CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS)

(Nationally Re-accredited (III cycle) with 'A' (CGPA 3.41 out of 4)

Grade by NAAC

PG AND RESEARCH DEPARTMENT OF MATHEMATICS B.Sc MATHEMATICS SYLLABUS 2019-2020 ONWARDS

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS B.Sc MATHEMATICS PROGRAMME OUTCOMES

PO1	Demonstrate basic manipulative skills in algebra, geometry and trigonometry.
PO2	Communicate mathematical principles and ideas with clarity and coherence, both
	written and verbally, demonstrating communication skills to be used in any
	future career.
PO3	Demonstrate proficiency in linear algebra, real and complex analysis as well as
	areas of modern, proof-based Mathematics.
PO4	Compute limits and derivatives using their definitions, and use the fundamental
	theorem of calculus to compute definite and indefinite integrals.
PO5	Construct counter examples to mathematical statements and understand the
	importance of hypotheses into a viable career path.

CAUVERY COLLEGE FOR WOMEN (AUTONOMOUS) PG AND RESEARCH DEPARTMENT OF MATHEMATICS B.Sc MATHEMATICS COURSE STRUCTURE (For the candidates admitted in the year 2019-2020)

Exam Marks Ins. Sem Part Title **Subject Code** Course Credit Total Hrs Hours Ext Int Ikkala Ilakkiyam Story, Novel, History of Hindi Language Literature-I 19ULT1/ Course – I &Grammar – 1 19ULH1/ Ι (LC) -History of 6 3 3 25 75 100 19ULS1/ Tamil*/Other Popular Tales 19ULF1 Languages +# Literature and Sanskrit Story Communication in French –I Functional English Grammar for Ι Language Effective 75 Π 19UE1 6 3 3 25 100 Course - I Communication (ELC) -IDifferential Core Course Calculus and 19UMA1CC1 5 5 3 25 75 100 -I(CC)Trigonometry Integral Core Course -III Calculus and 5 3 25 19UMA1CC2 6 75 100 II (CC) Fourier Series First Allied Mathematical Course – I 19UMA1AC1 5 3 3 25 75 100 Statistics – I (AC) Value IV 19UGVE Value Education 2 2 3 25 75 100 Education TOTAL 30 21 600 ---

Sam	Dowt	Course	Title	Subject Code	Ing	Creadit	Enom	Μ	arks	Total
Sem	Part	Course	1 itie	Subject Code	Ins.	Credit	Exam	Int	Ext	Total
Π	I	Language Course – II (LC) - Tamil*/Other Languages +#	Idaikala Ilakkiyamum Pudhinamum Prose, Drama, History of Hindi Literature –II & Grammar - 2 Poetry, Textual Grammar and Alakara Communication in French –II	19ULT2/ 19ULH2/ 19ULS2/ 19ULF2	6	3	3	25	75	100
	II	English Language Course – II (ELC)	Functional Grammar for Effective Communication –II	19UE2	6	3	3	25	75	100
		Core Course – III (CC)	Analytical Geometry and Vector Calculus	19UMA2CC3	6	5	3	25	75	100
	III	First Allied Course – II (AP)	Mathematical Statistics- II (Practical)	19UMA2AC1P	5	3	3	25	75	100
		First Allied Course – III (AC)	Mathematical Statistics-III	19UMA2AC2	5	3	3	25	75	100
	IV	Environmental Studies	Environmental Studies	19UGES	2	2	3	25	75	100
	TOTAL					19	-	-	-	600

a	D	C			Ins.	a	Exam	Μ	arks	
Sem	Part	Course	Title	Subject Code	Hrs	Credit	Hours		Ext	Tot
	Ι	Language Course – III (LC) – Tamil*/Other Languages +#	Kappiyamum Naadagamum Medieval, Modern Poem, Poetics & History of Hindi Literature – 3 Prose, Textual Grammar and Vakyarachana Communication in French –III	19ULT3/ 19ULH3/ 19ULS3/ 19ULF3	6	3	3	25	75	100
	Π	English Language Course - III(ELC)	Reading and Writing For Effective Communication- I	19UE3	6	3	3	25	75	100
		Core Course – IV CC)	Differential Equations and Laplace Transforms	19UMA3CC4	5	5	3	25	75	100
III	III	Core Course – V (CC)	Classical Algebra and Theory of Equations	19UMA3CC5	5	5	3	25	75	100
111		Second Allied Course – I (AC)	Programming in C	19UMA3AC3	4	3	3	25	75	100
		Second Allied Course – II (AP)	Programming in C LAB	19UMA3AC2P	2	-	-	-	-	-
		Non Major Elective I – for those who studied Tamil under Part I a) Basic Tamil for other language students	Mathematics for Competitive Examinations-I	19UMA3NME1						
			Basic Tamil	19ULC3BT1		2 2				100
	IV	b) Special Tamil for those who studied Tamil up to 10 th , +2 but opt for other languages in degree programme	Special Tamil	19ULC3ST1	2		3	25	75	
	v	Extra Credit Course	Swayam Online Course	To be fixed Later	As Per UGC Recommendation				lation	IS
			TOTAL		30	21	-	-	-	600

*15 Days Internship during Semester Holidays

Sam	Dont	Course	Title	Subject Code	Inc	Cradit	Exam	Marks		Total
Sem	Part	course	Title	Subject Code	Ins.	Credit	Hours	Int	Ext	
	Ι	Language Course – IV(LC) - Tamil*/Other Languages +#	Pandaiya Ilakkiyam Letter Writing, Precise Writing, General Essays, Technical Terms, Proverbs, Amplifications, Idioms & Phrases, History of Hindi Literature – 4 Drama, History of Drama Literature Communication in French –IV	19ULT4/ 19ULH4/ 19ULS4/ 19ULF4	6	3	3	25	75	100
	Π	English Language Course – IV(ELC)	Reading and Writing For Effective Communication- II	19UE4	6	3	3	25	75	100
IV	III	Core Course – VI (CC)	Sequences and Series	19UMA4CC6	5	5	3	25	75	100
1 V		Second Allied Course – II (AP)	Programming in C LAB	19UMA3AC2P	2	2	3	40	60	100
		Second Allied Course – III (AC)	Principles of Information Technology	19UMA4AC4	5	4	3	25	75	100
		Major Based Elective-I	Discrete Mathematics Automata Theory	19UMA4MBE1A 19UMA4MBE1B	4	4	3	25	75	100
		Non Major Elective II – for those who studied Tamil under Part I a) Basic Tamil for	Mathematics for Competitive Examinations-II	19UMA4NME2						
		other language students	Basic Tamil	19ULC4BT2						
	IV	b) Special Tamil for those who studied Tamil up to10 th , +2 but opt for other languages in degree programme	Special Tamil	19ULC4ST2	2 2	2	3	25	75	100
	V	Extra Credit Course	Internship	19UMA4INT			-			
			Swayam Online Course	To be fixed Later	As	Per U	GC Rec	omm	endat	ions
			TOTAL		30	23	-	-	-	700

G		C	T '41		Ins.		Exam	Μ	larks	T ()
Sem	Part	Course	Title S	Subject Code	Hrs	Credit	Hours	Int	Ext.	Total
		Core Course – VII (CC)	Abstract Algebra	19UMA5CC7	6	6	3	25	75	100
	ш	Core Course – VIII (CC)	Real Analysis	19UMA5CC8	6	6	3	25	75	100
	111	Core Course – IX (CC)	Statics	19UMA5CC9	5	4	3	25	75	100
		Core Course – X (CC)	Methods in Numerical Analysis	19UMA5CC10	5	4	3	25	75	100
		Core Practical – I (CP)	Numerical methods with MATLAB Programming (Practical)	19UMA5CC1P	2	2	3	40	60	100
V		Skill Based Elective – I	Introduction to R Introduction to Statistical Tools and Techniques – SPSS	19UMA5SBE1A 19UMA5SBE1B	2	2	3	25	75	100
	IV	Skill Based Elective – II	Statistical Tools and Techniques – R Programming (Practical) Statistical Tools	19UMA5SBE2AP	2	2	3	40	60	100
			and Techniques – SPSS (Practical)	19UMA5SBE2BP						
		UGC Jeevan Kaushal Life Skills	Professional Skills	19UGPS	2	2	3	25	75	100
	V	Extra credit course	Swayam Online Course	To be fixed Later	A	s per U	GC Rec	omme	endati	ons
			TOTAL		30	28	-	-	-	800

Som	Part	art Course Title	Title	Subject Code	Ins.	Credit	Exam	Μ	[arks	Total	
Sem	1 41 1	Course	Subject Cour	Hrs		Hours	Int	Ext.	I Utar		
		Core Course – XI (CC)	Linear Algebra	19UMA6CC11	5	5	3	25	75	100	
		Core Course – XII (CC)	Complex Analysis	19UMA6CC12	5	5	3	25	75	100	
	III	Core Course – XIII (CC)	Dynamics	19UMA6CC13	5	4	3	25	75	100	
		Core Course – XIV (CC)	Operations Research	19UMA6CC14	4	4	3	25	75	100	
		Major Based Elective – II	Graph Theory	19UMA6MBE2A	4 3	3	25	75	100		
			Number Theory	19UMA6MBE2B		-	-				
VI		Major Based Elective – III	Fuzzy Sets and Systems	19UMA6MBE3A	4	3	3	25	75	100	
			Astronomy	19UMA6MBE3B							
			LaTeX (Practical)	19UMA6SBE3AP		2 2					
	IV	Skill Based Elective – III	Python Programming (Practical)	19UMA6SBE3BP	2		3	40	60	100	
		Gender Studies	Gender Studies	19UGGS	1	1	3	25	75	100	
	V	Extension Activities	Extension Activities	19UGEA	-	1	-	-	-	-	
	TOTAL				30	28	-	-	-	800	
	GRAND TOTAL					140	-	-	-	4100	

List of Allied Courses

Group I (Any one)

1. Physics

- 2. Mathematical Statistics
- 3. Financial Accounting

Lawrence Device L		4	
Language Part – I	-	4	
English Part –II	-	4	
Core Paper	-	14	
Core Practical	-	1	
Allied Paper	-	4	
Allied Practical	-	2	
Non-Major Elective	-	2	
Skill Based Elective	-	3	
Major Based Elective	-	3	
Environmental Studies	-	1	
Value Education	-	1	
Soft Skill Development	-	1	
Gender Studies	-	1	
Extension Activities	-	1	(Credit only)

 \succ For those who studied Tamil up to 10th, +2 (Regular Stream)

- + Syllabus for other Languages should be on par with Tamil at degree level
- # those who studied Tamil up to 10th,+2 but opt for other languages in degree level under Part I should study special Tamil in Part IV

Group II (Any one)

2. Computer Science

3. Management Accounting

1. Chemistry

** Extension Activities shall be outside instruction hours

Non Major Elective I & II - for those who studied Tamil under Part I

- a) Basic Tamil I & II for other language students
- b) Special Tamil I & II for those who studied Tamil up to 10^{th} or +2 but opt for other languages in degree programme

Note:		
	Internal Marks	External Marks
1. Theory	25	75
2. Practical	40	60

3. Separate passing minimum is prescribed for Internal and External marks

FOR THEORY

The passing minimum for CIA shall be 40% out of 25 marks [i.e. 10 marks] The passing minimum for University Examinations shall be 40% out of 75 marks [i.e. 30 marks]

FOR PRACTICAL

The passing minimum for CIA shall be 40% out of 40 marks [i.e. 16 marks]

The passing minimum for University Examinations shall be 40% out of 60 marks [i.e. 24 marks]

SEMESTER I

CORE COURSE-I (CC)

DIFFERENTIAL CALCULUS AND TRIGONOMETRY

2019-2020 Onwards

Semester – I	DIFFERENTIAL CALCULUS AND TRIGONOMETRY	Hours/Week – 5 Credits – 5		
CORE COURSE-I				
Course Code – 19UMA1CC1		Internal	External	
		25	75	

Objectives:

- > To inculcate the basics of differentiation and their applications.
- > To introduce the notion of curvature, Evolutes and Involutes in polar co-ordinates.
- > To understand the basic concepts of Trigonometry.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Explain the basic concepts of differentiation, extreme	K3
	functions of two variables.	
CO2	Apply the concept of differentiation for explaining curvature.	К3
CO3	Distinguish the trigonometric functions, related problems.	К3
CO4	Associate various types of hyperbolic and inverse hyperbolic functions and Solve problems in summation of trigonometric series.	K4
CO5	Examine the conceptual understanding and fluency with trigonometric functions, techniques and manipulations necessary for success in calculus.	K4

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	S	S
CO2	М	S	S	М	S
CO3	S	S	М	М	S
CO4	S	S	М	М	S
CO5	М	М	S	S	М

CORE COURSE-I (CC) DIFFERENTIAL CALCULUS AND TRIGONOMETRY SYLLABUS

UNIT I

Successive Differentiation: The n^{th} derivative – Standard results – Trigonometrical transformation – Formation of equations involving derivatives – Leibnitz formula for the n^{th} derivative of a product – A complete formal proof by induction.

Meaning of the Derivative: Geometrical interpretation – Meaning of the sign of the differential coefficient. Maxima and Minima of functions of two variables.

UNIT II

Curvature – Circle, radius and centre of curvature – Cartesian formula for the radius of curvature – The coordinates of the centre of curvature – Evolute and Involute - Radius of curvature when the curve is given in polar coordinates.

UNIT III

Expansions of $\cos n\theta$ and $\sin n\theta$ – Expansion of $\tan n\theta$ in powers of $\tan \theta$ – Expansion of $\tan(A + B + C + ...)$ (omitting examples on formation of equations) - Powers of sines and cosines of θ in terms of functions of multiples of θ – Expansion of $\sin^n \theta$ and $\cos^n \theta$ when n is a positive integer– Expansions of $\sin \theta$ and $\cos \theta$ in a series of ascending powers of θ .

UNIT IV

Hyperbolic functions – Relation between hyperbolic functions – Inverse hyperbolic functions.

UNIT V

Logarithms of complex quantities - To find the logarithm of x + iy – General value of logarithm of x + iy – Summation of Trigonometrical Series – Method of differences – Some of series of n angles in arithmetic progression – Sum of cosines of n angles in arithmetic progression – Gregory's series.

TEXT BOOKS:

S.No	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	S. Narayanan,	Calculus, Volume I	S. Viswanathan	2015
	T. K.Manicavachagom		(Printer &	
	Pillay		publishers), Pvt	
			Ltd	
2.	S. Narayanan,	Trigonometry	S. Viswanathan	2013
	T. K.Manicavachagom		(Printer &	
	Pillay		publishers), Pvt	
			Ltd	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER SECTIONS	
	3	1.1 – 1.6 [1]
Ι	4	2.1 & 2.2 [1]
	8	4 & 4.1[1]
II	10	2.1 - 2.6 [1]
III	3	1, 2, 3, 4, 4.1, 5 & 5.1 [2]
IV	4	1, 2, 2.1 - 2.3 [2]
V	5	5, 5.1, 5.2 [2]
v	6	1, 2, 3.1 [2]

REFERENCE BOOKS:

S.No	Authors Name	Title of the book	Publishers Name	Year of Publication
1.	S. Arumugam and Issac	Calculus, Volume I	New Gamma Publishing House	1991
2.	S. Narayanan, T.K. Manichavasagam Pillai	Trigonometry	S. Viswanathan Pvt Limited and Vijay Nicole Imprints Pvt Limited	2004
3.	A.Singaravelu and R.Rama	Differential Calculus and Trigonometry	R publications, Nagapattinam	2003

Pedagogy:

CORE COURSE-II (CC)

INTEGRAL CALCULUS AND FOURIER SERIES

2019-2020 Onwards

Semester – I		Hours/Week – 6	
CORE COURSE-II	INTEGRAL CALCULUS	Credi	ts – 5
Course Code – 19UMA1CC2	AND FOURIER SERIES	Internal	External
		25	75

Objectives:

- > To inculcate the basics of Integration and their applications.
- > To introduce the order of Integration, Triple Integrals, Beta and Gamma functions.
- > To understand the basic concepts of Fourier series.

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Apply the concepts of double, triple integrals.	К3
CO2	Distinguish the concepts of Beta and Gamma functions.	К3
CO3	Apply the concepts of half range Fourier series for solving problems necessary for success in calculus.	К3
CO4	Associate various types of Fourier series for solving problems.	K4
CO5	Evaluate the types of integration.	К5

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	S	S
CO2	М	S	S	S	S
CO3	S	S	М	М	S
CO4	S	S	М	М	S
CO5	S	М	S	S	М

S - Strong, M - Medium, L - Low

CORE COURSE-II (CC) INTEGRAL CALCULUS AND FOURIER SERIES SYLLABUS

UNIT I

Integration: Integration of rational algebraic functions $\int \frac{lx+m}{ax^2+bx+c} dx$ - Integration of Irrational functions $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ - Any expression of the form $\int \frac{dx}{(x-k)\sqrt{ax^2+bx+c}} - \int \frac{dx}{a+b\cos x}$ (Integration of these types only)

UNIT II

Multiple Integrals: Definition of the double integral - Evaluation of the double Integral-Triple Integrals.

