	DISCIPLINE	5	4
	AND RECOMBINANT	SPECIFIC		
	DNA TECHNOLOGY	ELECTIVE -		
		II (DSE)		

The paper Microbial Genetics is the field of biology that studies the composition, structure and interactions of cellular molecules encompasses the basic study and understanding the central dogma. It helps in understanding the basic organization of the genome of prokaryotes and eukaryotes. It is followed by prokaryotic and eukaryotic replication, transcription, translation processes and regulation. This knowledge can be employed in determining the function of various genes and proteins for better understanding of cellular life processes.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO1	State the Basic concept of Microbial Genetics	K1
CO2	Define the Concept of gene	K1
CO3	Explain about Gene transfer Mechanism	K2
CO4	Apply the view of Recombinant DNA Technology	K3
	Expose the students on the methods to construct the gene	K6
CO5	libraries	

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	3	3	2	3	2	3	2
CO2	3	2	2	2	2	3	3	2	3	3
CO3	3	2	2	2	2	3	2	3	2	2
CO4	2	3	3	3	2	3	3	2	2	3
CO5	2	2	3	2	2	3	2	2	3	3

- 1- Slight (Low) correlation 2- Moderate (Medium) correlation
- 3- Substantial (High) correlation "-" indicates there is no correlation

Syllabus

UNIT	CONTENT	HOURS	cos	COGNITIVE LEVEL
Ι	UNIT I: Introduction to Microbial Genetics Introduction and Basic history in Microbial Genetics. Fundamentals of genetics-Mendelian laws, alleles, crossing over and linkage. Structure of DNA-Watson and Crick model. Plasmids and types in bacteria. Bacteriophages, Lytic phages – T7 and T4. Lysogenic phages I and Pl. M13 and f x 174 Life cycle	15	CO1, CO2, CO4, CO5	K1, K2, K3, K4,
Ш	UNIT II: Concept of gene Concept of gene- Cistron, Muton and recon. One gene -one enzyme, one gene - one polypeptide, one gene -one product hypothesis. Types of RNA and their functions. Outlines of RNA biosynthesis in prokaryotes. Genetic code. Structure of ribosomes and a brief account of protein synthesis.	15	CO1, CO2, CO3, CO4,	K1, K2, K3, K4,
III	UNIT III: Gene transfer and genetic recombination mechanisms: Transformation – competence cells, regulation, general process and Efficiency. Transduction – general and specialized; Mechanisms and applications. Conjugation: Discovery, F+, F- and Hfr cells; F+ & F and Hfr & F genetic crosses. Mechanism of conjugation. conjugational transfer of colicin genic and resistance transfer factors. Genetic mapping of T4 phage.	15	CO1, CO2, CO3, CO4	K2, K3, K4, K5
IV	Unit IV: Recombinant DNA Technology Introduction-Isolation of DNA and recombinant DNA construction. Core techniques used in rDNA technology. Enzymes useful in molecular cloning-Cloning Vectors- Labeling nucleic acids and blotting techniques (Southern, Northern, Western, Zoo blot) Polymerase Chain Reaction and its applications. Applications of recombinant DNA technologies- Agriculture, Medicine.	15	CO1, CO2, CO3, CO4	K2, K4 K5, K6
V	UNIT-V: Cloning vectors and Gene libraries Cloning vectors - plasmids, phages and cosmids. Cloning strategies. Cloning and selection of individual genes, Gene libraries: cDNA and genomic libraries.	15	CO1, CO2, CO4, CO5	K1, K2, K3, K4, K5

VI	Self-Study for Enrichment (Not included for End Semester Examinations	-	CO1, CO2, CO3,	K1, K2, K3,
	X-ray diffraction analysis of DNA, Forces stabilizes DNA structure, Conformational variants of double helical DNA.		CO4 CO5	K4, K5

- 1. Larry R. Snyder, Joseph E. Peters, Tina M. Henkin (2013) Molecular Genetics of Bacteria, ASM Press.
- 2. Clark David (2019) Molecular Biology, Academic Cell.
- 3. Gerald Karp, Janet Iwasa and Wallace Marshall(2016) *Karp's Cell and Molecular Biology*, Wiley.
- 4. Joanne Willey, Linda Sherwood (2016) Prescott's Microbiology, Mc-Graw-Hill Publishing company Ltd.
- 5. Veer Bala Rastogi (2015) Principles of Molecular Biology Med tech.
- 6. Verma P S and Agarwal V K (2015) Cell biology, Genetics, Molecular Biology Evolution and Ecology, S. Chand and Company Ltd.