UNIT III

Improper Integrals: Beta and Gamma functions: Definitions - convergence of $\Gamma(n)$ - Recurrence formula of gamma functions - Properties of Beta functions - Relation between Beta and Gamma functions - Definite integrals using Gamma functions.

UNIT IV

Fourier Series- Definition - Fourier Series expansion of periodic functions with period 2π - Even and Odd functions.

UNIT V

Half-Range Fourier Series - Definition - Development in cosine series and sine series – Change of Interval - Combination of Series.

TEXT BOOKS:

S.No	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	S. Narayanan, T.K.Manicavachagam Pillai.	Calculus Vol II	S. Viswanathan (Printer & publishers), Pvt Ltd	2015
2.	S. Narayanan, T.K.Manicavachagam Pillai.	Calculus Vol III	S. Viswanathan (Printer & publishers), Pvt Ltd	2014

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS	
	7	7.3 (Type II)[1]	
I	8	Case II and case V[1]	
	9	Full [1]	
II	5	2.1, 2.2 & 4 [1]	
III	7	2.1-2.3, 3 to 5 [1]	
IV	6	1, 2, 3 [2]	
V	6	4, 5.1, 5.2, 6, 7 [2]	

REFERENCE BOOKS:

S.No	Authors Name	Title of the book	Publishers Name	Year of Publication
1.	Shanti Narayan	Integral Calculus	S.Chand & Company Ltd	2002
2.	Shanti Narayan &	Integral Calculus	S.Chand &	2008
2.	P.K.Mittal	integral Calculus	Company Ltd	2000
3.	U.P.Singh, R.J.Srivastava & N.H.Siddiqui	Integral Calculus	Wistom Press	2011
4.	J.K.Goyal & K.P.Gupta	Laplace and Fourier Transforms	Pragati Prakashan	2009

Pedagogy:

FIRST ALLIED COURSE-I (AC) MATHEMATICAL STATISTICS – I

2019-2020 Onwards

Semester – I		Hours/Week – 5	
FIRST ALLIED COURSE-I	MATHEMATICAL	Credits – 3	
Course Code – 19UMA1AC1	STATISTICS – I	Internal	External
		25	75

Objectives:

- > To learn the basic concepts of statistics.
- \succ To learn the basic ideas of statistical tools.

Course Outcomes:

On the successful completion of the course, students will be able to

СО	СО	Knowledge
Number	Statement	Level
CO1	Describe the concept of probability theory and identify its	K2
	applications in real situations.	
CO2	Explain the derivation of moment generating function,	K2
	characteristic function, probability generating function and	
	the proof of Chebychev's inequality with its applications.	
CO3	Compute the index numbers by different types of methods.	К3
CO4	Define and Classify the two dimensional random variables.	К3
CO5	Interpret the various properties of expectation, variance and The	К3
	concept of covariance.	
CO6	Distinguish between a discrete and a continuous random	K4
	variable.	

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	М	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S
CO6	S	S	S	S	S

FIRST ALLIED COURSE-I (AC) MATHEMATICAL STATISTICS – I SYLLABUS

UNIT I

Theory of probability : Introduction – Short History – Definitions of Various Terms – Mathematical or Classical or 'a Priori' Probability – Statistical or Empirical Probability – Mathematical Tools: Preliminary Notion of sets – Sets and Elements of Sets – Operations on Sets – Algebra of Sets - Axiomatic approach to Probability – Random Experiment (Sample Space) – Event – Some Illustrations – Algebra of Events – Probability : Mathematical Notion – Probability Function – Laws of Addition of Probabilities – Extension of General Law of Addition of Probabilities – Law of Multiplication or Theorem of Compound Probability – Extension of Multiplication Law of Probability – Independent Events – Pair wise Independent Events – Mutually Independent Events – Baye's theorem.

UNIT-II

Random Variables and Distribution Functions : Random Variable – Distribution Functions – Properties of Distribution Function – Discrete Random Variable – Probability Mass Function – Discrete Distribution Function – Continuous Random Variable – Probability Density Function – Various Measures of Central Tendency, Dispersion, Skewness and Kurtosis for Continuous Probability Distribution Function – Continuous Distribution Function – Joint Probability Mass Function and Marginal and Conditional Probability Function – Joint Probability Distribution Function – Joint Density Function, Marginal Density Function -Independent Random Variables – The Conditional Distribution Function and Conditional Probability Density Function.

UNIT-III

Mathematical Expectation – Addition Theorem of Expectation – Multiplication Theorem of Expectation – Co-variance – Expectation of a Linear Combination of Random Variables – Variance of a Linear Combination of Random Variables – Expectation of a Continuous random variable – Conditional Expectation and Conditional Variance.

UNIT-IV

Moment Generating Function – Theorems on moment Generating Functions– Cumulants– Additive Property of Cumulants – Effect of Change of Origin and Scale of Cumulants – Characteristic Function – Properties of Characteristic Functions – Uniqueness Theorem of Characteristic Functions – Chebychev's Inequality – Weak Law of Large Numbers– Bernoulli's Law of Large Numbers.

UNIT-V

Index numbers : Introduction – Meaning – Definition – Characteristics – Uses – Types of Index Numbers – Problems in the Construction of Index Numbers – Choice of Formula – Notations – Unweighted Index Numbers – Weighted Index Numbers – Quantity Index Numbers – Test of Consistency of Index numbers – Chain Base Method – Conversion of Chain Index into Fixed Index – Base Shifting – Splicing two Index Number Series – Deflating Index Numbers – Consumer Price Index – Meaning and Need – Uses – Construction of Consumer Price Index – Method of Constructing Consumer Price Index numbers – Aggregate Expenditure method – Family Budget method – Limitations of Index Numbers.

TEXT BOOKS:

S.No	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	S.C.Gupta & V.K.Kapoor	Elements Of	Sultan Chand &	2004
		Mathematical	Sons, New Delhi	
		Statistics		
2.	R.S.N.Pillai & Bhagavathi	Statistics, Theory	S.Chand & Sons,	2008
		And Practice	New Delhi	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	4	4.1 to 4.8 [1]
II	5	5.1 to 5.5.5 [1]
III	6	6.1 to 6.8 [1]
IV	6	6.9 to 6.13.1 [1]
V	14	Full [2]

REFERENCE BOOKS:

S.No	Authors Name	Title of the book	Publishers	Year of
			Name	Publication
1.	S.C.Gupta &	Fundamentals Of	Sultan Chand &	2015
	V.K.Kapoor	Mathematical	Sons.	
		Statistics		
2.	T.Veerarajan	Probability, Statistics	Tata McGraw	2010
		And Random	Hill education	
		Processes	Private Limited	
3.	G.S.S.Bhisma Rao	Probability And	Scitech	2011
		Statistics	Publications	
			(India) Pvt. Ltd	

Pedagogy:

SEMESTER II

CORE COURSE-III (CC)

ANALYTICAL GEOMETRY AND VECTOR CALCULUS

2019-2020 Onwards

Semester - II	ANALYTICAL GEOMETRY AND	Hours/Week – 6		
CORE COURSE-III		Cr		dits – 5
Course Code – 19UMA2CC3	VECTOR CALCULUS	Internal	External	
		25	75	

Objectives:

- > To understand the concepts and properties of analytical geometry.
- > To understand the concepts of plane, straight line and sphere.
- > To familiarize the students with the principles and practices of vector calculus.
- > To familiarize the students with vector integration.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
C01	Explain the coordinates in space, equation of a plane.	K3
CO2	Describe the concepts of straight lines and coplanar lines.	K3
CO3	Classify the equation of a sphere and tangent planes.	K3
CO4	Solve the problems of Gauss Divergence Theorem, Stokes Theorem- Green's Theorem.	К3
CO5	Examine the concepts of vector integration for finding scalar potential.	K4

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	S	S
CO2	М	S	S	S	S
CO3	S	S	М	М	S
CO4	S	S	М	М	М
CO5	S	S	S	S	М

CORE COURSE-III (CC) ANALYTICAL GEOMETRY AND VECTOR CALCULUS

SYLLABUS

UNIT I

The Plane: The general equation of the first degree in x, y, z represents a plane – The equation of the plane making intercepts a, b, c on the axes OX, OY, OZ respectively – The equation of a plane in terms of p, the length of the perpendicular from the origin to it and l, m, n the direction cosines of that perpendicular – Obtaining several forms for the equations of a plane – The equation of the plane passing through the points (x_1, y_1, z_1) , $(x_2, y_2, z_2), (x_3, y_3, z_3)$ – Direction cosines of the line which is perpendicular to a plane – Angle between the planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$

UNIT II

The straight line: A straight line may be determined as the intersection of two planes – symmetrical form of the equations of a line – The symmetrical form of the equations of the line $ax + by + cz + d = 0 = a_1x + b_1y + c_1z + d_1$ – Equation of a straight line passing through two given points – The condition of the line $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$ to be parallel to the plane ax + by + cz + d = 0 – Angle between the plane ax + by + cz + d = 0 and the line $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$ The condition that two given straight lines should be coplanar–The shortest distance between two given lines.

UNIT III

Sphere: Definition - The equation of a sphere when the centre and radius are given – The equation $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ always represents a sphere and to find its centre and radius – The length of the tangent from the point (x_1, y_1, z_1) to the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ The plane section of a sphere is a circle – Equation of a circle on a sphere: Equation of a sphere passing through a given circle – Intersection of two spheres is a circle – The equation of the tangent plane to the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ at point (x, y, z).

UNIT IV

Vector Integration – line integral – work done by a force – conservative field – Scalar potential – normal surface integral – volume integral – Simple problems.

UNIT V

Gauss's Divergence Theorem – Green's Theorem – Stoke's Theorem – Verification of the theorems for simple problems.

TEXT BOOKS:

S.No	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	T.K. Manickavasagam Pillai	A Text Book of	S.Viswanathan	2012
	and T.Natarajan,	Analytical	(Printers &	
		Geometry Part II-	Publishers) PVT.,	
		Three dimensions	Limited.	
2.	M.L. Khanna	Vector Calculus	Jai Prakash Nath	2002
			and Co.,	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	2	1-7 [1]
II	3	1-8 [1]
III	4	1-8 [1]
IV	3	1, 2, 4 [2]
V	3	5 & 6 [2]

REFERENCE BOOKS:

S.No	Authors Name	Title of the book	Publishers Name	Year of Publication
1.	P.Duraipandiyan, Lakshmi Duraipandian and D.Muhilan	Analytical Geometry Three dimensionsal	Emerald Publishers	1984
2.	H.D.Pandey, M.Q.Khan and B.N.Gupta	A Text Book of Analytical Geometry and Vector Analysis	Wisdom Press	2011
3.	P.Duraipandiyan and Lakshmi Duraipandian	Vector Analysis	Emerald Publishers	1986

Pedagogy:

FIRST ALLIED COURSE – II (AC)

MATHEMATICAL STATISTICS – II (PRACTICAL)

2019-2020 Onwards

Semester - II	MATHEMATICAL STATISTICS – II	Hours/Week – 5	
FIRST ALLIED COURSE-II		Credi	its – 3
Comme Code 10UNA2AC1D	(PRACTICAL)	Internal	External
Course Code – 19UMA2AC1P	(IRACIICAL)	25	75

Objectives:

- > To analyze the statistical problems.
- > To provide the knowledge to interpret and solve the statistical problems.
- > To ensure with the ideas of statistical tools.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Identify the discrete and continuous data and find average	K1
	through the Measures of Central Tendency and Measures of	
	Dispersion.	
CO2	Solve the problems in joint, Marginal and Conditional	K2
	Probability distributions involving two random variables.	
CO3	Explain the various methods of finding Correlation and	K2
	Regression co-efficient between two data sets and their	
	applications.	
CO4	Describe and illustrate the concepts of fitting probability	K2
	distributions.	
CO5	Analyze the concepts of testing of hypothesis and apply the	К3
	test to the real life problems.	

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	М	S	М	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

FIRST ALLIED COURSE – II (AC) MATHEMATICAL STATISTICS – II (PRACTICAL) SYLLABUS

UNIT I

Measures of central tendency: Arithmetic Mean – Median – Quartiles – Deciles – Percentiles – Mode – Geometric Mean – Harmonic Mean – Measures of Dispersion: Range and Quartile Deviation – Mean Deviation – Standard Deviation –Co-efficient of variation – Skewness – Moments – Kurtosis.

UNIT II

Karl Pearson's Coefficient of Correlation – Rank correlation – Regression.

UNIT III

Theoretical Distributions: Binomial Distribution – Poisson Distribution – Normal Distribution.

UNIT IV

Two-dimensional Random Variables – Two-dimensional or Joint Probability Mass Function – Two-dimensional Distribution Function – Marginal Distribution Function – Joint Density Function, Marginal Density Function – The Conditional Distribution Function and Conditional Probability Density Function (Problems only).

UNIT V

Tests of Hypotheses: Test of Significance for Large Samples – Test of significance of the difference between sample proportion and population proportion – Test of significance of the difference between two sample proportions – Test of significance of the difference between the mean sample mean and population mean – Test of significance of the difference between the mean two samples – Test of significance of the difference between S.D. and population S.D.– Test of significance of the difference between S.D.'s of two large samples – Test of Significance for small Samples : Tests of significance based on t-test for Mean – F-test for Variance - Chi-square test for goodness of fit and independence of attributes (Problems only).

TEXT BOOKS:

S.No	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	R.S.N. Pillai and Bagavathi.	Practical Statistics	Sultan Chand &	2008
			Sons.	
2.	S.C.Gupta & V.K.Kapoor	Fundamentals Of	Sultan Chand &	2015
		Mathematical	Sons.	
		Statistics		
3.	T.Veerarajan	Probability,	Tata McGraw Hill	2010
		Statistics And	education Private	
		Random Processes	Limited	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	3,4,5	FULL [1]
II	6,7	FULL [1]
III	13	FULL [1]
IV	5	5.5, 5.5.1-5.5.5 [2]
V	9	FULL [3]

REFERENCE BOOKS:

S.No	Authors Name	Title of the book	Publishers	Year of
			Name	Publication
1.	R.S.N.Pillai &	Statistics, Theory And	S.Chand & Sons	2008
	Bhagavathi	Practice		
2.	V.Rajagopalan	Selected Statistical	New Age	2006
		Tools	International (P)	
			Ltd Publishers	
3.	G.S.S.Bhisma Rao	Probability and	Scitech	2011
		Statistics	Publications	
			(India) Private	
			Limited, New	
			Delhi	

Pedagogy:

LIST OF PROGRAMS:

- 1) Arithmetic Mean, Geometric Mean and Harmonic Mean.
- 2) Median and Mode.
- 3) Quartile Deviation and Mean Deviation.
- 4) Standard Deviation and Co-efficient of Variation.
- 5) Karl Pearson's Co-efficient of Skewness.
- 6) Bowley's Co-efficient of Skewness.
- 7) Moments and Kurtosis.
- 8) Karl Pearson's Co-efficient of correlation.
- 9) Rank Correlation.
- 10) Fit a regression line.
- 11) Fit a Binomial distribution.
- 12) Fit a Poisson distribution.
- 13) Fit a Normal distribution.
- 14) Marginal and conditional distribution for X and Y.
- 15) Mathematical Expectation for X and Y.
- 16) Test the hypothesis of the difference between two sample means.
- 17) Test the hypothesis for single proportion.
- 18) Test the significance of hypothesis using 't' test.
- 19) Test the significance of hypothesis using 'F' test.
- 20) Test the significance of hypothesis using chi-square test.

FIRST ALLIED COURSE – III (AC)

MATHEMATICAL STATISTICS - III

2019-2020 Onwards

Semester - II		Hours/V	Veek – 5
FIRST ALLIED COURSE-III	MATHEMATICAL	Credi	its – 3
Course Code – 19UMA2AC2	STATISTICS – III	Internal 25	External 75

Objectives:

- > To enable the students to learn the basic concepts of discrete distribution.
- \succ To make the students analyze the concepts of continuous distribution.
- \succ To ensure the students with the ideas of statistical tools.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Define the chi square Distribution and discuss the applications of	K2
	chi square Distribution to conduct tests of goodness of fit and	
	independence of attributes.	
CO2	Explain Student's t, Fisher's t and F statistics and derive their	K2
	probability Distribution.	
CO3	Identify the concepts of a discrete probability Distribution and	K3
	compute the moments, Cumulants, m.g.f and various constants of a	
	discrete probability Distribution and its applications.	
CO4	Describe the concepts of a continuous probability Distribution and	К3
	compute the moments, Cumulants, m.g.f and various constants of a	
	continuous probability Distribution and its applications.	
CO5	Classify the various properties of the correlation and regression co-	К3
	efficient and their applications.	

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	М	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

S-Strong, M-Medium, L-Low

FIRST ALLIED COURSE – III MATHEMATICAL STATISTICS – III SYLLABUS

UNIT I

Introduction – Discrete uniform Distribution – Bernoulli Distribution : Moments of Bernoulli Distribution - Binomial Distribution : Moments of Binomial Distribution – Recurrence Relation for the Moments of Binomial Distribution – Factorial Moments of Binomial Distribution – Mean Deviation about Mean of Binomial Distribution – Mode of Binomial Distribution – Moment Generating Function of Binomial Distribution – Additive Property of Binomial Distribution –Characteristic Function of Binomial Distribution – Cumulants of the Binomial Distribution – Poisson Distribution : The Poisson Process – Moments of the Poisson Distribution – Mode of the Poisson Distribution – Recurrence Relation for Moments of the Poisson Distribution – Moment Generating Function of the Poisson Distribution – Characteristic Function of Binomial Distribution – Recurrence Relation for Moments of the Poisson Distribution – Moment Generating Function of the Poisson Distribution – Characteristic Function of the Poisson Distribution – Cumulants of the Poisson Distribution – Characteristic Function of the Poisson Distribution – Cumulants of the Poisson Distribution – Characteristic Function of the Poisson Distribution – Cumulants of the Poisson Distribution – Characteristic Function of the Poisson Distribution – Cumulants of the Poisson Distribution – Other Poisson Distribution – Cumulants of the Poisson Distribution – Characteristic Function of the Poisson Distribution – Cumulants of the Poisson Distribution – Additive or Reproductive Property of Independent Poisson Variates – Probability Generating Function of Poisson Distribution.

UNIT II

Introduction – Normal Distribution : Normal Distribution as a Limiting Form of Binomial Distribution – Chief Characteristics of the Normal Distribution and Normal Probability curve – Mode of Normal Distribution – Median of Normal Distribution – M.G.F. of Normal Distribution – Cumulant Generating Function (c.g.f.) of Normal Distribution – Moments of Normal Distribution – A Linear Combination of Independent Normal Variates – Points of Inflexion of Normal Curves – Mean Deviation About the Mean for Normal Distribution – Area Property (Normal Probability Integral) – Error Function – Importance of Normal Distribution – Fitting of Normal Distribution – Rectangular (or Uniform) Distribution : Moments of Rectangular Distribution – M.G.F. of Rectangular Distribution – Characteristic Function of Rectangular Distribution – Mean Deviation (about mean) of Rectangular Distribution.

UNIT III

Gamma Distribution : M.G.F. of Gamma Distribution – Cumulant Generating Function of Gamma Distribution – Additive Property of Gamma Distribution – Beta Distributions of first kind : Constants of Beta Distributions of first kind – Beta Distributions of second kind : Constants of Beta Distributions of second kind – Exponential Distribution : Moment Generating Function of Exponential Distribution.

UNIT IV

Correlation : Introduction – Meaning of Correlation – Scatter Diagram – Karl Pearson's Co-efficient of Correlation : Limits for Correlation Co-efficient – Assumptions Underlying Karl Pearson's Correlation Co-efficient – Rank Correlation : Spearman's Rank Correlation Coefficient – Repeated Ranks – Repeated Ranks (continued) – Linear Regression : Introduction – Linear Regression : Regression Co-efficient - Properties of Regression Co-efficient – Angle between two lines of Regression – Standard Error of Estimate or Residual Variance – Correlation Co-efficient between Observed and Estimated Values.

UNIT V

Chi-Square Distribution : Introduction – Derivation of the Chi-Square Distribution – M.G.F. of Chi-Square Distribution : Cumulant Generating Function of χ^2 Distribution – Limiting Form of χ^2 Distribution for large degree of Freedom –Characteristic Function of χ^2 Distribution – Mode and Skewness of χ^2 Distribution – Additive Property of χ^2 Variates – Chi- Square Probability Curve – Students'' Distribution : Introduction – Derivation of the Students't' Distribution – Fisher's't' – Distribution of Fisher's't' – Constants of t-distribution – Limiting Form of 't' Distribution – Graph of 't' Distribution – Critical Values of t – F-Distribution : Derivation of Snedecor's F-Distribution – Constants of F–Distribution – Mode and Points of Inflexion of F-Distribution – Relation between t and F Distributions – Relation between F and χ^2 Distributions.

TEXT BOOKS:

S.No	Authors Name	Title of the Book	Publishers Name	Year of Publication
1.	S.C.Gupta & V.K.Kapoor	Fundamentals Of Mathematical Statistics	Sultan Chand & Sons.	2015

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS	
I	8	8.1 to 8.5.9 (omit 8.4.10 to 8.4.12 and 8.5.10) [1]	
II	9	9.1 to 9.3.4 (omit 9.2.15) [1]	
III	9	9.5 to 9.8.1 [1]	
IV	10 11	10.1 to 10.4.2 & 10.7, 10.7.1 to 10.7.3 [1] 11.1 to 11.2.5 [1]	
V	15 16	15.1 to 15.3.6 [1] 16.1 to 16.2.7, 16.5, 16.5.1 to 16.5.3, 16.7, 16.8 [1]	

REFERENCE BOOKS:

S.No	Authors Name	Title of the book	Publishers Name	Year of Publication
1.	S.C.Gupta &	Elements Of	Sultan Chand &	2004
	V.K.Kapoor	Mathematical	Sons	
		Statistics		
2.	R.S.N.Pillai &	Statistics, Theory And	S.Chand & Sons	2008
	Bhagavathi	Practice		
3.	G.S.S.Bhishma Rao	Probability And	Scitech	2011
		Statistics	Publications	
			(India) Pvt Ltd	

Pedagogy:

SEMESTER III

CORE COURSE-IV (CC)

DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS

2019-2020 Onwards

Semester – III	DIFFERENTIAL EQUATIONS AND	Hours/Week – 5	
CORE COURSE-IV		Credits – 5	
Course Code – 19UMA3CC4	LAPLACE TRANSFORMS	Internal	External
	LAI LACE TRANSFORMS	25	75

Objectives:

- To give an in-depth knowledge of solving Ordinary differential equations including separable, homogeneous, exact, and linear.
- > To acquire the knowledge of solving problems using partial differential equations.
- > To know the concepts of Laplace transforms and the Inverse Laplace transforms with applications.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Define Laplace transform & its inverse.	K1
CO2	Illustrate the notion of order & degree of the ordinary differential equations.	K2
CO3	Rephrase the partial differential equations by eliminating constants and arbitrary functions.	K2
CO4	Apply the method of variation of parameters for finding the solutions of second order ordinary differential equations.	К3
CO5	Compute general, singular & particular integrals for standard forms.	К3
CO6	Solve the ordinary differential equations by Laplace Transforms and inverse Laplace transforms.	К3

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	S	S
CO2	М	М	М	М	S
CO3	S	S	S	S	М
CO4	S	S	S	S	М
CO5	S	S	S	S	М
CO6	S	S	S	S	М

CORE COURSE-IV (CC) DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS SYLLABUS

UNIT – I:

Equations of the first order but of higher degree:

Equations solvable for dy/dx – Equations solvable for y – Equations solvable for x – Clairaut's form – Extended form of Clairaut's form – Exact differential equations – Conditions of integrability of M dx + N dy = 0 – Practical rule for solving an exact differential equation – Rules for finding integrating factors – simple problems.

UNIT –II:

Linear equations with constant coefficients:

Definition – The operator D – Complementary function of a linear equation with constant coefficients – Particular integral – General method of finding P.I. – Special methods for finding P.I. of the forms e^{ax} , cos ax or sin ax, $e^{ax}V$, x^m – Linear equations with variable coefficients – Methods of finding particular integrals – Special method of evaluating the P.I. when X is of the form x^m – Method of Variation of Parameters (Omit third & higher order equations).

UNIT –III:

Partial differential equations of the first order:

Classification of Integrals – Derivation of partial differential equations – By elimination of constants – By elimination of an arbitrary function – Lagrange's method of solving the linear equation – Special methods for some standard forms

 $F(p,q) = 0, F(x, p,q) = 0, F(y, p,q) = 0, F(z, p,q) = 0, f_1(x, p) = f_2(y,q)$ – Clairant's form – Equations reducible to the standard forms – Charpit's method – Solving of few standard forms from Charpit's method.

UNIT – IV:

Partial differential equations of higher order:

Introduction – Homogeneous differential equation – Methods of finding C.F. – Methods of finding P.I. of the forms $e^{ax + by}$, $x^r y^s$, sin(ax + by) or cos(ax + by), $e^{ax + by}\phi(x, y)$, sin ax sinby or cos ax cosby. UNIT – V:

Laplace transforms & inverse laplace transforms:

Definition – Piecewise continuity – Sufficient conditions for the existence of the Laplace Transforms – Basic results – Laplace Transform of periodic functions – Some general theorems & simple applications – Evaluation of certain integrals using Laplace Transform – The Inverse Laplace Transforms –Modification of results in Laplace Transform to get the inverse Laplace Transform – Use of Laplace Transforms in solving ODE with constant coefficients.

TEXT BOOKS:

S.No	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	S.Narayanan &	Differential	S.Viswanathan	2016
	T.K.Manicavachagom Pillay	Equations And Its	Publishers Pvt. Ltd	
		Applications		
2.	Dr.S.Arumugam &	Differential	New Gamma	2014
	Mr.A.Thangapandi Isaac	Equations And	publishing House	
		Applications		

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	4	1-3 [1]
	2	6 [1]
П	5	1-5 [1]
	8	4 [1]
III	12	1-6[1]
IV	5	1-2 [2]
V	9	1-8 [1]

REFERENCE BOOKS:

S.No	Authors Name	Title of the book	Publishers Name	Year of Publication
1.	M.D.Raisinghania	Ordinary and Partial Differential Equations	S.Chand & Company	2008

Pedagogy:

CORE COURSE-V (CC)

CLASSICAL ALGEBRA AND THEORY OF EQUATIONS

2019-2020 Onwards

Semester - III		Hours	s/Week – 5
CORE COURSE-V	CLASSICAL ALGEBRA	Credits – 5	
Course Code – 19UMA3CC5	AND THEORY OF EQUATIONS	Internal 25	External 75

Objectives:

- \succ To establish a sound knowledge on theory of equations.
- > To inculcate the students in applicable algebra.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Explain relation between roots and co-efficients of Polynomial equations.	K2
CO2	Apply summetric functions in solving equations and find sum of r^{th} power of roots.	К3
CO3	Compute transformation of equations and solve Reciprocal equations.	K3
CO4	Interpret the quotient and remainder, Find removal of terms and form an equation whose roots are any power.	K2
CO5	Describe transformation in general with Decarte's rule of signs.	K2
CO6	Classify inequalities in all manners.	K3
CO7	Explain theory of numbers with its applications.	K2

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	М	S	М
CO4	S	М	S	S	S
CO5	S	S	М	S	М
CO6	S	S	S	S	S
CO7	S	S	S	S	S

CORE COURSE-V (CC) CLASSICAL ALGEBRA AND THEORY OF EQUATIONS SYLLABUS

UNIT I

Relation between the roots and coefficients of Equations – Symmetric function of the roots – Sum of the powers of the roots of an equation

UNIT II

Newton's theorem on the sum of the power of the roots-Transformations of Equations– Reciprocal equations – To increase or decrease the roots of a given equation by a given quantity.

UNIT III

Form of the quotient and remainder when a polynomial is divided by a binomial – Removal of terms – To form of an equation whose roots are any power of the roots of a given equation – Transformation in general – Descarte's rule of signs.

UNIT IV

Inequalities – Elementary principles – Geometric & Arithmetic means – Weirstrass inequalities – Cauchy inequality – Applications to Maxima & Minima.

UNIT v

Theory of Numbers – Prime & Composite numbers – divisors of a given number N – Euler'sFunction (N) and its value –Integral part of a real number – The highest Power of a prime P contained in n! – Congruences –Fermat's, Wilson's & Lagrange's Theorems.

TEXT BOOKS:

S.No	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	T.K.Manickavasagam Pillai	Algebra, Volume I	S.V. publications	1985
	& others			
2.	T.K.Manickavasagam Pillai	Algebra, Volume I	S.V. publications	1985
	& others			

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	6	11-13 [1]
II	6	14-17 [1]
III	6	18-21 & 24[1]
IV	4	1-13 [2]
V	5	1-18 [2]

REFERENCE BOOKS:

S.No	Authors Name	Title of the book	Publishers Name	Year of Publication
1.	H.S.Hall & S.R.Knight	Higher Algebra	Prentice Hall of India, New Delhi	1948
2.	Barnard S & Child	Higher Algebra	J.M.Publication	1936

Pedagogy:

Power point presentation, Group Discussion, Seminar, Quiz, Assignment.

SECOND ALLIED COURSE-I (AC)

PROGRAMMING IN C

2019-2020 Onwards

Semester - III	PROGRAMMING IN C	Hours	/Week – 4
Second Allied Course-I		Cre	dits – 3
Course Code – 19UMA3AC3		Internal	External
		25	75

Objectives:

- > To Train the students to the basic concepts of programming language.
- > To provide exposure to problem solving through programming.
- > To inculcate complex programming language skills.

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge
		Level
CO1	Recall the basic operation in computer system and Identify	K1
	the fundamentals of C programming	
CO2	Understand the concepts of operators and arrays	K2
CO3	Apply the role of Structure and Pointers	K3

Mapping With Programme Outcomes:

Cos/Pos	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	М
CO2	S	S	S	Μ	Μ
CO3	S	S	S	S	М

S-Strong; M-Medium; L-Low

SECOND ALLIED COURSE-I (AC)

PROGRAMMING IN C

SYLLABUS

UNIT I (12 HOURS)

Introduction to C: Character set - C tokens - Keywords and identifiers- Constantsvariables - Data types - Declaration of variables –Assigning values to the variables –Defining symbolic constants. Operators and Expressions: Arithmetic operators - Relational operators-Logical operators-Assignment operators - Increment and decrement operator-Conditional operator-Bitwise and special operators - Arithmetic expression- Evaluation of expression – Precedence of arithmetic operators-Type conversion in expressions- Operator precedence and Associativity.

UNIT II (12 HOURS)

Managing Input and Output: Reading & writing a character - Formatted input and output. Decision Making and Branching: Simple If statement, The if- else, The Switch statement – The ?: operator - The GOTO statement.

UNIT III(12 HOURS)

Decision Making and Looping: The while statement – The do statement – The for statement – Jumps in Loops. Array: One Dimensional array- Two dimensional Array-Initializing one and two- dimensional Array - Multidimensional arrays- Dynamic Arrays.

UNIT IV (12 HOURS)

User Defined Function: Elements of User Defined Function – Definition of function – Return values and their types – Function calls – Function declaration – Categories of functions. Structure and Union: Defining, Declaring, Accessing, Copying and Comparing Structure Variables – Structure initialization – Arrays of Structures – Arrays within Structures – Structure within Structures.

UNIT V (12 HOURS)

Pointers: Understanding Pointers-Accessing the address of a variable- Declaring and Initializing Pointers - Accessing a variable through its pointer - Chain of pointers -Pointer expressions – Pointer increments and Scale factor - Pointers and Arrays.

TEXT BOOKS:

S. No	Authors	Title of the Book	Publishers/Edition	Year of Publication
1.	E. Balagurusamy	Programming In ANSI C	Tata Mc Graw Hill, 7th Edition.	2017

REFERENCE BOOKS:

S. No	Authors	Title of the Book	Publishers/ Edition	Year of
				Publication
1.	Byran Gottfried	Programming with C	Tata McGraw Hill,	2013
			3 rd Edition.	
2	V.Rajaraman	Computer	Prentice Hall of	2004
		Programming in C	India Pvt Ltd, 1st	
			Edition.	