Reference Books

- 1. Chaudhuri. K. (2012) Microbial Genetics. The Energy and Resources Institute, TERI.
- 2. Tania A. Baker, Stephen P. Bell, Michael Levine and Richard Losick. (2013) *Molecular Biology of the Gene*. 7th Edition. Benjamin/Cummings Publ. Co., Inc., California.
- 3. Geoffrey M Cooper (2016) Cell: A Molecular Approach, Sinauer Associates Inc.
- 4. Bernard R Glick and Cheryl L Patten (2017) *Molecular Biotechnology: Principles and Applications of Recombinant DNA*, ASM Press.

Web Links

- 1. https://www.uomustansiriyah.edu.iq/media/lectures/6/6_2019_10_25!03_16_45_PM.pdf
- 2. https://pages.jh.edu/rschlei1/Random_stuff/publications/molbiogene.pdf
- 3. https://www.fmed.uniba.sk/uploads/media/Introduction_to_Medical_and_Molecular_Biology.pdf
- 4. https://www.aacb.asn.au/documents/item/3400
- 5. https://molbiomadeeasy.files.wordpress.com/2013/09/fundamental_molecular_biology.pdf
- 6. https://users.ugent.be/~avierstr/pdf/principles.pdf
- 7. https://pages.jh.edu/rschlei1/Random_stuff/publications/molbiogene.pdf

Pedagogy

Power Point Presentations, Group Discussion, Seminar, Quiz, Assignment and Brain Storming Activity.

Course Designer

Ms.S. Sathya

DISCIPLINE SPECIFIC ELECTIVE – II (DSE) MICROBIAL BIOTECHNOLOGY

SEMESTER VI	INTERNAL MARKS: 2	EXTERNAL M	IARKS : 75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDIT
22UMB6DSE2B	MICROBIAL BIOTECHNOLOGY	DISCIPLINE SPECIFIC ELECTIVE– II (DSE)	5	4

Course Objective: The students will be able to understand the biological processes undergoing in Industries and exploit theknowledge to improve the process.

Course Outcome and Cognitive Level Mapping

COs	CO Statement	Knowledge level
CO1	Define the primary and secondary screening of microbes.	K1,K2
CO2	Determine the applications of microbes	K3,K4
CO3	Critique knowledge about industrial production	K4,K5
CO4	Outline views of bio control agents	K4,K6
CO5	Expand about Process of Bioremediation	K5,K6

Mapping with Programme Outcomes:

COs	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	1	2	3	3	3	3	2	3
CO2	3	2	3	3	2	2	3	2	3	3
CO3	3	2	2	3	3	3	2	3	3	2
CO4	2	3	3	2	3	3	3	2	3	2
CO5	3	3	2	3	2	3	3	3	2	2

[&]quot;1" – Slight (Low) Correlation

Syllabus

UNIT	CONTENT	HOURS	cos	COGNITIVE LEVEL
I	Biotechnology: Definition –Milestones in	15	CO1,	K1,
	History - Scope of microbial biotechnology and		CO2,	K2,
	its applications. Commercially important		CO4,	К3,

[&]quot;2" - Moderate (Medium) Correlation

[&]quot;3" – Substantial (High) Correlation

[&]quot;-"indicates there is no correlati

	microorganisms- Bacteria (<i>Lactobacillus</i> , <i>Bacillus</i>), fungi (<i>Aspergillus</i> , <i>Penicillium</i>), Actinomyces (<i>Streptomyces</i>).Immobilization, Cryopresevation- Germplasm storage.		CO5	K4, K5
II	Microbial Production of bio fertilizers and Biocontrol agent (Rhizobia, Azospirillum, BGA, Azolla, Frankia and VAM). Microbial production of bio-control Agents (Pseudomonas, Trichoderma, Beaveria). Role of micronutrient providing microbes.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5
III	Micro algal technology - SCP, bioplastic and bioploymer - Industrial cultivation methods of Spirulina biotechnological potentials of Spirulina as: food and feed. Single cell protein (algae and yeast). Fuel (bio-diesel) production from microalgae, pharmaceutically valuable compounds from microalgae. Microbial production of bioplastics.	15	CO1, CO2, CO3, CO4	K2, K3, K4, K5
IV	Genetic engineering bacteria / GMO's- Insulin, hormone, enzyme production. Bioethanol, biomethane, biohydrogen, biodiesel – substrate, nutrients, inoculum, production, recovery and commercial application.	15	CO1, CO2, CO3, CO4	K2, K4, K5, K6
V	Environmental Applications of Efficient microbes: Bioremediation- Degradation of xenobiotics, advantages and disadvantages bioaugmentation, bioemulsifiers, biosurfactants, MEOR (Microbial enhanced oil recovery), Leaching of ores, biohazards, environmental engineering. Biotechnology Regulation – Bioethics and Biosafety.	15	CO1, CO4, CO5	K1, K2, K3, K4, K5
VI	Self-Study for Enrichment (Not included for End Semester Examinations Commercial production of bio-ethanol using lignocellulosic waste. Human growth hormone-Insulin.	-	CO1, CO2, CO3, CO4	K2, K3, K4, K5