Web Links:

- 1. http://www.tutorialspoint.com/cprogramming/index.htm
- 2. <u>http://www.cprogramming.com/tutorial/c-tutorial.html</u>
- 3. <u>http://www.w3schools.in/c</u>
- 4. http://fresh2refresh.com/c-tutorial-for-beginners

Pedagogy:

Chalk and Talk, PPT, Discussion and Quiz

NON-MAJOR ELECTIVE COURSE – I (NME)

MATHEMATICS FOR COMPETITIVE EXAMINATION-I

2019-2020 Onwards

Semester - III	MATHEMATICS FOR COMPETITIVE EXAMINATION-I	Hours/Week – 2		
NON-MAJOR ELECTIVE		Cree	dits – 2	
COURSE – I				
Course Code – 19UMA3NME1		Internal	External	
		25	75	

Objectives:

- > To provide the knowledge to analyze, interpret and solve the Mathematical problems.
- > To develop the thinking capacity to solve the problems.
- > To study many short tricks to solve the mathematical problems easily.

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Solve the Problems on Numbers and Problems on Ages.	K2
CO2	Explain the concept of time and distance, Calendar and Clock.	К2
CO3	Apply the concept of Data Interpretation in various types of Graphs.	К3
CO4	Distinguish the concept of Series Codes, Relationships, Analogy and Classification.	К3
CO5	Explain the concept of Logical Reasoning.	К3

Mapping With Programme Outcomes:

Cos/Pos	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	S	S
CO2	М	S	S	S	S
CO3	S	S	М	М	S
CO4	S	S	М	М	М
CO5	S	S	S	S	М

NON-MAJOR ELECTIVE COURSE – I (NME) MATHEMATICS FOR COMPETITIVE EXAMINATION-I

SYLLABUS

UNIT I

Problems on Numbers – Problems on Ages.

UNIT II

Time and Distance – Calendar – Clocks.

UNIT III

Data Interpretation: Tabulation - Bar Graphs - Pie Charts - Line Graphs.

UNIT IV

Reasoning (Including Mathematical): Series - Codes - Relationship - Analogy -

Classification.

UNIT V

Logical Reasoning.

Text Books:

S. No	Authors	Title of the Book	Publishers/Edition	Year of Publication
1.	R. S.Aggarwal	Quantitative	S.Chand & Company	Reprint 2015
		Aptitude – For	Pvt.Ltd,	
		Competitive		
		Examinations (Fully		
		Solved)		
2.	Dr. K.Kautilya	UGC NET/JRF/SET	UPKAR	2017
		Teaching &	PRAKASHAN,	
		Research Aptitude	AGRA – 2, Sixth	
		(General Paper - I)	Edition	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	7, 8	161 – 194 [1]
TT	17	384 - 404 [1]
Ш	27,28	593 - 604 [1]
III	36,37,38,39	659 – 726 [1]
IV	5	132 – 161 [2]
V	6	162 – 190 [2]

REFERENCE BOOKS:

S. No	Authors	Title of the Book	Publishers/ Edition	Year of Publication
1.	Edgar Thorpe	Test of Reasoning for Competitive	Tata McGraw-Hill Publishing Company	rd 3 Re-Print 2000.
		Examinations	Limited, New Delhi, 2 nd Edition,	
2.	T.K. Sinha	80+ Practice Sets of Quantitative Aptitude for Bank PO Exams	Arihant Publication (India) limited	2002.
3.	Abhijit Guha	Quantitative Aptitude for Competitive Examinations	McGraw-Hill Publishing Company Limited, New Delhi, 5 th Edition	Re-Print 2014.

Pedagogy:

Chalk and Talk, PPT, Discussion and Quiz

SEMESTER IV

CORE COURSE VI – (CC)

SEQUENCES AND SERIES

2019-2020 Onwards

Semester - IV	SEQUENCES AND SERIES	Hours/V	Veek – 5
Core Course - VI		Credi	its – 5
Course Code – 19UMA4CC6		Internal 25	External 75

Objectives:

- > To lay a good foundation for classical analysis.
- > To study the behavior of sequences and series.
- To acquire the knowledge of solving problems in Binomial, Logarithm & Exponential Series.

Course Outcomes:

On the Successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Explain the concepts of convergent sequences, divergent sequences and series.	K2
CO2	Apply the ideas of sequences in Algebra of limits.	
CO3	Compute the behavior of monotonic functions.	К3
CO4	Apply the theory of Cauchy's condensation test and Cauchy's root test on series.	K3
CO5	Solve the problems based on binomial, logarithmic and exponential series.	K3
CO6	Examine infinite series using D' Alembert's ratio test.	K4

Mapping with Programme Outcome:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	М	S
CO2	S	S	S	S	S
CO3	S	S	S	М	М
CO4	S	S	S	М	М
CO5	S	М	S	S	S
CO6	S	S	S	S	М

S-Strong, M-Medium, L-Low

CORE COURSE VI – (CC) **SEQUENCES AND SERIES SYLLABUS**

UNIT – I

Introduction – Sequences – Bounded Sequences – Monotonic Sequences – Convergent Sequences – Divergent and Oscillating Sequences – The Algebra of Limits.

UNIT –II (15 Hours)

Behavior of Monotonic sequences – Some theorems on limits –Subsequences.

UNIT -III

Infinite Series - Definition of Convergence, Divergence & Oscillate - Convergence of Geometric series - Some general theorems concerning infinite series - Series of positive terms -Comparison tests- convergence of $\sum_{n^k} D'$ Alembert's Ratio test.

UNIT – IV

Cauchy's Condensation test - Cauchy's Root test and simple problems - Absolute Convergence - Conditional Convergence - Alternative Series.

UNIT - V

Binomial theorem for a rational index – Some important particular case of the Binomial expansion - Sign of terms in binomial expansion - Numerically greatest term expansions -Method of splitting functions into partial fractions – Application of the Binomial theorem to the summation of series - Approximate values - Exponential limit - The Exponential theorem -Summation – The Logarithmic series – Modification of the logarithmic series – Summation of series- Euler's constant - Series which can be summed up by the logarithmic series -Calculation of logarithms by means of the logarithmic series.

(20 Hours)

(10 Hours)

(15 Hours)

(15 Hours)

TEXT BOOKS:

S. No.	Authors Name	Title of the Book	Publishers Name	Year of Publication
1.	Dr.S.Arumugam & Prof.A.Thangapandi Isaac	Sequences and Series	New Gamma Publishing House	2015
2.	T.K.Manicavachagom Pillay, T.Natarajan & K.S.Ganapathy	Algebra, Volume I	S.Viswanathan Pvt Limited	2015

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	3	3.0-3.6 [1]
II	3	3.7-3.9 [1]
III	2	8-14, 16 [2]
IV	2	15, 17, 21-24 [2]
V	3	5-10, 14 [2]
	4	1-3, 5-10 [2]

REFERENCE BOOKS:

S.No.	Authors Name	Title of the Book	Publishers	Year of
			Name	Publication
1.	M.K.Singal & Asha Rani	A First Course in Real	R. Chand	2018
	Singal	Analysis	&co	
2.	N.P.Bali	Golden Maths series -Real	Laxmi	2019
		Analysis	Publication	

Web links:

- 1. https://youtu.be/JKiwztS6e_s
- 2. https://youtu.be/A02NgndOan0
- 3. https://youtu.be/9sLsX9DV5Fs
- 4. https://voutu.be/O3_IGStTGVO
- 5. https://youtu.be/BydVprh9NgO

Pedagogy:

Power point presentation, Group Discussion, Seminar, Assignment.

MAJOR BASED ELECTIVE COURSE (MBE) - I

DISCRETE MATHEMATICS

2019-2020 Onwards

Semester - IV	DISCRETE MATHEMATICS	Hours/Week – 4 Credits – 4	
Major Based Elective Course (MBE) - I			
Course Code – 19UMA4MBE1A		Internal 25	External 75

Objectives

- > To make the students understand the basics of discrete mathematics.
- > Applying the method of logical reasoning to solve a variety of problems.
- > To introduce the concepts of Lattices and Boolean Algebras.

Course Outcome

On the Successful completion of the course the student would be able to

CO No.	CO Statement	Knowledge Level
CO1	Illustrate the concepts on statements and truth tables.	K2
CO2	Describe the properties of lattices and some special lattices.	K2
CO3	Apply the ideas of tautology in statements.	К3
CO4	Relate the notion of normal forms and its types.K3	
CO5	Apply the theory of Boolean Algebra and its functions.	К3
CO6	Compute the inference theory of predicate calculus and its	К3
	characteristics.	

Mapping with Programme Outcomes

COS\POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	М	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	М	S
CO5	М	S	S	S	S
CO6	S	S	S	S	S

S-Strong, M-Medium, L-Low

MAJOR BASED ELECTIVE COURSE (MBE) - I **DISCRETE MATHEMATICS SYLLABUS**

Unit I

Statements and Notation – Connectives: Negation – Conjunction – Disjunction – Statement formulas and Truth Tables - Conditional and Biconditional - Well-Formed Formulas-Tautologies – Equivalence of formulas – Duality Law – Tautological Implications – Formulas with Distinct Truth Tables.

Unit II

Normal Forms : Disjunctive Normal Forms - Conjunctive Normal Forms - Principal Disjunctive Normal Forms – Principal Conjunctive Normal Forms – Ordering and Uniqueness of Normal Forms.

Unit III

The Predicate Calculus: Predicates - The Statement Function, Variables and Quantifiers-Predicate Formulas – Free and Bound Variables – The Universe of Discourse –Inference Theory of the Predicate Calculus - Valid Formulas and Equivalences - Some Valid Formulas over Finite Universe – Special Valid Formulas Involving Quantifiers – Theory of Inference for the Predicate Calculus - Formulas Involving More Than One Quantifier - Binary and n-ary Operations -Characteristic Function of a Set – Hashing Functions.

Unit IV

Lattices as Partially Ordered Sets : Definition and Examples - Some Properties of Lattices - Lattices as Algebraic Systems - Sub Lattices, Direct Product and Homomorphism -Some Special Lattices.

Unit V

Boolean Algebra : Definition and Examples - Sub Algebra, Direct Product and Homomorphism - Boolean Functions : Boolean Forms and Free Boolean Algebras - Values of Boolean Expressions and Boolean Functions - Representation and Minimization of Boolean Functions : Representation of Boolean Functions – Minimization of Boolean Functions.

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

TEXT BOOKS:

S.No	Authors	Title	Publishers	Year of publication
1.	J.P. Tremblay &	Discrete Mathematical Structures with	Tata McGraw	2011
	R. Manohar	Applications to Computer Science	Hill	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
I	1	1-1
1	1	1-2.1 to 1-2.4, 1-2.6 to 1-2.12
II	1	1-3.1 to 1-3.5
III	1	1-5.1 to 1-5.5, 1-6.1 to 1-6.5
	2	2-4.4 to 2-4.6
IV	4	4-1.1 to 4-1.5
V	4	4-2.1, 4-2.2, 4-3.1, 4-3.2, 4-4.1, 4-4.2

REFERENCE BOOKS:

S.No	Authors	Title	Publishers	Year of
				publication
1.	Rakesh Dube, Adesh Pandey	Discrete Structures	Narosa	2000
	and Ritu Gupta	and Automata Theory	Publishing	
			House.	
2.	John E. Hopcroft	Introduction to	Languages and	1995
	Jeffery D. Ullman	Automata Theory	Computation.	

Web links :

- 1. https://voutu.be/i3m0hV157Ro
- 2. https://youtu.be/5cyocztOtq4
- 3. https://voutu.be/w9DvAVrU8j0
- 4. https://voutu.be/qPtGlrb_sXg
- 5. https://youtu.be/MH2uTVgG1bo

Pedagogy

Power point presentation, Group Discussion, Seminar, Assignment.

MAJOR BASED ELECTIVE (MBE) - I

AUTOMATA THEORY

2019-2020 Onwards

Semester - IV		Hours/Week – 4	
Major Based Elective Course (MBE) - I	AUTOMATA THEORY	Credits – 3	its – 3
Course Code – 19UMA4MBE1B		Internal 25	External 75

Objectives:

- > To introduce the definition of Automaton.
- > To enable thorough knowledge in constructing the Regular Expressions.
- > To study the Pumping lemma for regular sets.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Study Deterministic and Nondeterministic Finite state automata.	K1
CO2	Outline the Chomsky classification of languages.	K1
CO3	Understand the concepts of Regular Expressions.	K2
CO4	Impart knowledge in Pumping lemma for Regular sets.	К3
CO5	Apply the simplification of context free grammars.	К3

Mapping with Programme Outcomes:

Cos/Pos	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	S	S
CO2	М	S	М	S	S
CO3	S	М	S	S	S
CO4	S	S	S	М	S
CO5	S	S	S	S	М

S-Strong, M-Medium, L-Low

MAJOR BASED ELECTIVE - I AUTOMATA THEORY SYLLABUS

UNIT I

THE THEORY OF AUTOMATA

Definition of an Automaton – Description of a Finite Automaton – Transition Systems – Properties of Transition Functions –Acceptability of a string by a Finite Automaton– Nondeterministic Finite State Machines – The equivalence of DFA and NDFA.

UNIT II

FORMAL LANGUAGES

Basic Definitions and Examples: Definition of a Grammar – Derivations and the Language Generated by a Grammar. Chomsky Classification of Languages – Languages and their Relation–Recursive and Recursively Enumerable sets – Operations on Languages.

UNIT III

REGULAR SETS AND REGULAR GRAMMARS

Regular Expressions: Identities for Regular Expressions. Finite Automata and Regular expressions: Transition System Containing λ -moves – NDFAs with λ -moves and Regular Expressions– Conversion of Nondeterministic Systems to Deterministic Systems– Algebraic Methods Using Arden's Theorem- Construction of a finite Automata Equivalent to a Regular Expressions– Equivalence of Two Finite Automata – Equivalence of Two Regular Expressions.

UNIT IV

REGULAR SETS AND REGULAR GRAMMARS

Pumping Lemma for Regular Sets – Applications of Pumping Lemma – Closure Properties of Regular Sets – Regular Sets and Regular Grammars.

UNIT V

CONTEXT FREE LANGUAGES

Context-free Languages and Derivation Trees: Derivation Trees –Ambiguity in Context Free Grammars.

(

(6 Hours)

(4 Hours)

(2 Hours)

(6 Hours)

(6 Hours)

TEXT BOOKS:

S. No.	Authors Name	Title of the Book	Publishers Name	Year of Publication
1.	K. L. P. Mishra and N. Chandrasekaran	Theory of Computer Science: Automata, Languages and Computation- Third Edition	Prentice Hall of India Private Limited	2008

CHAPTERS AND SECTIONS:

Unit	Chapter	Sections
I	3	3.1 to 3.7
II	4	4.1: 4.1.1, 4.1.2, 4.2 to 4.5
III	5	5.1: 5.1.1, 5.2: 5.2.1 to 5.2.7
IV	5	5.3 to 5.6
V	6	6.1: 6.1.1, 6.2

REFERENCE BOOKS:

S. No.	Authors Name	Title of the Book	Publishers Name	Year of Publication
1.	John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman	Introduction to Automata theory, Languages and Computations, Third Edition	Pearson Education.	2009
2.	Alfred V. Aho and Jeffrey D. Ullman,	Principles of Compiler Design	Narosa Publishing House Pvt.,	2002

Web links:

- 1. https://youtu.be/Y9PwXM6KN34
- 2. https://youtu.be/6YH9wsLM-80
- 3. https://voutu.be/xEvC-t_OI3o
- 4. https://youtu.be/WrzaPNj9OZ4
- 5. https://youtu.be/6aRJONYYz4s

Pedagogy:

Power point presentation, Group Discussion, Seminar, Assignment.

NON-MAJOR ELECTIVE (NME)-II

MATHEMATICS FOR COMPETITIVE EXAMINATIONS - II

2019-2020 Onwards

Semester - IV	MATHEMATICS FOR	Hours/Week – 2	
Non-Major Elective-II		Cred	lits – 2
Course Code – 19UMA4NME2	COMPETITIVE EXAMINATIONS - II	Internal 25	External 75
· · ·		1	I

Objectives:

- > To provide the knowledge to analyze, interpret and solve the Mathematical problems.
- > To develop the thinking capacity to solve the problems.
- > To study many short tricks to solve the mathematical problems easily

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Solve decimal fractions and simplification.	K2
CO2	Explain the concept of square roots, cube roots, Average, profit and loss.	K2
CO3	Apply the concept of Ratio & Proportion and Problems on Trains.	К3
CO4	Distinguish the concept of Simple Interest and Compound Interest.	К3
CO5	Apply the concept of Permutations &Combinations, Odd Man Out & Series.	К3

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	S	S
CO2	М	S	S	S	S
CO3	S	S	М	М	S
CO4	S	S	М	М	М
CO5	S	S	S	S	М

S - Strong, M - Medium, L - Low

NON-MAJOR ELECTIVE – II (NME) MATHEMATICS FOR COMPETITIVE EXAMINATIONS - II SYLLABUS

UNIT I Decimal Fractions – Simplification	(6 Hours)
UNIT II Square Roots & Cube Roots - Average - Profit & Loss	(6 Hours)
UNIT III Ratio & Proportion - Problems on Trains	(6 Hours)
UNIT IV Simple Interest - Compound Interest	(6 Hours)
UNIT V Permutations & Combinations – Odd Man Out & Series	(6 Hours)

TEXT BOOKS:

S. No.	Authors Name	Title of the Book	Publishers Name	Year of Publication
1.	R.S.Aggarwal	Quantitative Aptitude	S. Chand & Company Ltd,	2007

CHAPTERS AND SECTIONS:

Unit	Chapter	Pages
I	3 & 4	46 – 116
II	5, 6 & 11	117 - 160 and 251 - 293
III	12 & 18	294 – 310 and 405 - 424
IV	21 & 22	445 - 486
V	30 & 35	613 – 620 and 649 - 657

REFERENCE BOOKS:

S. No.	Authors Name	Title of the Book	Publishers Name	Year of Publication
1.	T.K.Sinha	80+ Practice Sets of Quantitative Aptitude for Bank PO Exams	Arihant Publication (India) limited	2002
2.	Abhijit Guha	Quantitative Aptitude for Competitive Examinations	McGraw-Hill Publishing Company Limited, New Delhi, 5 th Edition	2014

Web links:

- 1. https://youtu.be/8BeJUzLqOTE
- 2. https://youtu.be/pShzc9AOMos
- 3. <u>https://youtu.be/JP5J-rzoATg</u>
- 4. https://youtu.be/ZnpEoROH1Vc
- 5. https://youtu.be/VIsvYMEAagc

Pedagogy:

Group Discussion, Seminar, Assignment.

SEMESTER V

CORE COURSE-VII (CC) ABSTRACT ALGEBRA 2019-2020 Onwards

Semester - V		Hours/V	Veek – 6
	ABSTRACT ALGEBRA		
CORE COURSE-VII		Credi	its – 6
Course Code – 19UMA5CC7		Internal	External
		25	75

Objectives:

- > To prepare students to understand the concepts and properties of algebra and their application.
- > To provide the principles and practices of algebra.
- > To Construct a legitimate proof involves different skills and expertise problem solving.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Explain the basic concept of Abstract Algebra and give examples.	К2
CO2	Describe the concept of cyclic subgroups.	K2
CO3	Apply properties of normal subgroups and quotient groups, finite groups and Cayley tables.	К3
CO4	Compose clear and accurate points using the concept of rings.	K5
CO5	Assess the impact of unique factorization domain, Euclidean domain.	K6

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	М
CO4	S	S	S	S	S
CO5	S	S	S	S	М

S-Strong, M-Medium, L-Low

CORE COURSE-VII (CC) ABSTRACT ALGEBRA SYLLABUS

UNIT I	(18 hours)	
Definition of a Group-	Some Examples	of Groups- Some Preliminary Lemmas-
Subgroups.		

UNIT II	(18 hours)
A Counting Principle – Normal Subgroups and	Quotient Groups – Homomorphisms.

UNIT III

Automorphisms- Cayley's Theorem - Permutation Groups.

UNIT IV

(18 hours) Definition and Examples of Rings - Some Special Classes of Rings - Homomorphisms -Ideals and Quotient Rings.

UNIT V

More Ideals and Quotient Rings - The Field of Quotient of an Integral Domain -Euclidean Rings – A Particular Euclidean Ring.

TEXT BOOKS:

S.No	Authors Name	Title of the Book	Publishers	Year of Publication
			Name	
1.	I.N.Herstein	Topics in Algebra	John Wiley & Sons	2013

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	2	2.1-2.4
II	2	2.5-2.7
III	2	2.8-2.10
IV	3	3.1-3.4
V	3	3.5-3.8

(18 hours)

(18 hours)

REFERENCE BOOKS:

S.No	Authors Name	Title of the book	Publishers	Year of
			Name	Publication
1.	S.Arumugam &	Modern Algebra	Scitech	May 2017
	A.Thangapandi Isaac		Publications	
			India (Pvt)Ltd	
2.	T.K.Manicavachagam	Algebra	S.Viswanathan	2004
	Pillai, T.Natarajan,		Pvt Limited,	
	K.S.Ganapathy		Chennai	
3.	Joseph Rotman	Galois Theory, 2 nd	Springer Verlag	1990
		Edition		

Web links:

- 1. <u>https://youtu.be/CJpZJLYKk0I</u>
- 2. https://youtu.be/mcX0sMnYyMU
- 3. https://youtu.be/lrOMV4zGF44
- 4. <u>https://voutu.be/7LtpPI46O0O</u>
- 5. https://youtu.be/K1iuXgHFWRw

Pedagogy:

Power point presentation, Group Discussion, Seminar, Quiz, Assignment.

CORE COURSE – VIII (CC)

REAL ANALYSIS

2019 - 2020 Onwards

Semester – V		Hours/Week – 6	
Core Course – VIII	REAL ANALYSIS	Cred	its — 6
Course Code - 19UMA5CC8		Internal 25	External 75

Objectives:

- > To enable the students to understand the basic concepts of Analysis.
- > To impart knowledge in concepts of solving various problems regarding field axioms.
- To Construct a proof that involves different problem solving ideas and expertise in them.

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the fundamental properties of real numbers that lead to the formal development of real analysis.	K2
CO2	Understand the concept of limit of a function on the real line R and metric space.	K2
CO3	Describe the continuous and discontinuous functions on metric spaces.	K2
CO4	Explain the concept of connectedness, completeness and compactness.	K2
CO5	Classify the basic concepts of Riemann integration.	К3

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
C01	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

S- Strong; M-Medium; L-Low

CORE COURSE – VIII (CC)

REAL ANALYSIS

SYLLABUS

Unit I

Sets and functions

Sets and elements – Operations on sets – Functions – Real-valued functions – Equivalence, Countability – Real numbers - Least upper bounds.

Unit II

Limits and metric spaces

Limits of a function on the real line – Metric spaces – Limits in metric spaces.

Unit III

Continuous functions on metric spaces

Functions continuous at a point on the real line – Reformulation – Functions continuous on a metric space – Open sets – Closed sets – Discontinuous functions on R^1 – The distance from a point to a set.

Unit IV

Connectedness, completeness and compactness

More about open sets – Connected sets – Bounded sets and totally bounded sets – Complete metric spaces – Compact metric spaces – Continuous functions on compact metric spaces – continuity of the inverse function – uniform continuity.

(18 Hours)

(18 Hours)

(18 Hours)

(18 Hours)

Unit V

Calculus

Sets of measure zero – Definition of the Riemann integral –Existence of the Riemann integral –Properties of the Riemann integral – Derivatives – Rolle's Theorem – The law of the mean - Fundamental theorems of calculus.

TEXT BOOK:

S.No	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	Richard R. Goldberg	Methods of Real	Oxford & IBH	Reprint 2019
		Analysis	Publishing Co. Pvt.	
			Ltd, New Delhi	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	1	1.1-1.7
II	4	4.1-4.3
III	5	5.1-5.6
IV	6	6.1 -6.8
V	7	7.1-7.8

REFERENCE BOOKS:

S.NO.	AUTHORS	TITLE OF THE	PUBLISHERS	YEAR OF
		BOOK		PUBLICATION
1.	Tom M. Apostol	Mathematical	Addison-Wesley	Fifth Printing
		Analysis	Publishing Company	1981
2.	Robert G. Bartle and	Introduction to	John Wiley & Sons	3 rd Edition, 2007
	Donald R. Sherbert	Real Analysis	Private Ltd.,	
3.	M. K. Singal, Asha	A First Course in	R. Chand & Co	2007
	Rani Singal	Real Analysis		

Web links:

- 1. <u>https://voutu.be/XjiT88Czx5c?t=15</u>
- 2. <u>https://voutu.be/1diSwLMJpvs?t=626</u>
- 3. https://youtu.be/YEG18ISnThE?t=4
- 4. <u>https://voutu.be/4TzGkHFnn7g?t=3</u>
- 5. <u>https://youtu.be/y5tni8My-VY?t=4</u>

Pedagogy:

Assignment, Seminar, Lecture, Quiz, Group discussion, Brain storming, e-content.

CORE COURSE – IX (CC)

STATICS

2019-2020 Onwards

Semester – V	STATICS	Hours/Week – 5	
Core Course IX - (CC)		Credits – 4	
Course Code – 19UMA5CC9	STATES	Internal 25	External 75

Objectives:

- > To provide the basic knowledge of equilibrium of a particle.
- > To develop a working knowledge to handle practical problems.
- > To understand the procedure for analysis of static objects.

Course Outcomes:

On the Successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Explain the basic concepts of force, equilibrium and the resultant of two forces.	K2
CO2	Classify friction and relate limiting equilibrium on a rough inclined plane.	К3
CO3	Compute moment of a force.	К3
CO4	Reduce coplanar force into a couple and a force.	K4
CO5	Ascertain the different aspects of strings and application of common catenary.	K4
CO6	Determine the principle of Virtual Work for applying the system of bodies in equilibrium.	K4

Mapping with Programme Outcome:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	М	S
CO2	S	S	М	М	S
CO3	S	S	S	S	S
CO4	S	S	S	М	S
CO5	S	S	S	М	S
CO6	S	S	S	М	S

S-Strong, M-Medium, L-Low

CORE COURSE –IX (CC) STATICS SYLLABUS

UNIT - I

(a) Forces:

Newton's laws of motion-Resultant of two forces on a particle.

(b) Equilibrium of a particle:

Equilibrium of a particle –Limiting equilibrium of a particle on an inclined plane.

UNIT –II

Forces on a rigid body:

Moment of a force – Equivalent systems of forces- Parallel forces – Forces along the sides of a Triangle – Couples.

UNIT –III

(a) Coplanar Forces:

Resultant of several coplanar forces-Equation of the line of action of the resultant-

Equilibrium of a rigid body under three coplanar forces.

(15 Hours)

(15 Hours)

(15 Hours)

(b) A specific Reduction of forces:

Reduction of coplanar forces into a force & a couple – Problems involving frictional forces.

$\mathbf{UNIT} - \mathbf{IV}$

Virtual Work:

Virtual Work- Principle of Virtual Work – applied to a body or a system of bodies in equilibrium –Equation of Virtual Work –Simple Problems.

UNIT – V:

(15 Hours)

Hanging Strings:

Strings - Equilibrium of Strings under gravity - Common Catenary - Suspension bridge.

TEXT BOOKS:

S. No.	Authors Name	Title of the	Publishers Name	Year of
		Book		Publication
1.	P.Duraipandiyan	Mechanics	S.Chand &	2010
	Laxmi Duraipandiyan		Company	
	Muthamizh Jayapragasam		Pvt Ltd	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	2 & 3	2.1,2.2 and 3.1,3.2
II	4	4.1-4.6(Omit 4.2)
III	4 & 5	4.7-4.9 and 5.1,5.2
IV	8	8.1
V	9	9.1 and 9.2

(15 Hours)

REFERENCE BOOKS:

S.No.	Authors Name	Title of the Book	Publishers Name	Year of Publication
1.	M.K.Venkataraman	Statics	Agasthiyar Publications	2002
2.	A.V.Dharmapadham	Statics	S. Viswanathan Publishers Pvt Ltd	2006
3.	A.S.Ramsey	Statics	CBS Publishers and Distributors Private Ltd	2004

Web links:

- 1. https://voutu.be/FdJF 4uZkSO
- 2. <u>https://youtu.be/JJX3-af_JOw</u>
- 3. https://youtu.be/YqtrfO4H7V8
- 4. <u>https://youtu.be/OBWk996hg5E</u>
- 5. <u>https://voutu.be/xP1lpCIe1VM</u>

Pedagogy:

Power point presentations, Group Discussion, Seminar, Quiz, Assignment, Brain storming, E-content, Lecture.

CORE COURSE – X (CC) METHODS IN NUMERICAL ANALYSIS

2019-2020 Onwards

Semester – V		Hours/	Week –5
Core Course – X (CC)	METHODS IN NUMERICAL ANALYSIS	Cred	its – 4
Course Code – 19UMA5CC10		Internal 25	External 75

Objectives:

- > To introduce the basic concepts of solving algebraic and transcendental equations.
- > To introduce the numerical techniques of interpolation in various intervals.
- > To understand the knowledge of numerical techniques of differentiation and integration.

Course Outcomes:

On the Successful completion of the course the student would be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Apply numerical methods to solve Algebraic, Transcendental equations.	K2
CO2	Explain and solve the numerical techniques of interpolation in various intervals.	K2
CO3	Solve numerical integration and differentiation.	K3
CO4	Solve the system of linear equation with understanding by appropriate methods.	К3
CO5	Compute the numerical solution of ordinary differential equation by various methods.	К3

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	М	М	S	S	S
CO4	М	М	S	S	S
CO5	S	S	S	S	S

S-Strong, M-Medium, L-Low

CORE COURSE – X (CC)

METHODS IN NUMERICAL ANALYSIS

SYLLABUS

UNIT I

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS:

Introduction – Method of False Position – Iteration Method – Newton-Raphson Method – Ramanujan's Method – Secant Method – Muller's Method.

UNIT II

INTERPOLATION:

Introduction – Errors in Polynomial Interpolation – Finite Differences –Newton's Formulae for Interpolation – Interpolation with Unevenly Spaced Points: Lagrange's Interpolation Formula – Divided Differences and Their Properties: Newton's General Interpolation Formula.

UNIT III

NUMERICAL DIFFERENTIATION AND INTEGRATION:

Introduction – Numerical Differentiation – Numerical Integration: Trapezoidal Rule – Simpson's 1/3 Rule – Simpson's 3/8 Rule – Boole's and Weddle's Rules –Use of Cubic Splines – Romberg Integration – Newton-Cotes Integration Formulae.

(15 Hours)

(15 Hours)

(15 Hours)

UNIT IV

NUMERICAL LINEAR ALGEBRA:

Introduction – Solution of Linear Systems – Direct Methods : Gauss Elimination – Necessity for pivoting – Gauss-Jordan Method – Modification of the Gauss Method to Compute the Inverse – Solution of Linear Systems – Iterative Methods.

UNIT V

(15 Hours)

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS:

Introduction – Solution by Taylor's Series – Picard's Method of Successive Approximations – Euler's Method: Modified Euler's Method, Runge - Kutta Methods – Predictor – Corrector Methods.

TEXT BOOKS:

S. No.	Authors Name	Title of the BookPublishers Name		Year of
				Publication
1.	S. S. Sastry	Introductory Methods of	Fifth Edition, PHI	2018
		Numerical Analysis	Learning Private Limited, Delhi	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTION
I 2		2.1, 2.3 – 2.8
II	3	3.1 – 3.3, 3.6, 3.9 (3.9.1 Only) & 3.10
		(3.10.1 Only)
III	6	6.1, 6.2 & 6.4
IV	7	7.1, 7.5 (7.5.1–7.5.4) & 7.6
V	8	8.1–8.3, 8.4(8.4.2 Only), 8.5 & 8.6

(15 Hours)

REFERENCE BOOKS:

S.No.	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	M.K. Jain, S.R.K.	Numerical Methods for	New Age	1999
	Iyengar and R.K.	Scientific and	International	
	Jain	Engineering	Private	
		Computations	Limited	
2.	C.E. Froberg	Introduction to	II Edition, Addison	1979
		Numerical Analysis	Wesley	
3.	Dr. P. Kandasamy,	Numerical Methods	S. Chand &	2013
	Dr.K. Thiligavathy		Company Pvt.	
	and Dr.K.			
	Gunavathi			

Web links:

- 1. <u>https://www.voutube.com/watch?v=3j0c_FhOt5U</u>
- 2. https://nptel.ac.in/courses/111/107/111107105/
- 3. <u>https://www.voutube.com/watch?v=0rtaUUonwkU</u>
- 4. <u>https://nptel.ac.in/courses/111/107/111107106/</u>
- 5. <u>https://www.youtube.com/watch?v=OugqSa3Gl-w</u>

Pedagogy:

Power point presentation, Group Discussion, Seminar, Quiz, Assignment.