- 1. Faizan Ahmad, Zahra H. Mohammad (2024). Microbial Biotechnology in the Food Industry: Advances, Challenges, and Potential Solutions. Springer.
- 2. Mamtesh Singh, Gajendra Pratap Singh, Shivani Tyagi. (2023). Microbial Products Applications and Translational Trends, CRC Press.
- 3. Jayanta Kumar Patra, Pradeep Kumar, Advances in Microbial Biotechnology (2021). CRC Press.
- 4. Singh, J., Vyas, A., Wang, S., Prasad, R (2020). Microbial Biotechnology: Basic Research and

- Applications, Springer.
- 5. Prakash KumarSarangi & SonilNanda (2019). Biotechnology for Sustainable Energy and Products. I.K. International Publishing House Pvt. Ltd.

Reference Books

- 1. Shivani Singh, Mamtesh (2022). Microbial Products. CRC Press.
- 2. S.Sivasubramanian & T. Hemalatha R. Puvanakrishnan (2021). Microbial Technology. MJP Publisher.
- 3. Joginder Singh, Ashish Vyas (2020). Microbial Biotechnology: Basic Research and Applications .Springer.
- 4. Anjana Devi Tangutur and Bhima Bhukya (2021). Microbial Biotechnology.
- 5. Biotechnology by R.C. Dubey. (2014). A Textbook of Biotechnology. S. Chand publishers.

Web links

- 1. https://enviromicro-journals.onlinelibrary.wiley.com/journal/17517915
- 2. https://www.nifa.usda.gov/grants/programs/biotechnology-programs/microbial-biotechnology
- 3. https://www.sciencedirect.com/science/article/abs/pii/B9780323904520000359
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609265/
- 5. https://www.mdpi.com/journal/microorganisms/sections/microbial_biotechnology

Pedagogy

Power point presentations, Group discussion, Seminar, Quiz, Assignment, Brain storming activity.

Course Designer

Dr.P.F.SteffI

Semester: VI	Internal M	External M	arks: 75	
COURSE CODE	COURSE TITLE	CATEGORY	HRS/WEEK	CREDITS
22UMB6DSE2C	BIOLOGICAL	DISCIPLINE	5	4
	TECHNIQUES	SPECIFIC		
		ELECTIVE-II (DSE)		

This course will give an understanding about the working principles, construction and applications of the instruments often used in the studies related to various disciplines of Biological Sciences.

Course Outcome and Cognitive Level Mapping

CO Number	CO Statement	Cognitive Level
CO 1	Understand the basic instrumentation protocols of biological sciences.	K1, K2
CO 2	Illustrate the principles of biological techniques.	K2, K3
CO 3	Examine the results of bioinstrumentation techniques.	K3, K4
CO 4	Organize the advantages of assorted techniques.	K4, K5
CO 5	Interpret the application of instrumentation biology.	K4, K5

Mapping of CO with PO and PSO

COS	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3	3	3	3	2	3
CO2	3	2	3	3	3	2	3	3	3	3
CO3	3	3	3	2	3	3	2	2	3	3
CO4	2	3	3	3	2	3	3	3	3	3
CO5	3	3	2	3	3	3	3	3	3	3

"1" - Slight (Low) Correlation

"2" - Moderate (Medium) Correlation

"3" - Substantial (High) Correlation

"-" – indicates there is no correlatio

Syllabus

UNIT	CONTENT	HOURS	COS	COGNITIVE
				LEVEL
I	Microscopy: Basic principles, mechanisms and	15	CO1,	K1,
	application of Bright Field, Dark field, Phase		CO2,	K2,
	contrast, Fluorescence, Transmission Electron		CO3,	K3,
	microscope (TEM), Scanning Electron microscope		CO4,	K4
	(SEM) and Confocal microscope.		CO5	