CORE PRACTICAL - I (CP)

NUMERICAL METHODS WITH MATLAB PROGRAMMING (PRACTICAL)

2019-2020 Onwards

Semester – V		Hours/V	Veek – 2
Core Practical –I (CP)	NUMERICAL METHODS WITH MATLAB	Credits – 2	
Course Code – 19UMA5CC1P	PROGRAMMING	Internal 40	External 60
	(PRACTICAL)	40	00

Objectives:

- > To identify different mathematical problems and reformulate them in a way that is appropriate for numerical treatment.
- ➤ Use functions from the programming language library for efficient calculations and visualisation.
- Solve problems systematically and to implement the solution in MATLAB.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Describe the use of fundamental data structures.	K2
CO2	Apply MATLAB effectively to analyze and visualize data.	К3
CO3	Solve scientific and mathematical problems.	К3
CO4	Apply basic functions for numerical integration, differentiation, and curve fitting.	К3
CO5	Compute simple programs in MATLAB	K3

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	М
CO4	S	S	S	S	S
CO5	S	S	S	S	М

S-Strong, M-Medium, L-Low

CORE PRACTICAL - I (CP)

NUMERICAL METHODS WITH MATLAB PROGRAMMING (PRACTICAL) SYLLABUS

- 1. Newton Raphson method of solving equations.
- 2. Lagrange's method of interpolation.
- 3. Trapezoidal rule of integration.
- 4. Simpson's 1/3 rule of integration.
- 5. Gauss Elimination method of solving simultaneous equations.
- 6. Gauss Seidal method of solving simultaneous equations.
- 7. R-K fourth order method of solving differential equations.

Web links:

- 1. <u>https://www.youtube.com/watch?v=NZfd-EuBYyo</u>
- 2. <u>https://www.youtube.com/watch?v=PLHC4NKNxys</u>
- 3. https://in.mathworks.com/videos/introduction-to-matlab-81592.html
- 4. <u>https://www.youtube.com/watch?v=ajJD0Df5CsY</u>
- 5. https://www.youtube.com/watch?v=dOg631hdPIc

Pedagogy:

Power point presentation, Hand on Training.

SKILL BASED ELECTIVE – I (A)

INTRODUCTION TO R

2019-2020 Onwards

Semester – V		Hours/Week – 2	
Skill Based Elective –I(A)	INTRODUCTION TO R	Credits	-2
Course Code – 19UMA5SBE1A		Internal	External
		25	75

Objectives:

- > To explore and understand how to use the R documentation.
- > To master the use of the R and R Studio interactive environment.
- > To understand how to create and manipulate data's in R.

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Navigate in the R Studio interface.	К2
CO2	Explain concepts of matrices and arrays.	К3
CO3	Discuss about List and data frames.	К3
CO4	Apply R effectively to analyze and visualize data.	К3
CO5	Classify various testing of hypothesis.	K2

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	М	S	S	М
CO3	S	S	S	S	S
CO4	S	М	S	S	М
CO5	S	S	S	S	S

S-Strong, M-Medium, L-Low

SKILL BASED ELECTIVE – I (A)

INTRODUCTION TO R

SYLLABUS

UNIT I

Getting Started:

Obtaining and Installing R from CRAN – Opening R for the First Time – Saving Work and Exiting R – Conventions.

Numerics, Arithmetic, Assignment and Vectors:

R for Basic Math – Assigning Objects – Vectors.

UNIT II

Matrices and Arrays:

Defining a Matrix - Subsetting - Matrix Operations and Algebra - Multidimensional

Arrays.

Non-Numeric Values:

Logical Values – Characters.

UNIT III

Lists and Data Frames:

Lists of Objects – Data Frames.

Special Values, Classes and Coercion:

Some Special Values – Understanding Types, Classes and Coercion.

(6 Hours)

(6 Hours)

(6 Hours)

UNIT IV

Elementary Statistics:

Describing Raw Data – Summary Statistics.

Basic Data Visualization:

Barplots and Pie Charts – Histograms – Box-and-Whisker Plots – Scatter Plots.

UNIT V

(6 Hours)

Common Probability distributions:

Common Probability Mass Functions - Common Probability Density Functions.

Hypothesis Testing:

Components of a Hypothesis Test – Testing Means – Testing Proportions – Testing Categorical Variables – Errors and Power.

TEXT BOOKS:

S.No	Authors Name	Title of the Book	Publishers	Year of
			Name	Publication
1.	Tilman M. Davies	The Book of R	No Starch Press	2016
		A First Course in Programming and	Inc.,	
		Statistics		

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	1	1.1 -1.4
1	2	2.1 -2.3
II	3	3.1 - 3.4
11	4	4.1 - 4.2
III	5	5.1 & 5.2
	6	6.1 & 6.2
IV	13	13.1 & 13.2
1,	14	14.1 – 14.4
V	16	16.1 & 16.2
	18	18.1 – 18.5

(6 Hours)

REFERENCE BOOKS:

S.No	Authors Name	Title of the Book	Publishers Name	Year of Publication
1	Dr. Mark	Beginning R The	John Wiley & Sons,	2012
	Gardener	Statistical	Inc	
		Programming		
		Language		
2	Joseph	Statistical	John Wiley & Sons,	2017
	Schmuller	Analysis R for	Inc	
		Dummies		
3	Andy Field	Discovering	Sage Publications Ltd	2012
	Jeremy miles	Statistics Using R		
	Zoe Field			

Web links:

- 1. https://youtu.be/V8eKsto3Ug
- 2. <u>https://voutu.be/RwDV802ckU8</u>
- 3. <u>https://youtu.be/fDRa82lxzaU</u>
- 4. https://youtu.be/IL0s1coNtRk
- 5. https://youtu.be/SJpd7KC18fO?list=PLJ5C6qdAvBFfF7qtFi8PvRK8x55jsUO

Pedagogy:

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

SKILL BASED ELECTIVE- I (B)

INTRODUCTION TO STATISTICAL TOOLS AND TECHNIQUES - SPSS 2019-2020 Onwards

Semester – V		Hours	/Week – 2
	INTRODUCTION TO		
Skill Based Elective- I (B)	STATISTICAL TOOLS AND	Credits – 2	
Course Code –	TECHNIQUES - SPSS	Internal	External
19UMA5SBE1B		25	75

Objectives:

.

- > To learn basic data analysis and interpretation with SPSS.
- > To manipulate and transform variables in SPSS.
- \blacktriangleright To establish a sound knowledge on SPSS.

Course Outcome:

On the Successful completion of the course the student would be able to

СО	CO Statement	Knowledge
Number		
CO1	Explain the objectives of SPSS.	K2
CO2	Apply SPSS for data interpretation.	К3
CO3	Compute various test using SPSS.	К3
CO4	Interpretation of several graphs in SPSS.	К2
CO5	Classify Data View, Variable View and Output View Screens.	K2

Mapping With Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	М	S	М
CO4	S	М	S	S	S
CO5	S	S	М	S	М

S-Strong, M-Medium, L-Low

SKILL BASED ELECTIVE- I (B)

INTRODUCTION TO STATISTICAL TOOLS AND TECHNIQUES - SPSS SYLLABUS

UNIT I

First Encounters:

Introduction and objectives- Entering, Analyzing and Graphing Data

Navigating in SPSS:

SPSS variable View screen-SPSS data view screen-SPSS Main menu- Data Editor Toolbar – Short tour of variable View screen.

UNIT II

Getting Data In and Out of SPSS:

typing data using the computer keyboard- Saving your SPSS Data and Output files-Opening your saved SPSS files – opening SPSS sample files- Copying and pasting data to other applications-Importing files from other applications- Exporting SPSS files to other applications.

Levels of Measurement:

Variable view screen: Measure column -Variables measured at the Nominal level-Variables measured at the Ordinal level- Variables measured at the Scale level.

(6 hours)

(6 hours)

UNITIII

Entering Variables and Data and Validating Data:

Entering Variables and assigning attributes (Properties)-Entering Data for each variable – Validating Data.

Working with Data and Variables:

Computing a new variable - Recoding Scale Data into a String Variable- Inserting new variables and Cases in to Existing Databases- Data View page: Copy, Cut and Paste procedures.

UNIT IV

Using the SPSS Help Menu:

Help Options – Using Help Topics – Using Help Tutorial – Using Help Case Studies – Getting Help When Using Analyze on the Main Menu.

Creating Basic Graphs and Charts:

Using Legacy Dialogs to Create a Histogram – Using Chart Builder to Create a Histogram – Using Legacy Dialogs to Create a Bar Graph – Using Chart Builder to Create a Bar Graph - Using Legacy Dialogs to Create a line Graph - Using Chart Builder to Create a line Graph - Using Legacy Dialogs to Create a Pie Chart - Using Chart Builder to Create a Pie Chart.

UNIT V

Editing and Embellishing Graphs:

Creating a Basic Graph – Editing a Basic Graph – Editing a Three-Dimensional Graph – Exporting Graphs to Documents.

Printing Data View, Variable View and Output Viewers Screens:

Printing Data From the Variable View Screen – Printing Variable Information From and Output Viewer – Printing Tables From and Output Viewer.

TEXT BOOKS:

S. No.	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	James B.	An Interactive	SAGE Publications	2012
	Cunningham &	Hands-on	India Pvt Ltd, New	
	James O. Aldrich	Approach	Delhi	

(6 hours)

(6 hours)

(6 hours)

CHAPTERS AND SECTIONS:

UNIT	CHAPTERS	SECTIONS
Ι	1 & 2	1.1-1.2, 2.1-2.6
II	3 & 4	3.1-3.8, 4.1-4.5
III	5 & 6	5.1-5.4, 6.1-6.5
IV	7 & 8	7.1- 7.6, 8.1-8.9
V	9 & 10	9.1-9.5 10.1-10.4

REFERENCE BOOKS:

S. No.	Authors Name	Title of the Book	Publishers Name	Year of Publication
1.	Keith McCormick & Jesus Salcedo with Aaron Poh	SPSS Statistics for Dummies	Wiley India Pvt Ltd, New Delhi, 3 rd Edition.	2015
2.	Robert H. Carver &Jane Gradwohl Nash	Doing Data Analysis	Thompson Brooks/Cole	2013
3.	Dr. S .L. Gupta & Hitesh Gupta	SPSS17.0 for Researchers	International Book House Pvt. Ltd- 2 nd Edition.	2014

Web links:

- 1. https://youtu.be/Bku1p481z80
- 2. <u>https://www.youtube.com/watch?v= zFBUfZEBWO</u>
- 3. https://youtu.be/DmS63ivVjis
- 4. https://youtu.be/i8lmUkB4lag

Pedagogy:

Power point presentation, Group Discussion, Seminar, Assignment.

SKILL BASED ELECTIVE – II (A)

STATISTICAL TOOLS AND TECHNIQUES – R PROGRAMMING (PRACTICAL) 2019-2020 Onwards

Semester – V		Hours/V	Veek – 2
	STATISTICAL TOOLS		
Skill Based Elective –II(A)	AND TECHNIQUES – R	Credits – 2	
	PROGRAMMING		
Course Code – 19UMA5SBE2AP	(PRACTICAL)	Internal	External
	()	40	60

Objectives:

- > To explore and understand how to use the R documentation.
- > To familiar with R interactive environment.
- > To understand how to create and manipulate datas in R.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Navigate in the R Studio interface.	K2
CO2	Apply the Statistical Programming Software.	K2
CO3	Explain concepts related to Statistical datas.	К3
CO4	Explain the terms of constructs, control statements, string functions.	К3
CO5	Compute R programming from a statistical Perspective.	K3

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	М
CO4	S	S	S	S	S
CO5	S	S	S	S	М

S-Strong, M-Medium, L-Low

SILL BASED ELECTIVE – II (A)

STATISTICAL TOOLS AND TECHNIQUES – R PROGRAMMING (PRACTICAL) SYLLABUS

- 1. Creating and Displaying data.
- 2. Matrix Manipulations.
- 3. Creating and manipulating a List and an Array.
- 4. Frequency Distribution.
- 5. Bar diagrams, Bar plots and subdivided Bar plots.
- 6. Pie diagram, 3D Pie diagram and Histogram.
- 7. Measures of Central Tendency.
- 8. Quantiles.
- 9. Variation of data.
- 10. Correlation and Regression.

Web links:

- 1. https://youtu.be/ V8eKsto3Ug
- 2. https://youtu.be/BvKETZ6kr9O
- 3. https://youtu.be/HPJn1CMvtmI
- 4. https://youtu.be/ANMuuq502rE
- 5. https://youtu.be/I6FJo8x1wZE

Pedagogy:

Power point presentation, Hands on training.

SKILL BASED ELECTIVE – II (B)

STATISTICAL TOOLS AND TECHNIQUES – SPSS (PRACTICAL)

2019-2020 Onwards

Semester - V		Hours/W	/eek - 2
Skill Based Elective – II(B)	STATISTICAL TOOLS AND TECHNIQUES – SPSS (PRACTICAL)	Credit	ts - 2
Course Code - 19UMA5SBE2BP		Internal 40	External 60

Objectives:

- > To analyse scientific data related with social science.
- > To process critical data.
- > To manipulate and decipher survey data.

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Apply the built in functions for data manipulation.	K2
CO2	Explain the ideas and concepts of various charts and Box plots.	K2
CO3	Classify the given data for various tests.	K2
CO4	Solve Measures of Central Tendency and Dispersion.	K3
CO5	Compute Correlation and Regression.	K3

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	М	S	S	М
CO3	S	S	S	S	S
CO4	S	М	S	S	М
CO5	S	S	S	S	S

S-Strong, M-Medium, L-Low

SKILL BASED ELECTIVE – II (B) STATISTICAL TOOLS AND TECHNIQUES - SPSS (PRACTICAL) SYLLABUS

- 1. Frequencies: Counts and Percents
- 2. Measures of Central Tendency
- 3. Measures of Dispersion
- 4. Histograms, Bar Charts, Boxplots and Scatter Plots
- 5. T-test and Chi-square Test
- 6. Correlation
- 7. Regression

Web links:

- 1. https://www.voutube.com/watch?v=Bku1p481z80
- 2. <u>https://www.voutube.com/watch?v= zFBUfZEBWO</u>
- 3. <u>https://www.voutube.com/watch?v=bapuGcjwiLO</u>
- 4. <u>https://www.youtube.com/watch?v=C2Oa5d9ij0Y</u>
- 5. <u>https://www.youtube.com/watch?v=cNrnSEWKJgg</u>

Pedagogy:

Power Point Presentation, Hands on training.

SEMESTER VI

Core Course – XI (CC)

LINEAR ALGEBRA

2019-2020 Onwards

Semester - VI		Hours/	Week –5
Core Course – XI (CC)	LINEAR ALGEBRA	Cred	lit — 5
Course Code – 19UMA6CC11		Internal 25	External 75

Objectives:

- > To facilitate a better understanding of vector space.
- > To analyse problems in linear algebra.
- > To solve problems in matrices.

Course Outcome:

On the Successful completion of the course the student would be able to

CO	CO Statement	Knowledge
Number		Level
CO1	Explain the ideas of Vector Spaces, Linear Independence and Bases.	К3
CO2	Distinguish the concepts of Roots of a Polynomial and the Algebra of Linear Transformations.	K3
CO3	Explain the concepts of matrix and Elementary transformation.	К3
CO4	Compute Characteristic Equation of a matrix and its inverse by Cayley Hamilton theorem.	К3
CO5	Solve the problems related to Eigen Values and Eigen Vectors	К3
CO6	Describe Inner Product Space and Modules.	К3

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	S	S
CO2	S	S	S	S	S
CO3	М	М	S	S	S
CO4	М	М	S	S	S
CO5	S	S	S	S	S
CO6	М	S	М	М	S

S-Strong, M-Medium, L-Low

Core Course - XI (CC)

LINEAR ALGEBRA

2019-2020 Onwards

Unit I

Elementary Basic Concepts - Linear Independence and Bases - Dual Spaces.

Unit II

Roots of polynomials - Construction with Straight edge and Compass - More about Roots. - The Algebra of Linear Transformations – Characteristic Roots.

Unit III

Algebra of Matrices – Types of Matrices – The Inverse of a Matrix – Elementary Transformations – Rank of a matrix.

Unit IV

Characteristic Equation and Cayley – Hamilton theorem – Eigen Values and Eigen Vectors.

Unit V

Inner Product Spaces: Norm - Orthogonal - Orthogonal Complement - Subspace - Gram Schmidt orthogonalization process – Modules.

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

TEXT BOOKS:

S. No.	Authors Name	Title of the Book	Publishers Name	Year of Publication
1.	I.N.Herstein	Topics in Algebra	John Wiley & Sons	2013
2.	Arumugam S and Thangapandi Issac A	Modern Algebra	Scitech Publications (India) Private Limited, Chennai.	2012

CHAPTERS AND SECTIONS:

Unit	Chapter	Sections
I	4[1]	4.1 – 4.3
	5[1]	5.3 - 5.5
II		
	6[1]	6.1 & 6.2
III	7[2]	7.0 -7.5
IV	7[2]	7.7 & 7.8
V	4[1]	4.4 & 4.5

REFERENCE BOOKS:

S.No.	Authors Name	Title of the Book	Publishers	Year of
			Name	Publication
1.	P. B. Bhattacharya, S. K.	First Course in Linear	Wiley Easterrn	1985
	Jain and S. R. Nagpaul	Algebra	Limited	
2.	Kenneth Hoffman and Ray	Linear Algebra	PHI Learning	2009
	Kunze		Private Limited	
3.	K. S. Narayanan and	Modern Algebra,	S. Viswanathan	1982
	T. K. Manicavachagom	Volume I	Private Limited	
	Pillay			

Web links:

- 1. https://voutu.be/1XIT3Y2ovAU
- 2. https://youtu.be/Pc2dWW3aSrk
- 3. https://youtu.be/ERfbtPBEYVA
- 4. https://youtu.be/6NFIsO7APY
- 5. https://youtu.be/fdsgsMP9JnA

Pedagogy:

Power point presentations, Group Discussion, Seminar, Quiz, Assignment, Lecture.

CORE COURSE-XII(CC)

COMPLEX ANALYSIS

2019-2020 Onwards

Semester – VI	COMPLEX ANALYSIS	Hours/Week – 5	
Core Course –XII (CC)		Cred	lit – 5
Course Code – 19UMA6CC12	COMIT LEA ANAL 1515	Internal	External
		25	75

Objectives:

- > Identify curves and region in the complex plane defined by simple expressions.
- > To study about the concepts of Complex Variables and Complex Integration
- > To know about the concept of Power Series Expansion, Singularities and Residues.

Course Outcomes:

On the successful completion of the course, students will be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Describe the functions of Complex variables, continuity and differentiation of complex variable functions, C – R equations of analytic functions.	К2
CO2	Explain about Elementary transformations in Complex variables.	К2
CO3	Compute Complex Integration through Cauchy's theorem.	К3
CO4	Determine the Power series expansions for Taylor's and Laurent's series.	K4
CO5	Diagnose the singularity concept and residues, solving definite integrals using residues.	К4

Mapping with Programme Outcomes:

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	S
CO2	S	S	М	S	М
C03	S	S	S	S	М
C04	S	S	S	М	М
CO5	S	S	S	М	М

S-Strong, M-Medium, L-Low.

CORE COURSE -XII (CC)

COMPLEX ANALYSIS

2019-2020 Onwards

UNIT I

Analytical Functions:

Functions of a Complex Variable – Limits– Theorems on Limits- Limits Involving the Point at Infinity – Continuity – Derivatives – Cauchy-Riemann Equations – Sufficient Conditions for Differentiability – Polar- Coordinates - Analytic Functions – Examples -Harmonic functions.

UNIT II

Integrals:

Definite Integrals of Functions w(t) – Contours – Cauchy- Goursat Theorem – Proof of the Theorem – Simply Connected Domains – Multiply Connected Domain – Cauchy Integral Formula – An Extension of the Cauchy Integral Formula – Some Consequences of the Extension – Liouville's Theorem and the Fundamental Theorem of Algebra – Maximum Modulus Principle.

UNIT III

Series:

Convergence of Sequences – Convergence of Series – Taylor's Series – Proof of Taylor's Theorem – Examples – Laurent Series – Proof of Laurent's Theorem – Examples.

(15 Hours)

(15 Hours)

(15 Hours)

Mapping by Elementary Functions :

Linear Transformations – The Transformation w = 1/z – Mappings by 1/z – Linear Fractional Transformations – An Implicit Form – Mappings of the Upper Half Plane –The Transformation w = Sin z – Mappings by z^2 and Branches of $z^{1/2}$.

UNIT IV

Residues and Poles:

Isolated Singular Points – Residues – Cauchy's Residue Theorem – Residue at infinity – The Three Types of Isolated Singular Points – Residues at Poles – Examples – Zeros of Analytic Functions – Zeros and Poles – Behaviour of Functions Near Isolated Singular Points.

UNIT V

(15 Hours)

Applications of Residues:

Evaluation of Improper Integrals – Example – Improper Integrals from Fourier Analysis – Jordan's Lemma – Indented Paths – An Indentation Around a Branch Point – Integration Along a Branch Cut – Definite Integrals Involving Sines and Cosines – Argument Principle – Rouche's Theorem.

TEXT BOOKS:

S.No.	Authors	Title of the Book	Publishers Name	Year of Publication
1.	James Ward Brown and	Complex	McGraw Hill	2009
	Ruel V.Churchill	Variables	Higher Education.	
		and	Eighth Edition, New	
		Applications	York.	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS	PAGE NUMBER
Ι	2	12, 15 - 19, 21 - 26	35-38, 45-59, 63-82
II	4	38,39, 46 - 54	119 – 126, 150 - 175
III	5 and 8	55 - 62, 90 - 97	181 – 208, 311 - 336
IV	6	68 – 77	229 - 260
V	7	78 - 87	261 - 298

(15 Hours)

REFERENCE BOOKS:

S.No	Authors	Title of the Book	Publishers Name	Year of Publication
1.	S.Arumugam, A.Thangapandi Isaac & A.Somasundaram	Complex Analysis	New Scitech Publications (India) Pvt Ltd.	2005
2.	T.K.Manickavachagam Pillai	Complex Analysis	S.Viswanathan Publishers Pvt Ltd, Chennai.	1994
3.	Duraipandian. P, KayalalPachaiyappa	Complex Analysis	S. Chand & company Pvt. Ltd, 1 st Edition, New Delhi.	2014

Web links:

- 1. <u>https://www.youtube.com/watch?v=b5VUnapu-qs</u>.
- 2. <u>https://www.voutube.com/watch?v=2v95JHiapxU</u>.
- 3. <u>https://www.voutube.com/watch?v=WBvRL-OCEN8</u>.
- 4. <u>https://www.youtube.com/watch?v=qipLIIVo_6E</u>.
- 5. <u>https://www.youtube.com/watch?v=o77UV7YrWvw</u>.

Pedagogy:

Power Point Presentation, Group Discussion, Seminar, Assignment.

CORE COURSE – XIII (CC)

DYNAMICS

2019-2020 Onwards

Semester – VI		Hours/V	Veek – 5
Core Course - XIII (CC)	DYNAMICS	Cred	its – 4
Course Code – 19UMA6CC13		Internal	External
		25	75

Objectives:

- \succ To analyze the bodies in motion using the basics of kinematics.
- > To provide the basic knowledge of equilibrium of a particle.
- > To develop a working knowledge to handle practical problems.

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Explain the motion under the action of central force.	K2
CO2	Compute motion of a straight line using relative velocity and acceleration.	К3
CO3	Apply the concepts of impulsive forces and impact of spheres.	К3
CO4	Ascertain the various aspect of projectile.	K4
CO5	Examine simple harmonic motions and its characteristics.	K4
CO6	Determine differential equation and pedal equation of a cental orbit.	K4

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	М	S	S
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	М	S
CO6	S	S	S	S	S

S-Strong, M-Medium, L-Low

CORE COURSE – XIII (CC) DYNAMICS SYLLABUS

UNIT I

Kinematics:

Basic units – Velocity – Acceleration – Coplanar Motion.

UNIT II

Projectile:

Forces on a Projectile – Projectile projected on an inclined plane – Enveloping parabola or bounding parabola.

UNIT III

Impact:

Impulsive force – Impact of sphere – Impact of two smooth spheres – Impact of a smooth sphere on a plane – Oblique Impact of two smooth spheres.

UNIT IV

Rectilinear motion under varying forces:

Simple harmonic motion – S.H.M. along a horizontal line – S.H.M. along a vertical line.

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

(15 Hours)

UNIT V

Central Orbits:

General Orbits– Central Orbit – Conic as a centred orbit.

TEXT BOOKS:

S.No	Authors Name	Title Of The	Publishers Name	Year Of
		Book		Publication
1.	P. Duraipandian,	Mechanics	S.Chand & Company	2014
	Laxmi Duraipandian		Pvt Ltd	
	and Muthamizh			
	Jayapragasam			

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	1	1.1-1.4
П	13	13.1-13.3
III	14	14.1-14.5
IV	12	12.1-12.3
V	16	16.1-16.3

REFERENCE BOOKS:

S.No	Authors Name	Title Of The	Publishers Name	Year Of
		Book		Publication
1.	M.K.Venkataraman	Dynamics	Agasthiyar	2009
			Publications	
2.	A.V.Dharmapadham	Dynamics	S. Viswanathan	2006
			Publishers Pvt Ltd	
3.	Narayanan S	A Text book of	S. Chand and	1986
		Dynamics	Company	

Web links:

- 1. https://youtu.be/40RU9IWdfTA
- 2. https://youtu.be/gk7KV0llKrM
- 3. https://youtu.be/4HZtV PGHo0
- 4. https://youtu.be/uM2HpLBVAkA
- 5. https://youtu.be/MINmlY_yoZ0
- 6. https://youtu.be/NsNUuSxaa2Y

Pedagogy:

Power point presentations, Group Discussion, Seminar, Quiz, Assignment, , Brain storming, e-content, Lecture.

CORE COURSE – XIV (CC) OPERATIONS RESEARCH

2019-2020 Onwards

Semester - VI	OPERATIONS	Hours/Week-4	Veek – 4
CORE COURSE - XIV	RESEARCH	Cred	its — 4
Course Code - 19UMA6CC14		Internal	External
Course Coue - 170WA0CC14		25	75

Objectives:

- > To impart knowledge in concepts and tools of operations research.
- > To equip the students with mathematical methods formatted for their major concepts..
- > To apply these techniques constructively to make effective business making.

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Explain the Game theory problems	К2
CO2	Illustrate the Network Problems.	К2
CO3	Describe the Inventory Models.	К2
CO4	Solve the given LPP under various methods.	К3
CO5	Compute solutions to Transportation and Assignment Problem.	К3

Mapping with Programme Outcomes

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	Μ	S	S	М
CO3	S	S	S	S	S
CO4	S	Μ	S	S	Μ
CO5	S	S	S	S	S

S-Strong, M-Medium, L-Low

CORE COURSE – XIV (CC) OPERATIONS RESEARCH SYLLABUS

UNIT I

Linear Programming Problem:

Introduction – Linear Programming Problem – Mathematical formulation of the problem– Illustrations on Mathematical formulation of Linear Programming Problems.

Linear Programming Problem-Graphical solution and Extension:

Introduction – Graphical Solution Method – Some Exceptional Cases – General Linear Programming Problem – Canonical and Standard Forms of Linear Programming Problem.

Linear Programming Problem-Simplex Method:

Introduction - The Computational Procedure

UNIT II

Linear Programming Problem - Simplex Method:

Use of Artificial Variables

Duality in Linear Programming:

Introduction – General Primal - Dual Pair –Formulating a Dual Problem – Dual Simplex Method.

UNIT III

Transportation Problem :

 $Introduction-LP\ formulation\ of\ the\ Transportation\ Problem\ -\ Existence\ of\ Solution\ in\ T.P\ -\ Solution\ of\ a\ Transportation\ Problem\ -\ Finding\ an\ initial\ basic\ feasible\ solution\ -Test\ for\ optimality-Economic\ Interpretation\ of\ u_j\ 's\ and\ v_j\ 's\ Degeneracy\ in\ Transportation\ Problem\ -\ Transportation\ Algorithm\ (MODI\ Method).$

Assignment problem:

Introduction – Mathematical Formulation of the Problem – Solution Methods of Assignment Problem –Special cases in Assignment Problems – The Travelling Salesmen problem.

UNIT IV

Games and Strategies:

Introduction- Two Person Zero sum Games –Some Basic Terms– The Maximin – Minimax Principle –Games without Saddle Points – Mixed Strategies – Graphical Solution of 2 x n and m x 2 games.

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

Inventory control:

Introduction – Types of Inventories – Reasons for carrying inventories– The inventory Decisions– Objectives of scientific inventory control– Cost associated with inventories– Factors affecting inventory control– An inventory control problem– the concept of EOQ- Deterministic Inventory Problems with no Shortages – Deterministic Inventory Problems with Shortages.

UNIT V

(12 Hours)

Network Scheduling by PERT/CPM:

Introduction– Network : Basic components – Logical Sequencing – Rules of Network Construction – Concurrent activities– Critical Path analysis–Probability Considerations in PERT-Distinction between PERT and CPM.

TEXT BOOKS:

S.NO.	AUTHORS	TITLE	PUBLISHERS
1	Kanti Swaroop,	Operations Research	Sultan Chand & Sons,
1.	Gupta.P.K,& Manmohan	Operations Research	2014

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
	2	2.1-2.4
I	3	3.1-3.5
	4	4.1, 4.3
п	4	4.4
II	5	5.1-5.3,5.9
ш	10	10.1-10.3,10.8-10.13
III	11	11.1-11.4, 11.7
IV	17	17.1-17.6
ĨV	19	19.1-19.11
V	25	25.1-25.8

REFERENCE BOOKS:

S.NO.	AUTHORS	TITLE	PUBLISHERS	YEAR OF PUBLICATION
1.	Hamdy A. Taha	Operations Research, An Introduction	Prentice Hall of India	2002
2.	Richard Bronson	Theory and Problems of Operations Research	Tata McGraw Hill Publishing Company	2001
3	S Kalavathy	Operations Research	Vikas apublishing House Private Limited	2013

Web links:

- 1. <u>https://youtu.be/ItOuvM2KmD4</u>
- 2. https://youtu.be/SZdKDeubMg8
- 3. https://www.voutube.com/watch?v=vKVkOpNDZ2s
- 4. https://youtu.be/M8POtpPtOZc
- 5. https://youtu.be/8IRrgDoV8Eo

Pedagogy:

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

MAJOR BASED ELECTIVE – II (A)

GRAPH THEORY

2019-2020 Onwards

Semester – VI		Hours	s/Week – 4
Major Based Elective – II (A)	GRAPH THEORY	Cro	edits – 3
Course Code – 19UMA6MBE2A		Internal	External
		25	75

Objectives:

- > To understand the fundamental concepts in graph theory.
- > To introduce the notion of graph theory and its applications.
- > To learn the techniques of Combinatorics in graph theory.

Course Outcomes:

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Define basic definitions of graphs	K1
CO2	Explain the notion of Eulerian Graphs.	K2
CO3	Describe the concepts of Hamiltonian Graphs and Characterization of Trees.	K2
CO4	Compute the properties of Planar Graphs.	К3
CO5	Apply the concepts of Directed Graphs for solving Kruskal's and Dijkstra's Algorithms.	К3

Mapping with Programme Outcomes:

COS\POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	М	S	S	М
CO3	S	S	S	S	S
CO4	S	М	S	S	М
CO5	S	S	S	S	S

S – Strong, M – Medium, L – Low.

MAJOR BASED ELECTIVE - II (A)

GRAPH THEORY

SYLLABUS

UNIT I

Introduction:

Introduction - The Konigsberg Bridge Problem.

Graphs and Subgraphs:

Introduction-Definition and Examples - Degrees - Subgraphs - Isomorphism -

Independent Sets and Coverings.

UNIT II

Graphs and Subgraphs:

Matrices - Operations on Graphs.

Connectedness:

Introduction-Walks, Trails and Paths - Connectedness and Components.

Eulerian and Hamiltonian Graphs:

Introduction- Eulerian Graphs.

UNIT III

Eulerian and Hamiltonian Graphs:

Hamiltonian Graphs (Omit Chavatal Theorem).

Trees:

Introduction-Characterization of Trees - Centre of a Tree.

(12 Hours)

(12 Hours)

(12 Hours)

UNIT IV

Planarity:

Introduction - Definition and Properties - Characterization of Planar Graphs.

UNIT V

(12 Hours)

Directed Graphs:

Introduction - Definitions and Basic Properties.

Some Applications:

Introduction -Connector Problem - Shortest Path Problem.

TEXT BOOKS:

S.No.	Authors Name	Title Of The	Publishers Name	Year Of
		Book		Publication
1.	S. Arumugam &	Invitation to	SciTech Publications	2006
	S. Ramachandran	Graph Theory	(India) Pvt. Ltd,	
			Chennai.	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	1	1.0, 1.1
	2	2.0 - 2.4, 2.6
II	2	2.8, 2.9
	4	4.0, 4.1, 4.2
	5	5.0, 5.1
III	5	5.2
	6	6.0 - 6.2
IV	8	8.0 - 8.2
V	10	10.0, 10.1
	11	11.0 - 11.2

(12 Hours)

REFERENCE BOOKS:

S.No.	Authors Name	Title Of The Book	Publishers Name	Year Of
				Publication
1.	Narsingh Deo	Graph Theory with	Prentice Hall of India	2004
		applications to Engineering		
		and Computer Science		
2.	Gary Chartrand and	Introduction to Graph	Tata McGraw-Hill	2004
Ζ.	Ping Zhang	Theory	Edition	2004
3.	S. Arumugam and	Introduction to Graph	SciTech Publications	2006
	S. Ramachandran	Theory	(India)Pvt., Ltd.,	

Web links:

- 1. <u>https://voutu.be/AtDgXvluW-Y</u>
- 2. https://youtu.be/gxL6kCc9yS4
- 3. https://voutu.be/ONdaOOJK574
- 4. https://youtu.be/mm9YUqZTsNE
- 5. https://youtu.be/wnYtITkWAYA
- 6. https://youtu.be/amaH38 mXK4

Pedagogy:

Power point presentations, Group Discussions, Seminar, Quiz, Assignment.