II	Spectroscopy : Concepts and applications of	15	CO1,	K1,
	UV-Visible spectrophotometry, Fourier-transform		CO2,	K2,
	infrared spectroscopy (FTIR), Nuclear Magnetic		CO3,	К3,
	Resonance spectroscopy (NMR) and Mass		CO4,	K4
	spectroscopy.		CO5	
III	Centrifugation: Working Principles, Steps and	15	CO1,	K1,
	uses of Analytical, Density gradient, Differential,		CO2,	K2,
	Isopycnic, Rate zonal density gradient, Continuous		CO3,	K3,
	and Ultra-centrifugation.		CO4,	K4
			CO5	
IV	Chromatographic Techniques: Instrumentation,	15	CO1,	K1,
	principles and application of Thin-layer		CO2,	K2,
	chromatography, Paper chromatography, Gel		CO3,	K3,
	filtration chromatography, Ion- exchange		CO4,	K4,
	chromatography, Affinity chromatography, Gas		CO5	K5
	chromatography and High Performance Liquid			
	chromatography.			
V	Electrophoretic Techniques : Operating	15	CO1,	K1,
	procedure and uses of Agarose gel, Polyacrylamide		CO2,	K2,
	gel, SDS-PAGE, Isoelectric focusing, 2D-		CO3,	K3,
	electrophoresis, Immuno-electrophoresis and Pulse		CO4,	K4,
	field electrophoresis. Brief outline about		CO5	K5
	Polymerase Chain Reaction, Blotting techniques			
	and DNA sequencing.			
VI	Self Study for Enrichment	-	CO1,	K1,
	(Not to be included for End Semester		CO2,	K2,
	Examination)		CO3,	K3,
	Outline the concept, types and importance of		CO4,	K4,
	Radiographic and Molecular techniques used in		CO5	K5
	biological sciences.			

Text books

- 1. Kothari C.R. and Gaurav Garg M.K. (2024). Research Methodology Methods and Techniques.5th Edition. New Age International Publishers.
- 2. Dev Brat Mishra, Shailendra Kumar Singh and Vijeta Chaturvedi. (2022). Tools and Techniques in Biological Science. Xoffencer, Gwalior. M.P.
- 3. Ankita Jain, Haresh Kalasariya, Varsha Tailor, Nikunj Patel. (2020). Bioinstrumentation techniques-Basics and applications.1st Edition. Notion Press.
- 4. Bhawana Pandey M.H. Fulekar. (2019). Bioinstrumentation. 5th Edition. Dream tech Press.
- 5. Gurdeep R. Chatwal. (2019). Instrumental Methods of Chemical Analysis. 3rd Edition. Himalaya publishing house.

Reference Books

- 1. Satish Chandra and Gyanendra Kumar. (2023). Bioinstrumentation and Biological Technique. P.K. Publishers & Distributors.
- 2. Rao, D. M. (2020). Instrumental Methods of Analysis. 1st Edition. CBS publishers and distributors Pvt. ltd.
- 3. Gakhar, Monika Miglani, Ashwani Kumar. (2019). Molecular Biology: A Laboratory

Manual.1st Edition. Dreamtech Press.

- 4. Almroth E., Wright. (2018). Principles of Microscopy: Being a Handbook to the Microscope.1st Edition. Forgotten Books.
- 5. Andreas Hofmann and Samuel Clokie. (2018). Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology.8th Edition. Cambridge University Press.

Web References

- 1. https://www.brunelmicroscopessecure.co.uk/acatalog/books.html
- 2. https://www.freebookcentre.net/chemistry-books-download/Introduction-to-Spectroscopy.html
- 3. https://archive.org/details/centrifugation-biotechgirl
- $4.\ https://www.pdfdrive.com/chromatography-sixth-edition-fundamentals-and-applications-of-chromatography-and-related-differential-migration-methods-part-b-applications-e157059666.html$
- 5. https://www.freebookcentre.net/chemistry-books-download/Electrophoresis.html

Pedagogy

Power Point Presentation, Group Discussion, Assignment, Seminar and Brain Stroming Activity.

Course Designer

Dr. N. Jeenathunisa