MAJOR BASED ELECTIVE – II (B)

NUMBER THEORY

2019-2020 Onwards

Semester - VI		Hours/Week – 4	
Major Based Elective – II(B)	NUMBER THEORY	Credits – 3	
Course Code – 19UMA6MBE2B		Internal 25	External 75

Objectives:

- > To highlight the details and distinctions in the world of numbers.
- To equip the students with basic concepts of Congruences formatted for their major concepts.
- > To prepare the students for coding through Congruences.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Apply the concept of divisibility and the linear Diophantine equations.	K2
CO2	Explain permutations and combinations in Fermat's little theorem and Wilson's theorem.	К2
CO3	Describe the basic properties of congruences.	K2
CO4	Solve the congruences using Chinese Remainder theorem and Polynomial congruences.	К3
CO5	Compute the theory of multiplicative arithmetic function and the Mobius inversion formula.	К3

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	М	S
CO2	S	S	S	М	М
CO3	S	S	S	М	S
CO4	S	М	S	М	М
CO5	S	М	S	М	S

S - Strong, M - Medium, L - Low

MAJOR BASED ELECTIVE – II (B) NUMBER THEORY

SYLLABUS

UNIT I

The Fundamental Theorem of Arithmetic:

Euclid's Division Lemma – Divisibility – The Linear Diophantine Equation – The Fundamental Theorem of Arithmetic.

UNIT II

Combinatorial and Computational Number Theory:

Permutations and Combinations – Fermat's Little Theorem – Wilson's Theorem – Generating Functions.

UNIT III

Fundamentals of Congruences:

Basic Properties of Congruences - Residue Systems

Solving Congruences:

Linear Congruences – The Theorems of Fermat and Wilson Revisited.

UNIT IV

(12 Hours)

Solving Congruences:

The Chinese Remainder Theorem - Polynomial Congruences.

(12 Hours)

(12 Hours)

(12 Hours)

Arithmetic Functions:

Combinatorial Study of $\phi(n)$.

UNIT V

(12 Hours)

Arithmetic Functions:

Formulae for d(n) and $\sigma(n)$ – Multiplicative Arithmetic Function – The Mobius Inversion Formula.

TEXT BOOKS:

S. No.	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	George E. Andrews	Number Theory	W.B. Saunders	1971
			Company	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTION
I	2	2.1 - 2.4
II	3	3.1 - 3.4
III	4	4.1 & 4.2
	5	5.1 & 5.2
IV	5	5.3 & 5.4
	6	6.1
V	6	6.2 - 6.4

REFERENCE BOOKS:

S. No.	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	David M. Burton	Elementary Number	Mc Graw Hill	2011
		Theory, 7 th Edition	Publishing Company	
2.	S.G.Telang	Number Theory	Tata McGraw-Hill	2003
			Publishing Company	
			Limited	
3.	Joseph H.	A Friendly	Pearson Education	2009
	Silverman	Introduction to		
		Number Theory		

Web Links:

- 1. <u>https://www.youtube.com/watch?v=ep695eRaAyU</u>
- 2. <u>https://www.youtube.com/watch?v=vPRNx6ry7SM</u>
- 3. <u>https://www.voutube.com/watch?v=zP9t001PXiU</u>
- 4. <u>https://www.voutube.com/watch?v=Owcepi5zoF0</u>
- 5. <u>https://www.voutube.com/watch?v=nT2KAKNDG58</u>
- 6. <u>https://www.youtube.com/watch?v=4_1D1BBibzw</u>

Pedagogy:

Power point presentation, Group Discussion, Seminar, Assignment.

MAJOR BASED ELECTIVE COURSE – III (A) FUZZY SETS AND SYSTEMS

2019-2020 Onwards

Semester – VI		Hours	/Week – 4
Major Based Elective – III (A)	FUZZY SETS AND	Credits – 3	
	SYSTEMS	Internal	External
Course Code – 19UMA6MBE3A		25	75

Objectives:

- > To introduce the concept of fuzzy theory and study its application in real problems.
- To acquire knowledge of the uncertainty environment through the fuzzy sets that incorporates imprecision and subjectivity.
- > To provide a good outline of a model formulation and solution process.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Explain the basic concepts of Fuzzy set theory.	K2
CO2	Classify the operations on Fuzzy sets and Fuzzy measures and give examples.	К3
CO3	Explain the basic concepts of arithmetic fuzzy numbers.	К3
CO4	Compose clear and accurate proofs using the concepts of Fuzzy logic and propositions.	К6
CO5	Develop Fuzzy concepts to design fuzzy control system models.	K6

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	М
CO4	S	S	S	S	S
CO5	S	S	S	S	М

S-Strong, M-Medium, L-Low

MAJOR BASED ELECTIVE – III (A)

FUZZY SETS AND SYSTEMS

SYLLABUS

UNIT I

FUZZY SET THEORY:

Introduction – Fuzzy Versus Crisp – Number System – Interval – Sets – Representation of a Set – Types of Sets – Subsets – Universal Set – Venn Diagrams – Operations on Sets – Difference of Two Sets – Some Important Results – Some More Results – Some Results on Venn Diagrams – Fuzzy Sets – Fuzzy Set: Definition – Types of Fuzzy Sets – Characteristics of Fuzzy Sets – Other Important Operations – General Properties : Fuzzy Vs Crisp.

UNIT II

OPERATIONS ON FUZZY SETS:

Introduction – Some Important Theorems – Extension Principle for Fuzzy Sets – Fuzzy Compliments – Further Operations on Fuzzy Sets – t-Norms and t-Conorms – Definition of Intersection and Union by Hamacher – Yager's Union and Intersection of Two Fuzzy Sets – Union and Intersection of Two Fuzzy Sets as given by Dubois and Prade – Extension Principle for Fuzzy Sets – Aggregation Operations.

UNIT III

FUZZY NUMBERS AND ARITHMETIC:

Introduction – Fuzzy Numbers – Algebraic Operations with Fuzzy Numbers – Binary Operation of Two Fuzzy Numbers – Some Special Extended Operations – Extended Operations

(12 Hours)

(12 Hours)

(12 Hours)

for L-R Representation of Fuzzy Sets – Fuzzy Arithmetic – Arithmetic Operations on Fuzzy Numbers in the Form of α -Cut Sets – Fuzzy Equations – Approximate Methods of Extension – Interval Analysis in Arithmetic – Lattice of Fuzzy Numbers.

UNIT IV

FUZZY LOGIC:

An Overview of Classical Logic – Connectives – Types of Sentences – Truth Values and Truth Table – Tautology – Algebra of Statements – Validity of Arguments – Logical Identities of Crisp Logic – Well Formed Formulas (WFF) – Predicates and Quantifiers – Quantifiers and Logical Operators – Normal Forms – Fuzzy Logic and Fuzzy Propositions – Fuzzy Connectives–Fuzzy Inference – Fuzzy Propositions – Fuzzy Quantifiers.

UNIT V

(12 Hours)

FUZZY SYSTEMS AND FUZZY CONTROL:

Introduction – Fuzzy Rule Based System – Fuzzification and Defuzzification – Fuzzy Control – Assumptions in a Fuzzy Control System Design – Design of Fuzzy Controllers – Fuzzy Control System Models.

TEXT BOOKS:

S. No.	Authors Name	Title of the Book	Publishers	Year of
			Name	Publication
1	Sudhir K. Pundir &	Fuzzy Sets and their	A Pragati	2006
	Rimple Pundir	Applications	Edition	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	SECTIONS
Ι	1	1.1 - 1.21
II	2	2.1 - 2.11
III	3	3.1 - 3.12
IV	7	7.1 - 7.17
V	8	8.1 - 8.7

(12 Hours)

REFERENCE BOOKS:

S.No.	Authors Name	Title of the Book	Publishers	Year of
			Name	Publication
1	H.J.Zimmermann	Fuzzy Set Theory and its	Springer(India)	2006
		Applications	Private Limited	
		Fourth Edition		
2	George J. Klir and Bo	Fuzzy Sets & Fuzzy Logic	Prentice-Hall	1995
	Yuan	Theory and Applications	of India	
3	Kwang H.Lee	First course on Fuzzy theory	Springer	2005
		and Applications		

Web links:

- 1. https://youtu.be/HjCTfx2AAaw
- 2. https://youtu.be/XHNhqCSGV60
- 3. <u>https://voutu.be/6daiRieEOIU</u>
- 4. https://voutu.be/N8vhE1GaaOc
- 5. https://youtu.be/_po4FxxE9c8

Pedagogy:

Power point presentation, Group Discussion, Seminar, Quiz, Assignment.

MAJOR BASED ELECTIVE – III (B)

ASTRONOMY

2019–2020 Onwards

Semester – VI	ASTRONOMY	Hours/Week – 4	
Major Based Elective – III (B)		Credits – 3	
Course Code -19UMA6MBE3B	ASTRONOMI	Internal	External
		25	75

Objectives:

- \blacktriangleright To introduce the exciting world of astronomy to the students.
- > To help the students to study spherical trigonometry in the field of astronomy.
- > To understand the movements of the celestial objects.

Course Outcomes:

On the Successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CO1	Explain the concepts of Celestial sphere, diurnal motion, Celestial coordinates and sidereal time.	K2
CO2	Classify circumpolar stars, zones of earth, perpetual day, dip of horizon and twilight.	К3
CO3	Derive refraction, laws of refraction, tangent formula, Cassini's formula, horizontal refraction, geocentric parallax and horizontal parallax.	К3
CO4	Discuss lunar and solar eclipses and ecliptic limits.	К3
CO5	Ascertain Kepler's laws, verification of 1 st and 2 nd laws in the case of earth, Anomalies, Kepler's equation, Seasons, causes and kinds of years.	К4

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	М	S
CO2	S	S	М	М	S
CO3	S	S	S	S	S
CO4	S	S	S	М	S
CO5	S	S	S	М	S

S-Strong, M-Medium, L-Low

MAJOR BASED ELECTIVE – III (B) ASTRONOMY SYLLABUS

UNIT I

Relevant properties of sphere and formulae in spherical trigonometry (no proof, no problems) – Celestial sphere and diurnal motion – Celestial coordinates – sidereal time.

UNIT II

Morning and evening stars – circumpolar stars – diagram of the celestial sphere – zones of earth – perpetual day –dip of horizon–twilight.

UNIT III

Refraction – laws of refraction – tangent formula – Cassini's formula – horizontal refraction – geocentric parallax – horizontal parallax.

UNIT IV

Kepler's laws – Anomalies – Kepler's equation – Kinds of years.

UNIT V

Moon-sidereal and synodic months – elongation – phase of moon – eclipses–umbra and penumbra – lunar and solar eclipses – ecliptic limits – maximum and minimum number of eclipses near a node and in a year – Saros of Chaldeans.

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

(12 Hours)

TEXT BOOKS:

S. No	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	S. Kumaravel and	Astronomy	SKV	2004
	Susheela Kumaravel		Publications	

CHAPTERS AND SECTIONS:

UNIT	CHAPTER	ART
Ţ	1	1 – 38
I	2	39 – 79
	2	80–86
II	3	87 – 101, 106 – 116
	4	117–134
III	5	135 – 144
	6	146–149, 153-165
IV	7	166–172, 175–189
N/	12	229–255
V	13	256–275

REFERENCE BOOKS:

S.No.	Authors Name	Title of the Book	Publishers Name	Year of
				Publication
1.	G.V. Ramachandran	Astronomy	Mission Press,	1965
			Palayamkottai.	

Web links:

- 1. <u>https://youtu.be/GIMAocKlagM</u>
- 2. https://youtu.be/qNLAb-Rdcgs
- 3. <u>https://voutu.be/F6Tkb8svTK8</u>
- 4. https://youtu.be/re3oEKX6Fks
- 5. https://youtu.be/ZS2FvljOXsk

Pedagogy:

Power point presentations, Group Discussion, Seminar, Quiz, Assignment, e-content, Lecture.

SKILL BASED ELECTIVE – III (A)

LaTeX (PRACTICAL)

2019-2020 Onwards

Semester – VI		Hours/Week – 2 Credits – 2	
Skill Based Elective – III (A)	LaTeX (PRACTICAL)		
Course Code – 19UMA6SBE3AP		Internal 40	External 60

Objectives:

- > To introduce the basic concepts of LaTeX, a typesetting software.
- > To get knowledge about creating a bibliographic database.
- > To write mathematical documents in LaTeX.

Course Outcome:

On the Successful completion of the course the student would be able to

CO Number	CO Statement	Knowledge Level
CO1	Define and use new commands within LaTeX.	K1
CO2	Apply mathematical formulae using LaTeX.	K2
CO3	Create a table using LaTeX.	К3
CO4	Classify various types of formulae, equations, matrix etc. by using LaTeX.	К3
CO5	Prepare a bibliography for a particular document.	К3

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	М
CO4	S	S	S	S	S
CO5	S	S	S	S	М

S-Strong, M-Medium, L-Low

SKILL BASED ELECTIVE – III (A)

LaTeX (PRACTICAL)

SYLLABUS

- 1. Create a LaTeX document for the given Mathematical Expression.
- 2. Create a table in LaTeX document.
- 3. Construct a LaTeX document using sums, integrals and limits.
- 4. Construct a differential equation and integral equation.
- Create a LaTeX document that contains the following: Title Author's name Abstract– Introduction – Sections.
- 6. Create a bibliography in LaTeX document.
- 7. Create a letter in LaTeX.

Web links:

- 1. <u>https://www.youtube.com/watch?v=fCzF5gDy60g</u>
- 2. <u>https://www.voutube.com/watch?v=0ivLZh9xK10</u>
- 3. <u>https://www.youtube.com/watch?v=bCumVPGR4ts</u>
- 4. <u>https://www.voutube.com/watch?v=kefvRACdXHs</u>
- 5. <u>https://www.youtube.com/watch?v=8byt3ywt1H8&list=RDCMUCGCHc7LsEYT6</u> 2dOauh2NYw&index=8

Pedagogy:

Power point presentation, Hand on Training.

SKILL BASED ELECTIVE – III (B) PYTHON PROGRAMMING (PRACTICAL)

2019-2020 Onwards

Semester – VI	PYTHON PROGRAMMING	Hours/Week – 2	
Skill Based Elective –III(B)		Credits – 2	
Course Code – 19UMA6SBE3BP	(PRACTICAL)	Internal	External
		40	60

Objectives:

- > To explore and understand how to use python.
- > To describe the core syntax and semantics of Python programming language.
- > To understand how to create and manipulate data's in python.

Course Outcome:

On the Successful completion of the course the student would be able to

СО	CO Statement	Knowledge
Number		Level
CO1	Interpret the fundamental Python syntax and the use of Python	K2
	input statements.	
CO2	Classify various control structures of Python in simple programs.	К3
CO3	Compute simple programs using input statements of Python	К3
	programming language.	
CO4	Infer the usage of Dictionaries, Sets and Object-Oriented	K4
	programming concepts in Python.	
CO5	Explain the need for working with functions in Python.	K2

Mapping with Programme Outcomes:

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	S	S
CO2	S	S	S	S	S
CO3	S	S	S	S	М
CO4	S	S	S	S	S
CO5	S	S	S	S	М

S-Strong, M-Medium, L-Low

SKILL BASED ELECTIVE – III (B) PYTHON PROGRAMMING (PRACTICAL) SYLLABUS

- 1. Compute the GCD of two numbers.
- 2. Find the square root of a number (Newton's method).
- 3. Exponentiation (power of a number).
- 4. Find the maximum of a list of numbers.
- 5. Linear search and Binary search.
- 6. Selection sort, Insertion sort and Merge sort.
- 7. First n prime numbers.
- 8. Multiply matrices.
- 9. Programs that take command line arguments (word count).
- 10. Find the most frequent words in a text read from a file.

Web links:

- 1. <u>https://voutu.be/rfscVS0vtbw</u>
- 2. <u>https://youtu.be/ uOrJ0TkZlc</u>
- 3. https://youtu.be/1ODvkkdyGw0
- 4. https://youtu.be/t8pPdKYpowI
- 5. https://voutu.be/woVJ4N5nl_s

Pedagogy:

Power point presentation, Hand on Training.